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Abstract—Maternal and neonatal mortality rates pose a sig-
nificant challenge in healthcare systems worldwide. Predicting the
childbirth approach is essential for safeguarding the mother’s and
child’s well-being. Currently, it is dependent on the judgment
of the attending obstetrician. However, selecting the incorrect
delivery method can cause serious health complications both in
mother and child over short-time and long-time. This research
harnesses machine learning algorithms’ capability to automate
the delivery method prediction process. This research studied two
different stackings implemented in machine learning, leveraging
a dataset of 6157 electronic health records and a minimal
feature set. Stack1 consisted of k-nearest neighbors, decision
trees, random forest, and support vector machine methods,
yielding an F1-score of 95.67%. Stack 2 consisted of Gradient
Boosting, k-nearest neighbors, and CatBoost methods, which
yielded 98.84%. This highlights the superior effectiveness of its
integrated methodologies. This research enables obstetricians to
ascertain the delivery method promptly and initiate essential
measures to ensure the mother’s and baby’s safety and well-
being.
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I. INTRODUCTION

Maternal and neonatal mortality can be significantly re-
duced by carefully selecting the most appropriate delivery
method based on the mother’s health, pregnancy complications,
and fetal conditions [1]. Mode of childbirth has become
a significant issue for obstetricians, health authorities, and
mothers. Over the current years, there has been a global
rise in cesarean delivery rates, contrary to the World Health
Organization’s guidelines advocating for rates below 15% [2].
However, determining an appropriate cesarean delivery rate
and the impact it has on maternal and infant well-being
remains a topic of debate within the obstetrics community [3].
Progressive medicalization can be attributed partly to the ever-
rising rates of cesarean sections [4].

Medical technology advancements such as elective or
planned Caesarean, emergency cesarean section, forceps deliv-
ery, and vacuum extraction have resulted in a safer experience
during childbirth. In a cesarean delivery, also known as a C-
section, surgeons perform a laparotomy (an abdominal incision
in the mother) followed by a hysterotomy (an incision in the
uterus) to facilitate the birth of the baby [5]. Broadly, experts
classify cesarean sections into three categories: elective or
planned, emergency, and cesarean on demand [6].

Obstetricians opt for cesarean delivery or C-section if the
fetus inside the mother’s womb is in an unusual position, has
very little amniotic liquid, possessing multiple fetuses or many
other reasons. Choosing the wrong delivery technique may
impose immediate and long-term health complications on both
mother and child. Seeking the help of technology can help
obstetricians make decisions accurately. Machine learning can
guide the obstetrician in predicting the probable chances of
the type of delivery, which can educate the mother on a safer
mode of birth.

The elective cesarean is a prepared delivery when maternal
or fetal indications arise in the antepartum period opted before
the ongoing labor. On the other hand, medical professionals
perform an emergency cesarean when they observe symptoms
that emerge during labor, requiring immediate medical inter-
vention. Healthcare providers perform a cesarean on demand
when women specifically request it, as indicated by its name.
Cesarean delivery is performed for patients in conditions like
when the mother possesses more than one fetus when the baby
is in a breech position, when the mother has severe health
conditions like diabetes or pre-eclampsia, when labor does not
progress any further, when elderly primigravida or dystocia or
maternal HIV occurs, C-sections can be a life savior. Assisted
deliveries like forceps and vacuum extraction can provide extra
support during childbirth for the protection of both mother and
baby. Forceps provide traction on the baby’s head and vacuum
extraction using suction to assist delivery.

A well-chosen birthing technique-whether vaginal birth,
cesarean section, or other interventions can help avoid potential
risks, ensuring safer childbirth outcomes. The gynecologist
chooses the delivery method by evaluating various obstetric
characteristics like the number of fetuses and the medical
history of the pregnant woman, such as diabetes and blood
pressure. Personalized care, guided by healthcare profession-
als, ensures that the delivery method aligns with maternal
and fetal needs, reducing the likelihood of complications and
improving overall survival rates for mothers and newborns.The
gynecologist selects the delivery method by evaluating various
biological factors of the mother, such as age, medical history,
and other relevant health conditions.

In this research, the proposed algorithm is an ensemble
of K-Nearest Neighbors (KNN), CatBoost (CB), and Gradient
Boosting (GB). The algorithms have been wisely chosen
for their complementary strengths. KNN is helpful for less
noisy datasets because of its simplicity and interoperability,
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while CatBoost handles categorical data efficiently, even on
imbalanced datasets.GB excels in capturing complex relation-
ships and delivering high predictive accuracy. The stack of
these classifiers offers flexibility to explore a diverse learning
approach to optimize model performance with hyperparameter
tuning.

This research focuses on tackling the existing literature
gap by developing a predictive model that integrates multiple
clinical features to define the mode of childbirth. The approach
utilizes a stacked ensemble of ML algorithms to optimize
performance through hyperparameter tuning, providing more
accurate predictions. The novelty of this study lies in diverse
classifiers, which significantly enhance the model’s perfor-
mance metrics.

The main contributions of this research include

• A detailed literature survey on the type of algorithms
used in the recent studies.

• Model can handle large datasets with more features
accurately.

• The study employs three classifier algorithms stacked
to ensure more precise and reliable decisions.

The paper is structured as follows: Section II provides a
review of related literature, Section III presents the methods
and materials used, Section IV describes the experimental
process Section V analyzes the results obtained, and finally,
Section VI concludes the study and suggests potential future
research directions.

II. LITERATURE SURVEY

Recent studies have witnessed the growing importance of
machine learning by various authors for pregnancy outcomes
and optimizing medical decisions.Fernández et al. [3] investi-
gated algorithms like support vector machines(SVM), Random
forest(RF), and the Multilayer Perceptron (MLP) to forecast
the delivery type among three classes, namely C-section,
euthocic vaginal, and instrumental deliveries. HGSORF, which
applies the Henry Gas Solubility Optimization algorithm with
Random Forest was designed to predict C-sections, demon-
strating the potential of decision-making [7]. Khan et al. [8]
investigated how machine learning techniques transform gy-
necological healthcare, aiming to enhance diagnostics and the
challenges faced. Lestari et al. [9] conducted a comprehen-
sive review on anticipating pregnancy-related complications.
Tiruneh et al. [10] organized a broad review to compare Pre-
Eclampsia Prediction using regression models and machine
learning algorithms.

Islam et al. [11] performed a systematic review on ML
uses to predict pregnancy outcomes, identifying gaps in the
existing approaches and proposing a research agenda for future
work.Kolasa et al. [12] have done a diverse review of the usage
of ML algorithms in health care. Mas-Cabo et al. [13] stud-
ied algorithms like Multilayer Perceptron(MLP) and Artificial
Neural Network(ANN) to forecast anticipated labor in women
with early labor symptoms through the analysis of electrohys-
terogram (EHG) signals of the uterus. ANN was employed to
estimate the success of labor induction, analyzing the uterine
EHG signals [14]. The authors achieved different objectives

with ML, such as classifying placenta cells [15], developing
pregnancy disorder in the first-trimester prediction [16], and
evaluating cesarean delivery risk in term nulliparous.

XGBoost (Extreme Gradient Boosting) has been exten-
sively used to solve predictive modeling tasks by construct-
ing a series of decision trees to rectify previous errors and
avoid overfitting. To illustrate, Sultan [17] experimented with
different algorithms to identify the most suited algorithm to
classify cesarean section deliveries. Xi [18] worked towards
predicting the large gestational age neonates in parturients
exposed to radiation using machine learning.Yu [19] evaluated
using machine learning algorithms for preterm birth forecast
in singleton pregnancies through time-series data [20].

Stacking has been popular machine learning, widely used
in various applications like the detection of thyroid dis-
eases [21], software bug prediction [22] predicting childbirth
approach, preterm birth prediction [23] used for various ap-
plications. Islam et al. [4] focused on the features suited best
for the prediction of the delivery technique using algorithms
like RF, SVM, Decision Tree (DT), K-Nearest Neighbors
(KNN), and stacking classifier (SC). Yang and Shami [24]
explored hyperparameter optimization across most machine
learning algorithms, emphasizing its critical role in enhancing
predictive performance.

III. METHODS AND MATERIALS

In this study, we assessed the appropriateness of uti-
lizing various ML algorithms for anticipating the mode of
childbirth across six classifications: CES Programmed(Elective
Cesarean), Emergency Cesarean, Eutocic delivery, Forceps
delivery, vacuum extraction, and Epistiomy.

The dataset comprised instances of women presented for
childbirth at four public hospitals across three distinct au-
tonomous regions in Spain in 2014 [25]. One hundred and
sixty-one personal health and medical features were recorded
from each mother and the fetus; few details were gathered in
antepartum and remaining in intrapartum.

A. Dataset Description

The Target variable Type of birth was noted as the signifi-
cant result of the labor. The Target Variable has been classified
as one of the classes CES Programmed, Elective Cesarean,
Eutocic delivery, Forceps delivery, vacuum extraction, and
Epistiomy. Medical circumstances surrounding the mother and
fetus were given utmost priority in deciding the type of
delivery technique for their well-being.

B. Data Preprocessing

This process is crucial for ensuring the accuracy and
effectiveness of the models built using the data and prepro-
cessing, including data reduction, preparation, and balancing
techniques. The dataset contained 6157 data records with 161
attributes. Data reduction is a crucial preprocessing approach
that can decrease the size and complexity of a dataset while
preserving its essential information. It involves removing or
merging redundant or irrelevant features, removing noise and
outliers, and transforming the data into a more convenient
representation.
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Data reduction aims to make the dataset more manage-
able and accessible without sacrificing important patterns or
relationships. Dimensionality reduction helps machine learning
algorithms function more effectively and predict better. We
discarded features with minimal or no impact (e.g. OLIGOAM-
NIOS, Isoimmunization, MIOMECTOMY, and many more).
Other aspects, such as the sex of the fetus and fetal admission
to the ICU, are only identifiable after the delivery process.
Islam and his colleagues conducted structured interviews with
111 features to obtain information on their relevance [4].
The weighted average score, which ranges from 1 to 5,
was calculated across 111 features by averaging each score
and considering their assigned weight. The importance or
significance of the feature can determine the weight. Thirty-
two features scored above 1.5 on average, while 79 scored
below 1.5. Setting a threshold of 1.5, the initial set comprised
32 features, with the remaining 79 considered less significant.
Table I contains the 32 attributes of the dataset selected after
preprocessing.

Data reduction was achieved by removing 18 duplicate
records from the dataset. We replaced missing values for
the numerical features with their mean, and the mode was
substituted for categorical features. Data preparation involves
initializing input data to make it suitable for effective analysis
by algorithms. The MinMaxScaler transforms the dataset’s
features, allowing each feature to have an equal impact on
the predictive capability by scaling to an interval of 0 to 1.
Subsequently, the normalize function applies L2 normalization,
which modifies the feature vectors to have a unit norm,
improving the model’s capacity to handle different magnitudes
across the data.

The dataset suffered from a strong inequality between the
superior class Eutocic and the minority class Epistiomy. To
mitigate overfitting and prevent the model from favoring the
majority class excessively in terms of accuracy and frequency
over the minority class, random oversampling was employed
to balance the class distribution until achieving a 1:1 ratio.
Random oversampling duplicates the samples from the minor-
ity class and introduces them to the superior class to achieve
a balanced representation of majority and minority samples in
the dataset.

C. Algorithms

1) K-Nearest Neighbors: This non-parametric algorithm
assigns labels or predicts values depending on the majority
class of its closest neighbors in the feature domain.

2) Gradient Boosting: This machine learning ensemble
technique constructs predictive models by merging weak learn-
ers, which are decision trees, into a strong ensemble model.

3) CatBoost: Categorical boosting, also known as Cat-
Boost, stands out for its efficient handling of categorical
features. This algorithm automatically handles categorical vari-
ables without extensive preprocessing, making it convenient for
real-world datasets with common categorical features.

IV. METHODOLOGY

The algorithms were created, trained, and evaluated using
Jupyter Notebook, a scientific program development and open-
source development platform implemented in Python utilizing

the Scikit-learn package. From the data, 80% is randomly
utilized for the trained model, and the remaining 20% is
employed for testing and evaluating each model.

A. Experimental Setup

Each algorithm is tuned for the hyperparameters using
Grid search with five-fold cross-validation and accuracy as the
performance metric for tuning the hyperparameters. Through
an exploratory research approach, the hyperparameters have
been selected after testing over a broad range of configurations.
This gives the flexibility in identifying optimal parameters
based on the dataset’s performance rather than predetermined
theoretical values.

1) K-Nearest Neighbors: Several configurations of the
KNN algorithm were used as it doesn’t build the model
explicitly during training. A general rule doesn’t exist that
predicts the optimal value of the parameters, which in turn
is dependent on the dataset characteristics and must be found
empirically. A grid search is employed as a tuning technique to
identify the optimal values of the hyperparameters. Grid Search
has been applied to the K-Nearest Neighbors (KNN) algorithm,
tuning the hyperparameters across the following ranges: the
number of neighbors (n neighbors) from 1 to 20, the weighting
metrics (“uniform” and “distance”), and the distance metrics
(“Euclidean”, “Manhattan”, “Minkowski”).

• n neighbors: This parameter dictates the number of
neighboring data points examined during prediction,
influencing the model’s decision boundary flexibility.
A smaller “n neighbors” value can make the model
more susceptible to noise, potentially causing over-
fitting. Conversely, a larger “n neighbors” value can
make the model too generalized, possibly overlooking
local patterns in the data.

• metric: This parameter defines the distance metric
used to measure the distance between points in the
feature space. Various distance metrics lead to varied
notions of proximity between points, which can affect
the performance of the K-nearest neighbors algorithm.

• distance: The weights parameter steers the decision
of data point classification in KNeighborsClassifier.
Exploring various weight configurations can boost
the model’s effectiveness, mainly when working with
imbalanced datasets or fluctuating feature significance.

The best parameters the classifier finds with grid search for
this algorithm are {“n neighbors”: 5, “metric”: “manhattan”,
“weights”: “uniform”}.

2) Gradient Boosting: Grid Search has been applied to
the algorithm, tuning the hyperparameters across the following
ranges considering the number of estimators from 10 to 200,
learning rate from 0.01 to 1.0, and maximum depth of trees
from 1 to 20.

• n estimators (Number of Estimators): This parameter
dictates the number of boosting trees built in the
ensemble. A higher number of trees generally leads
to a more expressive model, potentially capturing
intricate patterns in the data.
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TABLE I. FEATURES OF THE DATASET

Feature Description Type
AGE Age of the individual Numerical
ALCOHOL Alcohol consumption during pregnancy Categorical
AMNIOCENTESIS A medical procedure involving the extraction of amniotic fluid for various

diagnostic purposes, such as genetic testing.
Categorical

AMNIOTIC LIQUID Characteristics of amniotic fluid Categorical
ANESTHESIA Administration of anesthesia during childbirth or related medical proce-

dures.
Categorical

ART Presence of assisted reproductive technology in the conception of the
pregnancy.

Categorical

ART MODE Methods to Assisted Reproductive Technology Categorical
BMI Body Mass Index of the individual Numerical
CARDIOTOCOGRAPHY Monitoring the fetal heartbeat and uterine contractions during labor. Categorical
COMORBIDITY Presence of one or more additional disorders or diseases alongside the

pregnancy
Categorical

COMPLICATIONS Medical issues or difficulties during pregnancy or childbirth. Categorical
EPISIOTOMY A surgical incision made during childbirth to widen the opening of the

vagina.
Categorical

FETAL INTRAPARTUM PH Measurement of the acidity or alkalinity of the fetal blood during labor. Categorical
GESTATIONAL AGE The age of the fetus in weeks, calculated from the beginning to end of the

menstrual period.
Numerical

HEIGHT Height of the individual Numerical
INDUCTION Method of labor induction Categorical
KG INCREASED PREGNANCY Increase in weight during pregnancy Numerical
MATERNAL EDUCATION Level of education of the mother Categorical
MISCARRIAGES Number of miscarriages Numerical
NUMBER OF PREV CESAREAN Number of previous cesarean deliveries Numerical
OBSTETRIC RISK Risk factors associated with pregnancy Categorical
OXYTOCIN Use of oxytocin during labor Categorical
PARITY The count of a woman giving birth to a fetus crossing the gestational age

of 24 weeks or more.
Numerical

PREINDUCTION Usage of medical interventions to initiate labor before it starts sponta-
neously.

Categorical

PREVIOUS CESAREAN Indication of whether the mother had a cesarean section in a previous
pregnancy.

Categorical

PREVIOUS PRETERM PREGNAN-
CIES

Number of previous preterm pregnancies Numerical

PREVIOUS TERM PREGNANCIES Number of previous full-term pregnancies Numerical
ROBSON GROUP Robson classification group Categorical
SMOKING Smoking status during pregnancy Categorical
START ANTENATAL CARE Timing of initiation of medical care and attention during pregnancy. Categorical
SUBSTANCE ABUSE History of harmful substances (e.g., drugs or alcohol) during pregnancy. Categorical
WEIGHT Weight of the individual Numerical

• learning rate (Learning Rate): The learning rate con-
trols the contribution of each tree to the final predic-
tion. A higher learning rate speeds convergence but
risks overshooting, while a lower rate requires more
iterations but enhances generalization.

• max depth (Maximum Depth of Trees): This param-
eter determines the maximum depth allowed for each
tree in the ensemble. Deeper trees can capture more
detailed data features but may also result in overfitting
as they learn the noise in the training data.

The hyperparameters by the grid search for this algorithm are
“n estimators”: 90, “learning rate”: 0.5, “max depth”: 10.

3) CatBoost: A systematic exploration of different pa-
rameter combinations was conducted to optimize the training
of CatBoost models involving varying key hyperparameter
ranges, namely, the number of estimators (“n estimators”)
from 10 to 200, the depth (“depth”) from 1 to 16, and the
learning rate (“learning rate”) from 0.01 to 1.0.

• n estimators (Number of Estimators): This defines
the number of trees (boosting iterations) to be built
during training. Increasing the number of estimators
can lead to a more complex model, potentially im-
proving performance, but it may also increase training

time and the risk of overfitting

• learning rate (Learning Rate): The learning rate con-
trols the step size at each iteration during the gradient
descent optimization process. It adjusts the model
weights in response to the error gradient.

• max depth (Maximum Depth of Trees): This param-
eter sets the maximum depth allowed for each tree in
the ensemble. Deeper trees can capture more complex
relationships in the data but may also lead to overfit-
ting.

The hyperparameters by the grid search for this algorithm are
“n estimators”: 100, “learning rate”: 0.5, “max depth”: 10.

4) Stacking: An ensemble learning method combines to
generate a new training set for a meta-classifier based on the
predictions of multiple classifiers. Each classifier is trained on
the entire training set individually, and the meta-classifier is
learned from the predictions made by the base models. Fig.
1 illustrates the stacking classifier’s architecture. The initial
training data (X) had 6157 samples and 2 features. Three M
different models (M = 3) are trained on X, and their predictions
(y) are combined to generate a data set X2 for the level 2
model. A strong SC was proposed in which KNN, GB, and
CB with the hyperparameters were the base classifiers.
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Fig. 1. Proposed KGC ensemble architecture.

5) Proposed Algorithm: KGC Ensemble Algorithm: A
KGC ensemble algorithm has been developed using the stack-
ing of KNN, GB, and CatBoost algorithms with the hyper-
parameters found in the GridSearch. This algorithm excels
beyond the standard ML algorithms with default parameters
(Stack 1). The primary goal of the stacking is to minimize
data variance and optimize its suitability for machine learning
models.

K-Nearest Neighbors (KNN) starts the process by classi-
fying data points based on the proximity to other points in
the dataset. In KNN, each data item is assigned to the class
frequency among k nearest numbers where k is predetermined.

h(x) = majority label ({yi | xi ∈ Nk(x)})

where:

• x is the data point to classify,

• Nk(x) represents the k-nearest neighbors of x,

• and majority label denotes the most frequent label
among these neighbors.

The algorithm classifies based on the majority class con-
tribution among neighbors, effectively performing similarity-
based classification.

Further, the dataset undergoes similar training under Gra-
dient Boosting (GB). GB builds an ensemble of decision
trees that sequentially trains every tree to rectify the errors
of its predecessor. The process continuously minimizes a loss
function, making the model more accurate. Prediction is a
weighted sum of the predictions of all trees, and the function
h can be expressed as:

h(x) =
∑

wifi(x)

where:

• fi(x) are the individual decision trees,

• and wi are the weights assigned to each tree’s predic-
tion.

Finally, CatBoost, an advanced boosting algorithm, is ap-
plied. CatBoost builds an ensemble of trees, similar to GB, but
uses ordered boosting and permutation techniques to ensure
unbiased and robust learning. The hypothesis function h in
CatBoost can be represented as:

h(x) =
∑

αiTi(x)

where:

• Ti(x) are the individual trees,

• and αi are the weights assigned to each tree’s output.

The ensemble of these models KNN, GB, and CatBoost-
work to improve the overall performance, reduce variance,
and provide a robust solution for classification tasks. The
pseudocode of the ensemble is shown in Algorithm 1.

Algorithm 1 KGC Ensemble Algorithm:

Input: Initial training dataset Ds = {(xi, yi)}ki=1
Output: An ensemble classifier H
B1, B2, . . . , BL: Base classifiers
M : Meta classifier
pil: Predicted values output by base classifiers Bi for data
sample xi

Step 1: for l← 1, 2, . . . , L do
Train base classifier Bl on Ds to obtain hl

Step 2: for each data sample xi in Ds do
for l← 1, 2, . . . , L do

pil = hl(xi) (Predict using base model hl)
Step 3: Form the new dataset Dnew by augmenting Ds

with the predictions pil
Dnew = {(xi, pi1, pi2, . . . , piL, yi)}ki=1

Step 4: Train the meta classifier M on Dnew
return H(x) = M(x, h1(x), h2(x), . . . , hL(x))

6) Performance evaluation of algorithms: The following
metrics are evaluated at each stage of the experimentation.

• Precision: Precision calculates the number of predic-
tions made for a class that belongs to the class.

• Recall: Recall calculates the number of estimates
made for a class amongst all the cases of that class
present in the dataset

• F1-Score: The F1-score is the weighted average of
precision and recall, typically ranging from 0 to 1.

V. RESULTS AND DISCUSSION

Two stack ensembles are constructed to evaluate the per-
formance of the different model configurations. The first stack
consisted of the classifiers DT, KNN, RF, and SVM balanced
using the sampling technique ADASYN. In contrast, the sec-
ond stack contained KNN, GB, and Catboost, each tuned with
the optimized hyperparameters with the random oversampling
technique. The experimental setup involved comparing the
predictive performance of both stacks on the same validation
dataset, with results being analyzed to assess the overall
effectiveness of the ensemble.

Results provided by the proposed stack showcase an ex-
cellent predictive capability to classify the type of delivery
method correctly. Even though the individual methods per-
formed well, the proposed algorithm combines the pitfalls of
each method and showcases good results compared to the
individual models. Fig. 2 represents the stack’s performance
comprising the models SVM, DT, KNN, and RF balanced
using the ADASYN balancing technique, and the metrics of the
proposed KGC Ensemble balanced using random oversampling
are depicted in Fig. 3.
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Fig. 2. Metrics of ADASYN sampling. Fig. 3. Metrics of random oversampling.

Fig. 4. Comparison of the results obtained by each stack.

Developing decision support systems is complex and aims
to maximize performance measures like precision and recall to
reduce false positives and negatives. While high and balanced
values are ideal, clinical criteria, which can vary between
hospitals, should determine which measure to prioritize. There-
fore, hospital systems should be flexible, allowing clinicians to
adapt protocols and prioritize specific performance measures,
such as cesarean, vaginal, and assisted vaginal delivery de-

cisions. The overall performance metrics of both stacks are
represented in Table II with numerical values and in Fig. 4
through bar plots.

This study’s findings exceed previous works aimed at
predicting delivery methods and assessing cesarean risks, con-
sidering antepartum and intrapartum factors. In [3], a cohort
of 25,038 patients with single pregnancies from the Service of
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TABLE II. PERFORMANCE METRICS FOR DIFFERENT MODELS

Model Recall Precision F1-Score

GradientBoosting 0.88 0.87 0.87

KNN 0.92 0.93 0.92

CatBoost 0.96 0.96 0.96

STACK1 0.957 0.9567 0.9567

STACK2 0.9885 0.9886 0.9884

Obstetrics and Gynaecology of the University Clinical Hospital
evaluated the feasibility of using algorithms, namely, SVM,
RF, and MultiLayer Perceptron, to predict the delivery method
among cesarean, eutocic and assisted vaginal deliveries. The
algorithms displayed an accuracy of 87%-90%. The study by
Sultan et al. [17] and by Hasan et al. [26] on a sample con-
taining 692 cesarean and 5465 non-cesarean samples collected
from 4 hospitals in Spain worked on cesarean prediction. The
SVC, XGB, and RF ensemble has achieved an F1-score of
96%. Concerning [27], a cohort of 13527 was prospectively
assessed to predict cesarean deliveries. 32 classifiers were
assessed, and the Quadratic discriminant analysis achieved an
accuracy and F1-score of 97.9%.

The proposed KGC ensemble model consisting of KNN,
Gradient Boosting, and CatBoost achieved a high F1 score
of 98.84%, demonstrating its strong predictive capability.
Gradient Boosting and CatBoost enhance the model’s ability
to handle complex, nonlinear relationships, while KNN adds
the advantage of capturing local data patterns. The blend
strikes a balance between bias and variance, in turn improv-
ing the model’s generalization. However, the ensemble has
challenges, including increased computational complexity and
longer training times. Moreover, the decision-making process
becomes less interpretable due to the complexity of Gradient
Boosting and CatBoost, making it harder to understand how
the model arrives at its predictions than KNN.

VI. CONCLUSION

An alarming increase in cesarean section rates surpassing
WHO recommended levels poses significant medical, financial,
and organizational challenges. Typically in low-risk pregnan-
cies and non-elective cesarean sections, the possibility of
vaginal or c-section deliveries relies on medical conditions and
initiatives taken. Machine learning can act as a driving force
and aid obstetricians in predicting the best feasible delivery
mode based on the medical conditions, ensuring the mother’s
and newborn’s safety. Machine learning can assist obstetricians
working night shifts and in varying localities by providing real-
time, data-driven insights and recommendations on the optimal
delivery mode, accounting for factors such as limited staff
availability, resource constraints, and patient demographics.

This research has proposed an optimized KGC classifier
combining the algorithms of GB, KNN, and CatBoost along
with a random oversampling balanced dataset to increase the
predictive capability of the delivery mode. The performance
of the proposed classifier has been tested against different
performance metrics such as F-measure, recall and precision.
Our proposed KGC classifier has achieved an F1-score of
98.84%, outperforming stack1 composed of KNN, DT, SVM,
and RF.

In addition,KGC algorithm provides better results com-
pared to previous studies. Hence we can conclude an optimized
and random oversampled-balanced KGC classifier can reliably
predict the C-section and vaginal classes.While our research
has provided valuable insights,it is important to understand
the dataset was limited to 6157 records. To further validate
the model’s robustness, future work is aimed to target the
larger datasets with more intrapartum details. Incorporating
such demographic variables in future studies could enhance the
predictive power and applicability of the model. Further , our
classifier can be applied to skin cancer, Parkinson’s, gestational
diabetes and socio-demographic data. In the future, we would
like to work with deep learning algorithms for better predictive
capabilities to implement a possible computer decision support
system model to be built for the benefit of obstetricians and
pregnant women.
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