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Abstract—Driver distraction is an important cause of traffic
accidents. By identifying and analyzing the driver’s head posture
through monitor images, the driver’s mental state can be effec-
tively judged, and early warnings or reminders can be given to
reduce traffic accidents. We propose a novel dual-branch network
named TokenFOE that combines Convolutional Neural Networks
(CNN) and Transformer. The CNN branch uses an Multilayer
Perceptron (MLP) to infer the image features from the backbone,
then generating a rotation matrix based on SO(3) to represent
head posture. The Dimension Adaptive Transformer branch uses
learnable tokens to represent the head orientation of 9 categories.
Integrate the losses of both branches for training, ultimately
obtaining accurate head pose estimation results. The training
dataset uses 300W-LP, and the quantatitive testing datasets are
AFLW-2000 and BIWI. The experiment results show that the
Mean Absolute Error is improved by 21.2% and 9.4% compared
to the original SOTA model on the two datasets, and the Mean
Absolute Error of Vectors is improved by 19.2% and 10.2%,
respectively. Based on the model output and calibrated through
the camera adapter module, we present the qualitative results on
the largest driver distraction detection dataset currently available,
the 100-driver dataset, robust and accurate detection results were
achieved for four different camera perspectives in two modalities,
RGB and Near Infrared. Additionally, the ablation study shows
that the model inference speed (21 to 75fps) can be used for
real-time detection.

Keywords—Head pose; driver distraction detection; rotation
matrix; token; transformer

I. INTRODUCTION

Distracted driving is defined as any behavior in which
drivers focus their attention on activities unrelated to driving
tasks [1]. The group of drivers who drive for a long time, such
as long-distance bus drivers, full-time ride-hailing drivers, Taxi
and truck drivers, are more prone to distraction, which is a
significant safety hazard. When the driver is distracted, there
is usually a phenomenon of abnormal head posture deviating
from the direction of vehicle travel. Real time detection can
be carried out using the existing monitoring device video
in the terminal [2], and timely reminders can be given to
the driver when abnormalities occur, which can effectively
improve driving safety.

Face Orientation Estimation (FOE) also called Head pose
estimation (HPE), is a challenging task in human-computer
interaction [3], Human posture detection [4] and attention
detection [5], [6]. The FOE problem can be conceptualized
as a rotational dynamics challenge involving a 3D rigid body
in space. To describe this 3D rotation, various mathematical
techniques are available, including Euler Angles, Quaternions,

Axis-Angle representations, Rotation Matrices, and Lie al-
gebra. Each of these methods possesses unique strengths
and limitations in terms of accuracy, efficiency, and ease
of implementation. These advancements are attributed to the
utilization of additional data sources such as facial landmark
information [7], [8], [9], RGB-depth data [10], multi-task
learning approaches [7], [11], and alternative parameterizations
for orientation representation [11], [12], [13].

Traditional methods rely on manually extracting facial
landmarks, such as the eyes, nose, and mouth, to estimate
head pose. These methods are often sensitive to noise and
variations in facial features. Deep learning has revolutionized
FOE by enabling the direct prediction of head pose from raw
images or videos. Deep learning models can learn complex
patterns in facial data, leading to more robust and accurate
head pose estimation, these methods use extra annotation to
help FOE tasks, which usually could get good accuracy. Other
methods trying to only use orientation labels, such as HopeNet
[14], TriNet [11], FSA-Net [15], and TokenHPE [16], these
methods also have much progress but slightly worse than
aforementioned methods.

Some methods also try to use transformer architecture, such
as TokenPose [17] uses a leaning token to represent a human
pose, then regression the whole body key points. Following the
same inspiration, TokenHPE [16] tried to use learning tokens
to solve the HPE problem, they divided all the orientations
into 9 or 11 regions, and every region set a token to predict.

Following these works, we introduce our work, TokenFOE,
and try to estimate Head posture by a dual-branch network
based SO(3) and Orientation Tokens for driver DDD (Driver
Distraction Detection) task. The contributions are summarized
as follows:

1) We proposed TokenFOE that adopts the dual-branch
network with a joint loss that combines the CNN
branch and Transformer branch, we also introduced
DAT (Dimension Adaptive Transformer) architecture
that could be suitable for any backbone.

2) Extensive experiments on AFLW2000 [18] and BIWI
[19] show we achieved new SOTA, especially exceed-
ing other Extra Annotation Free (EAF) methods by a
wide margin.

3) To the best of our knowledge, it is the first time that
SO(3) and attention mechanism are combined as a
dual-branch network in a DDD task.

The paper is organized as follows: Section II introduces some
related work in this field, and Section III describes in detail the
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model structure of TokenFOE and provides specific important
formulas, loss functions, and evaluation metrics. In Section
IV, we first introduces the datasets used in this article, and
then provides detailed experimental results to demonstrate the
effectiveness and robustness of the method. Detailed ablation
experimental results are also provided for important parame-
ters. Finally, the limitations and conclusions of this method are
discussed in Sections V and VI.

II. RELATED WORKS

Prior to the advent of deep learning, estimating facial ori-
entation or pose from RGB images without depth information
presented significant challenges. This task involved dealing
with a vast representation space encompassing diverse head
poses. Over the past decades, numerous methodologies have
been proposed to address this challenging problem. In this
section, we present a concise overview of the FOE problem.

A. Driver Distracted Detection Approaches

The accuracy of FOE has been greatly improved, and
applications based on estimation results have also received
more attention and research. Li et al. [20] try to review this
research field use electroencephalography. Mou et al. [21]
proposed a dual-channel network to try to solve the DDD
problem, but it just tested on an early simulated small dataset,
and the model’s true generalization performance is difficult to
verify, with few types of distraction detection. 100-driver [22]
is a large-scale, diverse posture-based distracted diver dataset,
with more than 470K images taken by 4 cameras observing
100 drivers over 79 hours from 5 vehicles. Gebert P. et al. use
an attention module integrated into the network for adaptive
feature extraction. Li et al. introduced an efficient system based
on a Transformer to detect driving behavior.

B. Extra Information-utilized HPE Approaches

PRNet [23] predicts 2D UV position maps that encode
3D points and utilizes the connectivity of the Basel Face
Model (BFM) mesh to construct face models. Research [24]
approach combines coarse and fine regression outputs within
a deep neural network framework. Meanwhile, SynergyNet
[7] explores a synergistic learning process that leverages both
3D Morphable Models (3DMM) and 3D facial landmarks
to predict the entire 3D facial geometry, achieving highly
accurate results. In contrast, [25] proposes a method that does
not require training with head pose labels, instead relying on
matching key points between a reconstructed 3D face model
and the 2D input image. However, all prediction methods that
rely on key points are significantly influenced by the quality
of the input image.

Unlike traditional methods that rely on pre-labeled head
poses for training, method [25] estimates pose by aligning
a reconstructed 3D face model with the 2D input image,
bypassing the need for explicit pose labels. However, this
approach has a limitation: its accuracy can be affected by
variations in image quality, as it depends on precise keypoint
detection.

C. Extra Annotation Free HPE Approaches

TokenHPE [16] was a Transformer-based method that is
critically aware of minority relationships among facial parts.
This approach specifically focuses on learning the intricate
relationships between different facial components. To achieve
this, they introduce several orientation tokens that are designed
to explicitly encode the fundamental orientation regions of the
face. Furthermore, they devise a novel token-guided multi-
loss function that serves as a guide for the orientation tokens,
enabling them to learn the desired regional similarities and
relationships. This approach not only enhances the accuracy of
head pose estimation but also provides a deeper understanding
of the intricate facial geometry. 6dRepNet [13] tackles un-
constrained head pose estimation. It overcomes the limitations
of prior methods by using a continuous 6D rotation matrix
representation for ground truth data. This allows it to learn
the full range of head rotations, unlike previous approaches
restricted to narrow angles. Additionally, a geodesic distance-
based loss function ensures learned rotations adhere to real-
world 3D rotation space geometry, boosting accuracy and
robustness. LwPosr [26] utilizes a combination of depthwise
separable convolutional and transformer encoder layers for
efficient and fine-grained head pose prediction.

Overall, these methods have explored various technological
routes in the field of FOE and achieved some good results. If
new methods want to further improve performance or enhance
generalization, they face significant challenges.

III. METHOD

As shown in Fig. 1, estimating the driver’s head posture in
the monitored image can help solve DDBR problem.
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Fig. 1. Left: Overview of proposed driver distraction detection workflow.
Right: One RGB and one Near Infrared (NIR) sample of detected results

using TokenFOE.

In this section, we first introduce the overview of Token-
FOE, then describe every part, including the representation
methods of rotation, Gram-Schmidt process, MLP structure,
Dimension Adaptive Transformer, and evaluation metric.
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Fig. 2. The pipeline of proposed TokenFOE, a CNN and Transformer fusion
dual-branch network based SO(3) and orientation tokens. The main module

MLP (Sec. III-C), Gram-Schmidt Process (sec. III-D) and Dimension
Adaptive Transformer (sec. III-E) will described respectively.

A. Pipeline of TokenFOE

1) Dual branch architecture: The whole pipeline of Token-
FOE is refer to Fig. 2, which first pre-processes the input image
(Section IV-B1), then using a pre-trained CNN model to extract
image features. The extracted image features are processed
in two separate paths. One path is connected to the MLP to
predict a 6d representation, follow a Gram-Schimidt process
mapped it into a 3×3 rotation matrix belonging SO(3), while
the other path adopts the Vit approach to divide features into
14×14 patches, overlay them with position embedding, and
send them together with orientation tokens to the transformer
block for attention calculation. The calculated results are
generated through an fully connected (FC) layer to generate
a set of predictions, which are the class of orientation. The
calculation results of the two losses are fused using a hyper-
parameter α to obtain the final output.

B. Head Orientation and Representation of Rotation

1) Head orientation partitioning: According different ori-
entation euler angles, we could divided head posture to several
region. In this work, we followed TokenHPE [16] divided all
posture into 9 classes, the illustration refer to Fig. 3.

Fig. 3. According the neighbor image similarities, we divided head posture
into 9 classes as the schematic diagram.

2) Rotation matrix: There are several methods available to
represent a 3D rotation, such as Euler angles, Rotation matrix,
Axis-angle, Quaternion, or Lie algebra. Among these, Euler
angles are commonly used and intuitive. They decompose a
3D rotation into rotations along the three orthogonal coordinate
axes of the object, known as Yaw, Pitch, and Roll. Axis-angle
representation and Rotation matrix are closely related and can
be converted into each other. If v is a vector in R3 and k is a
unit vector describing an axis of rotation about which v rotates
by an angle θ according to the right-hand rule. As we know,
an object rotation θ degrees by axis x, y, z could described
by followed Eq. 1 and Eq. 2 where the cθ = cos(θ), sθ =
sin(θ), ξ = 1− cos(θ).

R(θ) =

[
1 0 0
0 cθ −sθ
0 sθ cθ

][
cθ 0 sθ
0 1 0

−sθ 0 cθ

][
cθ −sθ 0
sθ cθ 0
0 0 1

]
(1)

R =

 cθ + u2
xξ uxuyξ − uzsθ uxuzξ + uysθ

uyuzξ + uzsθ cθ + u2
yξ uyuzξ − uxsθ

uzuxξ − uysθ uzuyξ + uxsθ cθ + u2
zξ

 (2)

C. MLP Architecture

MLP is a classic artificial neural network model. It consists
of an input layer, several hidden layers, and an output layer.
In this work, we ultimately chose a single hidden layer MLP
module instead of FC according to the ablation study result,
with the dimension of the hidden layer set to 768. When
using the default RepVgg b2g4 as the backbone, the complete
workflow is shown in Fig. 4.
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Fig. 4. Upper: MLP architecture with one hidden layer. Lower: the example
tensor dimension when use RepVgg b2g4 as backbone.

D. Gram-Schmidt Process

A set of nonzero vectors µ1, µ2, ..., µn is called orthogonal
if µi · µj ̸= 0 whenever i ̸= j. It is orthonormal if it is
orthogonal and in addition µi · µi = 1 for all i = 1, 2, 3, ..., n.
We can use the Gram-Schmidt Process to perform orthogonal
transformations on the predicted rotation matrix, that is means
we could convert the HPE problem to estimate the satisfied
rotation matrix.

According TriNet [27] indicated, we could use map func-
tion fGs (refer to Eq. 3) to map the output into R̂, furthermore,
predict 6 elements could get the best precision and guarantee
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the representation space continuity than predict five or nine
elements.

R̂ = fGs(

[ | |
a1 a2
| |

]
) =

[ | | |
b1 b2 b3
| | |

]
(3)

The calculate method of the fGs is using Eq. 4 and Eq. 5.

bi =

[
N(a1) i = 1
N(a2 − (b1 · a2)b1) i = 2
b1 × b2 i = 3

]T

(4)

N(·) denotes a Normalization function.

N(ui) =
ui

∥ui∥
(5)

E. Dimension Adaptive Transformer

ViT [28] is a typical model and also is the first successful
vision transformer model. In ViT, an input image undergoes a
process of being segmented into smaller patches to avoid the
exponential increase in computational complexity caused by
too many patches, e.g. the default input image size is 224 ×
224×3, the author divides the image into 16×16×3 patches,
and maps each patch to a 768 dimensional 1D vector. The total
number of patches is 14× 14 = 196.

1) Dimension adaptive layer: In TokenFOE, the object
processed by the transformer block is not the original image
data, but the features output by the backbones. Different
backbones output different feature dimensions and orders,
for example, the output of resnet50 is 2048 × 7 × 7, the
output of RepVgg b2g4 is 2560 × 7 × 7, and the output of
Swin base 224 is 7×7×1024. To be compatible with different
feature dimensions without losing information, we introduce
a DDT(Dimension Adaptive Transformer), as shown in Fig.
5. The input features undergo dimension adaptation while
keeping the number of patches constant, and then are uniformly
mapped to 128 dimensions as input for the transformer block.
This operation allows our model to match the output of any
backbone.

2) Transformer block: Given the 1D token embedding
sequence T = {[visual], [euler angles]} as input, the Trans-
former encoder learns pose feature representation by stacking
M blocks. Each block contains a Multi-head Self-attention
(MSA) module and a Multilayer Perceptron (MLP) module.
In addition, layer norm (LN) is adopted before every module.
Self-attention (SA) can be formulated as Eq. 6.

SA(T l−1) = softmax(
T l−1WQ(T

l−1WK)T√
dh

)(T l−1WV )

(6)

where WQ,WK ,WV ∈ Rd×d are the learnable parameters
of three linear projection layers, Tl−1 is the output of the (l−
1)th layer, d is the dimension of tokens, and dh = d ·MSA
is an extension of SA with h self-attention operations which
are called “heads”. In MSA (Refer to Eq. 7), dh is typically
set to d/h.

MSA(T ) = [SA1(T );SA2(T ); ...;SA(h)(T )]Wp (7)
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Fig. 5. Left: The architecture of Transformer block that consist of
transformer branch. Right: The pipeline and example of dimension adaptive

calculation process when use RepVgg b2g4 as backbone.

Given that spatial relationships are essential for accurate
HPE, positional embedding, pos, is added to the visual tokens
to reserve spatial relationships, which can be expressed as Eq.
8:

[V isual] = {v1 + pos, v2 + pos, ..., vn + pos} (8)

where, n is the number of patches. Then, we obtain n×1D
vectors symbolically presented by [visual] tokens. The position
embedding use Eq. 9 followed [29].

PE =

{
sin(pos/100002i/dmodel) (pos, 2i)
cos(pos/100002i/dmodel) (pos, 2i+ 1)

(9)

F. Evaluation Metric

1) Loss function: As we know, for any R ∈ SO(3) must
satisfy RT = R−1, detR = ±1. Given a specified image
xi from the test data set, there is only one correct rotation
matrix converted from the label we called Rgt, The model
could predict a rotation matrix R̂, we want the R̂ as closely
as possible of Rgt, the limitation is R̂ = Rgt, then R̂RT

gt = I ,
I is an identity matrix. we use the Eq. 10 as the loss function
followed paper [13].

Lpose = arccos

(
1

2
(tr(R̂iR

T
gti)− 1)

)
(10)

When Rgti = R̂i, the Lpose equal zero. If the result is not
equal to zero, It means our model predicts an incorrect rotation
matrix, we could use the result to penalty our model by back
propagation algorithm. The final loss function is calculated by
Eq. 11, α is a hyper-parameters combine the two branches.

LossTotal = αLossmatrix + (1− α)Lossori (11)
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2) Evaluate: MAE is a standard metric for HPE, it is
defined as Eq. 12.

MAE =
1

N

N∑
i=1

(|xi − x̂i|) (12)

where N is the number of face images and xi and x̂i represent
the ground truth and predicted pose parameters, respectively.

MAEV is defined as Eq. 13. where N is the number of face
images in the dataset and vi and v̂i are the vector of ground
truth and the predicted result.

MAEV =
1

N

N∑
i=1

cos−1

(
vi · v̂i
|vi||v̂i|

)
(13)

IV. EXPERIMENTS

A. Datasets

We follow the methodologies employed in [13], [15], [11]
and utilize well-established public face datasets for training
and testing. Specifically, we use the widely recognized 300W-
LP [8] as the training set, AFLW-2000 [18] and BIWI [19] for
quantitative testing, 100-Driver [22] for DDD task.
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Fig. 6. Box and Hist plots of Training and Testing datasets, statistic by Euler
angles. Green(300W-LP [8]), Blue(BIWI [19]) and Red(AFLW2000 [18]).

1) Training: The 300W-LP [8] dataset comprises over
60,000 face samples collected from multiple databases, the
statistic results shown in the first line of Fig. 6. We convert
ground truth Euler angle into rotation matrices for training.

2) Quantitative testing: AFLW-2000 [18] consists of the
first 2000 images from the AFLW dataset. This dataset is
annotated with ground truth 3D faces and corresponding 21
landmarks. It offers a diverse range of samples with varying
lighting conditions and occlusion levels, providing a robust
evaluation environment for our model. BIWI [19] includes
more than 15K images of 20 individuals. The head pose range
covers about ±75° yaw and ±60° pitch. The statistic data is
shown as Fig. 6.

3) Driver distracted detection: 100-Driver [22] is the
largest DDD dataset with more than 470K images taken by 4
cameras, observing 100 drivers, over 79 hours from 5 vehicles
and including different vehicles, drivers, camera view, and
modalities.

B. Model Settings

1) Pre-processing: First, we resize all the images into
300×300 pixels, then random crop to 224×224 pixels as input,
we don’t use any other augment method. The model uses the
pre-trained RepVgg b2g4 provided by TIMM framework [30]
as the backbone, it’s one of powerful and popular CNN models.
We use Top-Down mode and employ MTCNN [31] to deal
with the face location detection task.

2) Hyper-parameters settings: The training and testing
environment is Ubuntu 22.04, Python 3.10, cuda 12.6, Pytorch
1.13, and a Nvidia 2080Ti with 11G GPU memory. The
core parameters of the training are: the batch size is 64, use
the Adam optimizer, the total epochs is 30, and the initial
Leaning Rate is set to 1e-4, which is reduced halve when 8th,
16thand 24th Epoch. All the weights in our model are random
initialization and the hyper-parameters α are set to 0.6 by the
ablation study result.

C. Experimental Results

Fig. 7 shows that the accuracy on AFLW2000 and BIWI
consistently increases with the training progress. There are
three periodic low points at 9th, 17th and 27th epoch, respec-
tively, just accompanied by three times decrease in learning
rate. The plot also shows an increasing trend until the 30th

Epoch, but the growth limit has not been explored yet.
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Fig. 7. Per epoch MAE plots tested on AFLW-2000 [18] and BIWI [19].

Follow the old SOTA method, TokenHPE [16], we also
show the MAEV scores compared with other popular EAF
methods, Refer to Fig. 8, our score exceeds others by a wide
margin, specifically, improved by 19.2% on AFLW2000.

HPE is a classical problem that has been studied in many
papers. According to literature [16], the methods are divided
into two categories: pure HPE and using additional annotated
data. Taking SynergyNet [7] as an example, facial key points
are used for training. In fact, the coordinate of upper key
points already contains head orientation information, which
can greatly improve accuracy. As can be seen from Table I,
this type of method generally has higher accuracy. Among
all methods that do not use additional annotation information,
our method has the highest accuracy. We achieved four new
SOTA on AFLW-2000 and BIWI. Because TokenHPE [16] is
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TABLE I. MEAN ABSOLUTE ERRORS OF EULER ANGLES AND VECTORS ON THE AFLW2000 [18] AND BIWI [19] . ALL METHODS ARE TRAINED ON
THE 300W-LP [8] DATASET. COLUMN ‡ INDICATE WHETHER EXTRA ANNOTATIONS FREE. ✓MEANS JUST USING ORIENTATION LABELS FOR

SUPERVISING,%MEANS USED EXTRA ANNOTATIONS, SUCH AS LANDMARKS. TOKENHPE [16](INDICATED BY UNDERLINE) IS MOST FAMILIAR AND
TARGET MODEL. BOLD FONT INDICATE THE SOTA SCORE FOR EVERY COLUMN.

Methods ‡ AFLW2000-Euler AFLW2000-Vector BIWI-Euler BIWI-Vector

Yaw Pitch Roll MAE Left Down Front MAEV Yaw Pitch Roll MAE Left Down Front MAEV

EVA-GCN [32] % 4.46 5.34 4.11 4.64 - - - - 4.01 4.78 2.98 3.92 - - - -
SynergyNet [7] % 3.42 4.09 2.55 3.35 - - - - - - - - - - - -
img2Pose [33] % 3.43 5.03 3.28 3.91 - - - - - - - - - - - -
HopeNet [14] ✓ 5.31 7.12 6.13 6.20 7.07 5.98 7.50 6.85 6.01 5.89 3.72 5.2 7.65 6.73 8.68 7.69
FSA-Net [15] ✓ 4.96 6.34 4.78 5.36 6.75 6.22 7.35 6.77 4.56 5.21 3.07 4.28 6.03 5.96 7.22 6.40
LwPosr [26] ✓ 4.8 6.38 4.88 5.35 - - - -
Quatnet [34] ✓ 3.97 5.62 3.92 4.50 - - - - 4.01 5.49 2.94 4.15 - - - -
Trinet [11] ✓ 4.2 5.77 4.04 4.67 5.78 5.67 6.52 5.99 3.05 4.76 4.11 3.97 5.57 5.46 6.57 5.86

TokenHPE-v1 [16] ✓ 4.53 5.73 4.29 4.85 6.16 5.21 6.97 6.11
TokenHPE-v2 [16] ✓ 4.36 5.54 4.08 4.66 6.01 5.10 6.82 5.98 3.95 4.51 2.71 3.72 5.41 5.17 6.23 5.60

6DRepNet [13] ✓ 3.63 4.91 3.37 3.97 - - - - 3.24 4.48 2.68 3.47 - - - -
zhao et al [35] ✓ 3.72 4.52 3.16 3.80 - - - - 3.45 4.32 2.75 3.51 - - - -
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Fig. 8. Comparison with other methods on AFLW-2000 measured by
MAEV. Our accuracy exceeds other EAF methods by a wide margin. The

lower the better, best viewed in color.

the most familiar with our method, we conducted a careful
comparison with it (indicated by underline), using downward
arrows(↓) and percentages(%) to indicate the specific values
of accuracy improvement.

We conducted extensive ablation experiments to investigate
the impact of each module on overall performance.

Table II shows the impact of different backbones on model
performance. The results show that the backbone has a signif-
icant impact on the final performance. Combining the training
and inference speed experimental results in Table III, a trade-
off between performance and speed can be made according to
specific needs.

TABLE II. ABLATION STUDY OF DIFFERENT BACKBONE. THE OVERALL
PERFORMANCE OF THE CNN MODEL IS BETTER THAN THAT OF THE

TRANSFORMER MODEL

Backbone Type MAE(AFLW2000) MAE(BIWI)

Swin base 224 Transformer 5.03 3.44
ResNet50 CNN 4.40 3.69

RepVgg b2g4 CNN 3.67 3.37

The MLP structure also has a significant impact on accu-

TABLE III. ABLATION STUDY RESULTS OF TRAINING AND INFERENCE
SPEED. ‘M’ AND ‘MS’ ABBREVIATION FOR MINUTES AND

MILLISECONDS, RESPECTIVELY

Model Backbone Image Size
(C,H,W)

Training
(M/epoch)

Inference
(ms/image)

TokenFOE Swin base 224 3,224,224 29 33.9
TokenFOE ResNet50 3,224,224 13 13.3
TokenFOE RepVgg b2g4 3,224,224 31 48.7

TABLE IV. ABLATION STUDY RESULTS OF DIFFERENT MLP
ARCHITECTURES. SINGLE HIDDEN LAYER ARE THE BEST MODULE THAN

FC AND TWO HIDDEN LAYER ARCHITECTURE

Module Hidden Layers Hidden Dimensions MAE(AFLW2000)

FC 0 - 3.77
MLP 1 128 4.05
MLP 1 256 4.03
MLP 1 512 3.76
MLP 1 768 3.67
MLP 1 1024 3.95
MLP 2 1024,256 4.26

racy. We compared and tested FC, single hidden layer MLP
with different dimensions, and double hidden-layer MLP, and
found that the single-layer MLP with dimension 768 had the
best performance. All the data refer to Table IV.

In the end, we tested different loss weights refer to Fig.
9, that is say the different values of α. According to our
design, the Transformer branch performs classification tasks,
which can improve the overall model accuracy(improved about
11.2%) but is not suitable for independent work. When α is
set to 1, means only the CNN branch worked.

So far, our method can accurately estimate the head pose
angle, but there is still a problem when facing DDD tasks.
The training images are all based on the front profile view as
the initial position, and the output Euler angles are also the
deviation values relative to this initial position.

However, in the DDD task, the cameras may be arranged in
different positions, and due to the influence of the view angle,
completely different Euler angles will be output for the same
driver posture. This article simply sets up a Camera Adapter
layer to solve it. Through cluster analysis for 100-driver [22],
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Fig. 9. Ablation study results of model architectures. LossMatrix is more
important than LossOri.

it was determined that Pitch and Roll directions greater than
±15◦, Yaw direction greater than 50◦, or yaw less than −75◦

with an absolute value greater than 25◦ are Distracted. Fig. 10
shows the visual detection results of different camera views,
modalities, lighting, vehicles, and drivers, further demonstrat-
ing the effectiveness and robustness of this method.

V. LIMITATION AND DISCUSSION

In this section, we will discuss the limitations of our
method in this article.

First, TokenFOE adopts a dual-branch structure to calculate
two sets of Lose separately, which theoretically enhances
the model’s expressive power. However, compared to CNN,
especially lightweight CNN models represented by Mobile-net
[36], the computational complexity and resource consumption
of the transformer model have significantly increased, which
is not cost-effective from an efficiency perspective. The ad-
vantage of the transformer scheme is that the model performs
better when training with large amounts of data. If we want
to deploy the model to a vehicle terminal device for terminal
inference, maybe need to fine-tune the model, such as using
a lighter backbone and reducing the number of parameters
appropriately.

Second, sleeping and yawning is also an important sign
of fatigue and distraction, our method can only detect head
posture, making it difficult to make quick judgments in such
scenarios (refer to Fig. 11).

VI. CONCLUSION

We proposed a novel dual-branch network named Token-
FOE, that combines CNN and Transformer, one is the classic
CNN path, and the other is a transformer model based on
a self-attention mechanism, the dimension adaptive algorithm
suitable uses any pre-trained backbone for the feature extractor.

We train the model on 300W-LP, quantitative test on
AFLW-2000 and BIWI. The experiment results show that the
MAE score is improved by 21.2% and 9.4% compared to the
original SOTA model, and the MAEV score is improved by
19.2% and 10.2%, respectively. Based on the model output and
calibrated through the camera adapter module, we present the
visualization results on the largest DDD dataset currently avail-
able, the 100-driver [22] dataset. Robust and accurate detection
results were achieved for four different camera perspectives
in daytime (RGB) and Night time(NIR). Additionally, the

ablation study shows that the model inference speed (21 to
75fps) can be used for real-time detection.

The main limitation of this method is that the heavy
model leads to high training and inference costs, and the
computational overhead of the self-attention part is too high. In
theory, more tasks can be completed by adding a small number
of additional tokens, such as key points. In addition to further
improving accuracy and reducing costs, the fusion of multi-
task and multi-modality is also a future research direction.
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