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Abstract—The voluminous number of vehicles present on
principal roads together with ongoing road expansion projects are
triggering serious roadblocks during peak hours in many places
in Mauritius. Consequently, an innovative solution has been
proposed using the strength of deep learning neural networks and
cutting-edge computer vision methodologies to help reduce this
problem. The idea is to create a reliable system that is adequate
to measure traffic density and traffic flow on important roads of
Mauritius in real-time. A dataset of 2800 frames was collected and
used to train and test the YOLO models. A setup was designed
for detecting, tracking and counting vehicles such as buses, cars,
motorbikes, trucks and vans. Relevant traffic information from
videos can also be retrieved to generate statistics for traffic
density. Moreover, the system can estimate individual speed of
vehicles as well as determining traffic flow on bidirectional roads.
The overall mean counting accuracy was 96.1% and the overall
mean classification accuracy was 94.4%. For traffic flow, the
overall mean accuracy was 93.9%, while traffic density was
estimated with an overall mean accuracy of 95.3%. In comparison
with manual approaches used in Mauritius to understand the
state of traffic, the proposed system is a modern, low-cost and
effective solution that can adopted to potentially reduce traffic
congestions and traffic accidents.
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I. INTRODUCTION

Traffic congestion is a persistent threat for the long-term
sustainability of transport networks. Whenever travel volume
surpasses the capacity of roads, reduction in normal flow of
vehicles happens, causing major time delays, rise in financial
losses and significant stress for drivers [1]. Unfortunately,
roadblocks are a recurring issue worldwide capable of even
causing motionlessness for several days as occurred in Beijing,
China on August 2010 [2]. Traffic congestion is a term that
can be quantified by measuring its severity, duration and extent.
Severity shows the intensity of congestion, duration represents
the interval that the traffic network was affected and extent
being the length of road being compromised [3]. Furthermore,
studies show that after drivers are stuck in traffic, they tend to
be more reckless as well as being easily distracted, potentially
leading to accidents [4]. Although Mauritius is known for be-
ing a paradise island, its habitants are far from being exempted
from the daily struggles of traffic jam. According to reports
by the Road Development Authority (RDA) in Mauritius, a
significant portion of the budget allocated for road projects has
been spent to decongest roads in several parts of the country
[5]. In Mauritius, it is currently impossible to obtain reliable

information about the state of traffic on major roads at any
time. Some genuine attempts have been made to understand
traffic density by placing individuals at different roads and
manually counting moving vehicles. However, the growth of
the transportation network has made the method extremely
expensive and unsustainable. Moreover, these manual methods
do come with a degree of inaccuracy due to human errors.

Frequent travel delays is costly in the long run. Thus,
an automated traffic density estimation system is needed to
relieve pressure on road users. As the increase in number of
vehicles being purchased yearly is not coming to a halt, the
concentration of vehicles on major streets during peak hours
does raise a safety concern that needs to be tackled imme-
diately. Having a reasonable but limited budget, Mauritius
requires relevant and timely statistics to make optimal choices
in the ongoing road decongestion program. The goals of this
project are to take advantage of computer vision techniques
and neural networks to understand the state of traffic from
video footages. Firstly, a large number of video recordings
of moving vehicles on important roads of Mauritius will be
taken. The vehicles present in the frames will be meticulously
labelled to form a robust dataset for training, validation and
testing. After the training phase, the system shall be able to
detect, track and count moving vehicles from video frames
with reasonable accuracies. Then, with the help of appropriate
algorithms, traffic flow, traffic density and driving speed will be
estimated. Finally, an output video containing all the essential
information about road traffic analysis will be generated.
The system will be able to provide real-time traffic data,
allowing authorities and drivers to make informed decisions
on routes, reducing congestion. With the availability of real-
time data, authorities can predict future traffic patterns and
manage resources effectively, such as deploying traffic police
or adjusting traffic signals.The system will be cheaper and
more sustainable in the long run compared to manual methods.

This paper proceeds as follows. In the next Section II,
we present the related works, the object detection and object
tracking algorithms. The methodology is described in Section
III. The implementation, testing, results and evaluation are
presented in Section IV. Section V concludes the paper.

II. LITERATURE REVIEW

This section presents a comprehensive overview of the
existing research on vehicle counting, road traffic density eval-
uation and vehicle speed estimation. Mandal and Adu-Gyamfi
[6] built algorithms to count and track vehicles. They devel-
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oped a reliable approach for vehicle counting on highways
and addresses the occlusion issue of small vehicles behind
trucks. CenterNet, Detectron2, YOLOv4 and EfficientDet were
the four object detectors that were used. Intersection over
union (IOU) tracker, Simple Online and Real-time Tracking
(SORT), Feature Based Object Tracker were among the object
trackers that were tested but Deep SORT was found to be the
most reliable one. The combination of CenterNet and Deep
SORT outperformed the rest by achieving an average counting
accuracy of 95%. Zhu et al. [7] developed an enhanced Single-
Shot Detector (SSD) capable of outperforming popular object
detectors. ResNet achieved the best results with a classification
accuracy of 96.11%, while the accuracy for Speeded-up Robust
Features (SURF) was 45.74%. Consequently, a ResNet with
reduced layers was picked to be the base network of the
improved SSD. An overall accuracy of 90.3% was obtained
for the counting and classification of vehicles. This was 3%
higher than the one obtained by the traditional SSD.

Song et al. [8] developed a system to conduct vehicle
detection and counting on different highways. Firstly, video
frames go through the meanshift algorithm and Gaussian filters
for smoothing and enhancement. Then, the results are fed to
a flooding filling algorithm to identify and extract only the
road surfaces. The YOLOv3 algorithm was used to locate
the positions of vehicles and the Oriented FAST and Rotated
BRIEF (ORB) algorithm was employed to predict driving
directions. The experiments revealed that the accuracy for the
counting of vehicles and driving directions were 93.% and
92.3%, respectively. Lira et al. [9] constructed a system where
video footages obtained from drones were used to perform
vehicle detection by using the Mixture of Gaussian (MOG2)
algorithm. However, tracking of motorbikes and distant ve-
hicles proved to be difficult. An overall accuracy of 64%
was achieved for vehicle detection. Satyanarayana et al. [10]
proposed a distinct approach to detect and classify vehicles
from Indian roads. The CNN used was trained with 8000
images. The shapes formed by the ROIs (Regions of Interest)
were used to approximate the length, width and type of vehicle.
However, occurrences of closely moving two-wheelers being
classified as a single vehicle of another class were observed.
Also, vehicles having colours similar to roads created some
difficulties for the system.

Hasan et al. [11] developed a model based on a Convolu-
tional Neural Network (CNN) to analyze traffic density. The
CNN was trained to identify five different classes ranging from
“empty lanes” to “traffic not moving”. One of the worrying
issues of the system was overfitting. Data augmentation and
batch normalization were used to reduce overfitting. The model
was found to be working at an accuracy of 84.06%, with
a further increase of 2.5% after batch normalization. Biswas
et al. [12] constructed two automated Python algorithms for
counting vehicles and for estimating traffic density. The first
method was based on Single Shot Detector (SSD) while
the other one made use of MobileNet SSD. SSD was able
to achieve a detection accuracy of 92.9% while MobileNet
only reached 79.3%. Huy and Duc [13] came up with a
real-time traffic density evaluation system which locates,
counts and classify vehicles using faster R-CNN (Region-
Based Convolutional Neural Network) and CSRT (Channel
and Spatial Reliability Tracker) algorithm. The tracker can
tolerate certain unforeseeable movements and can work with

intermittent frame drops. To estimate traffic density, factors
such as speed of moving traffic and number of vehicles present
were considered. An accuracy of about 95% on highway streets
and a 5% drop on crossroads due to frequent occurrences
of unpredictable movements was obtained. Bidwe et al. [14]
worked on a convolutional neural network (CNN) to classify
traffic images into three traffic density categories, namely, low,
medium and high. The CNN was able to achieve classification
accuracy of up to 99.6%. However, the system can only find
density of a single image and has not been tested to calculate
the overall density of a sequence of frames.

Ijeri et al. [15] came up with a traffic control system using
image processing. Vehicles came from four different directions,
the system determines the traffic density and picks the lane that
gets green signal for an allocated time. Canny edge detection
algorithm is part of the method employed to estimate traffic
density. The system is found to be demanding for real-time
traffic control. The overall accuracy of the system was only
45%. Mittal et al. [16] put together a traffic density estimation
model intended to be used for improving green lights timings at
intersections. A combination of Faster R-CNN and YOLOv5,
named as EnsembleNet, was used as the object detector. The
model was able to operate in low light scenarios and achieve
a detection accuracy of up to 98% compared to 95.8% for
YOLOv5 and 97.5% for Faster R-CNN for the same test
set. Hasanah et al. [17] implemented a Smart Traffic light
management system at road intersections in Indonesia. The
Haar Cascade Classifier and an advanced CNN were used
together to form an object detector. The algorithm can process
footages of one second from CCTV cameras in 0.52s for light
traffic and 1.05s for heavy traffic. The detection accuracy was
82% during calm periods but drops to 60% during rush hours.

Fedorov et al. [18] attempted to determine the flow of
traffic at the most hectic intersection in the Russian city of
Chelyabinsk. The faster R-CNN detector was used for vehicle
identification and the SORT (Simple Online and Real Time
Tracker) algorithm would associate objects throughout the
video. Testing revealed an error rate of 7.25% as the tracker
struggles when cars overlapped while waiting at the centre of
the intersection. Grents et al. [19] also used the architectural
model of the faster R-CNN and SORT tracker to detect and
track moving vehicles. The authors also estimated vehicles’
speed to understand traffic flow using equations from Makwana
and Goel [20]. However, the proposed method could only
estimate speed within an error rate of 22%. Using YOLOv4,
Khalaf et al. [21] achieved an impressive accuracy of 98.93%
for the detection of pedestrians from the KITTI dataset

Despite all the breakthroughs concerning vehicle counting
and traffic density estimation, a single setup that can compute
all the key aspects of road traffic analysis is still missing. Our
plan is to implement a system that is able to detect, track,
count moving vehicles, estimate traffic flow, traffic density and
driving speed. The proposed model should be able to obtain
excellent classification accuracy while operating in real-time.

A. Object Detection Algorithms

In the realm of real-time traffic detection systems, object
detection stands as a pivotal component, given its fundamen-
tal role in identifying every moving vehicle traversing the
roadways. While humans effortlessly perform object detection,
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machines encounter significant complexity in executing this
task. This section delves into recent advancements in object
detection methodologies, shedding light on notable object
detectors.

1) The YOLO algorithm: At the University of Washington,
Joseph Redmon and Ali Farhadi built the start of the well-
known YOLO (You Only Look Once) object recognition and
picture segmentation model [22]. After its initial introduction
in 2015, YOLO has grown in popularity due to its fast speed
and correctness [23]. The first model receives frames at a
resolution of 448 × 448 pixels and applies a convolutional
neural network on the whole image in one go. The network
divides the input in a K × K grid, detects objects when their
centres are found inside a cell and predicts the positions of
bounding boxes and the likelihood of their respective classes.
A threshold value is used to reject bounding boxes with low
confidence score. The primary YOLO model recorded real-
time processing speed of 45 frames per second and a faster
version achieved a speed of 155 frames per second [22].

A year later, Redmon and Farhadi released an improved
version known as YOLOv2 which implemented a technique to
perform training on both object classification and identification
[24]. Batch normalization was another addition to improve the
precision. YOLOv2 was able to operate at 67 fps and was
more robust to different sizes of input images [24]. YOLOv3
consisted of subtle upgrades which made the network layers
larger and resulted into better accuracy while not impacting
the speed significantly [25]. The following release, YOLOv4,
brought the CSPDarknet53 as its classifier backbone along
with a 10% increase in speed and launched an innovative data
augmentation technique [26]. YOLO’s capacity was further
enhanced in 2021 with the introduction of YOLOv5 by Ultr-
alytics, which incorporated support for panoptic segmentation
and object tracking.

YOLOv8 was published by Ultralytics in 2023 [23]. This
model includes a new backbone network as well as a new
loss function. One of its attributes is compatibility with all the
existing YOLO versions. Users may swiftly switch between
and assess the performance of various versions [23]. YOLOv8
can now also perform instance segmentation and image classi-
fication in addition to object recognition. Anchor free detection
is an architectural change brought into the algorithm to reduce
the unnecessary large amount of predicted bounding boxes.
Terminating mosaic data augmentation after a certain number
of epochs is another update to the system. During testing on
the COCO dataset, YOLOv8 had a 20% increase in mAP for
its small version compared to YOLOv5 [27].

2) Single Shot Multibox Detector (SSD): SSD (Single Shot
Multibox Detector) is a state-of-the-art object detection model.
Its architecture consists of only one deep neural network.
During training, SSD requires input frames and labelled boxes
surrounding each object. When analyzing images, the algo-
rithm’s convolutional layers produce several default boxes
at the location of each object on feature maps of different
proportions. The system then compares both input’s boxes
and generated ones to look for matches. Those which are
compatible are considered positives and the rest are considered
as negatives. This technique has proven to enhance SSD
accuracy for low resolution images. During detection mode,
the convolutional layers generate a feature map and a 3 ×

3 convolution kernel is applied on the map to predict a set
of bounding boxes where objects are detected along with the
likelihood of their respective classes [28].

When tested on the VOC2007 dataset, SSD is able to attain
a mean average precision (mAP) of 74.3% and runs at 59
fps while using 300 × 300 pixels images. A slight increase
of 2.6% in mAP was reached for 512 × 512 input frames.
Nevertheless, as SSD ignores the data beyond the proposed
boxes, it is commonly acknowledged that it is less reliable in
recognizing smaller objects [29]. Fig. 1 shows the SSD model.

3) Mask R-CNN algorithm: Mask R-CNN is a framework
introduced in 2017 by Facebook AI researchers that extended
the Faster R-CNN model [30]. The latter operates in two
stages. The initial phase, known as a Region Proposal Network
(RPN), places bounding boxes on potential objects according
to its concurrent prediction of objects limits and objectness
values at each point. The following step is derived from Fast
R-CNN, uses RoIPool to retrieve traits from each bounding
box and classify them into their respective classes. Bounding-
box regression is also done to refine localization and the size
of boxes. The features identified from these two steps can
be communicated between them for quicker inference. Mask
R-CNN adds to the second stage by also performing a high
precision segmentation of each detected object in the images.
When compared to existing models, Mask R-CNN exhibits a
greater average precision and does not significantly increase
the overhead of faster R-CNN, but it only runs at 5fps, which
makes it unsuitable for real-time applications [30].

4) EfficientDet: Tan et al. [31] noticed that system opti-
mization has grown in significance over the last few years
for the field of computer vision. They did in-depth research
of neural network architectures in an effort to identify the
ideal combination to build an efficient object detector. After
evaluation, EfficientNet was chosen as the network backbone.
Innovative features such as BiFPN (bi-directional feature pyra-
mid network) and a new compound scaling method were
introduced. BiFPN acts as the feature network and makes
multiscale feature fusion simple and quick. The compound
scaling solution simultaneously adjust the pixel density, depth
and breadth of network for better optimization. With only 77
million parameters and 410 billion FLOPs, EfficientDet-D7 is
able to obtain an average precision of 55.1% on the COCO
dataset. Fig. 2 shows the architecture of EfficientDet.

B. Object Tracking Algorithms

Object tracking algorithms constitute an essential element
within intelligent traffic monitoring systems. Their primary
objective is to establish correspondences between identical
vehicles observed across distinct frames of a recording. A
proficient algorithm achieves this objective with minimal com-
putational expenditure while ensuring a consistent and reliable
tracking of a vehicle throughout its presence in the monitored
scene.

1) DeepSORT: DeepSORT is an extension of the com-
puter vision tracking model SORT (Simple Online Realtime
Tracking). The SORT algorithm is a method for numerous
objects tracking that emphasizes on efficient and straightfor-
ward methods to achieve real-time processing. It employs a
blend of well-known methods such as the Kalman Filter and
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Fig. 1. SSD Model [28].

Fig. 2. EfficientDet architecture [31].

Hungarian algorithm to accomplish its goals. When an object
appears or exits the frame, a distinct identity is either given to
or taken from it. An identified object is labelled as untracked
when its detection has an overlap smaller than the defined
IOUmin (Intersection over Union) value. An IOU matrix which
represents the intersection-over-union distance between each
detected object and all expected bounding boxes of pre-existent
entities is kept. The matrix is used by the Hungarian algorithm
to associate current objects with their next position in the
following frame. The Kalman Filter is used to predict future
locations of every tracked target which is used for object
association. Tracking is terminated if the entity is not found
for a specified number of frames [32].

While using the SORT method, some objects’ tracking are
often lost midway through and afterwards retraced using a
new identification. If counting is necessary, it could pose a
significant hurdle. DeepSORT tries to include visual appear-
ance of objects as a factor when looking for objects in the
upcoming frames. A trained convolutional neural network with
two convolutional layers and six residual blocks is incorporated
with predicted motion information to form a better object
association metric. The technique has shown to eliminate entity
switches issue by around 45%. Tracking is proved to be

smoother in scenarios with occlusions and unexpected motions
[33].

2) ByteTrack: ByteTrack (BYTE) is a simple and robust
tracker which main goal is to consider all detected bounding
boxes in order to minimize tracking errors due to occluded
targets, motion blur or shift in sizes. ByteTrack does not
use any convolutional neural network to achieve its aim but
rather uses both high and low confidence detection boxes while
performing association. Boxes are categorized as low and high
confidence according to a selected threshold. The Kalman
filter is then applied to predict the expected path of objects
in the following frame. The initial association is done with
the large confidence value boxes and all the predicted tracks.
At this phase, the Hungarian method is utilized to resolve
the matching. During the next stage, the resulting unmatched
tracks are associated with the low confidence boxes. Any
unpaired path is saved so that it may be handled with the
following frame. BYTE is a highly customizable model and
can easily be merged with other similar tracking algorithms.
It was able to obtain an accuracy of 80.3% for multi object
tracking while performing at 30 fps [34].
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III. METHODOLOGY

This section details the architecture and structure of the
proposed system. The contents of various elements and how
they interact with one another to allow the model to run suc-
cessfully are listed and thoroughly explained. Before building
the components that would be used to extract road traffic
information from video recordings, compilation of a robust
dataset is essential for training of an object detector.

A. Dataset

The dataset consists of five different classes namely buses,
cars, motorbikes, trucks and vans with class ids 0 to 4,
respectively. Out of 2800 frames, 22,293 cars, 4852 trucks,
3527 motorbikes, 2308 vans and 1937 buses were manually
annotated to form the dataset. Data augmentation techniques
such horizontal flips and 10-degree rotations have been used
to take the number of frames for the training dataset to a total
of 5600 frames. 280 labelled frames were set aside to be used
for the validation stage. The images were captured during the
day with light, medium and high traffic. Once the videos were
captured, any visible faces plate numbers were blurred out as
agreed with the Data Protection Office of Mauritius

B. Training of the Model

After intense research and analysis, YOLOv8m has been
chosen as the detector to perform vehicle recognition. This
choice was made due to the balance of speed and precision
it is able to offer. The detector was trained on the dataset for
120 epochs. The process took four hours to be completed.

C. Architectural Framework and Structural Composition of the
System

The architecture composes of a detection and classifier
module, a tracking unit, a traffic flow computation component,
a speed estimation module and a traffic density estimation
unit. The detection and classifier module mainly consist of the
trained YOLOv8m detector and each video frame, upon being
read, is initially transmitted to this detector for processing.
It firstly resizes the input image and pass it to its convolu-
tional neural network. Positions of bounding boxes with their
corresponding vehicle classes and confidence scores are then
determined. Finally, a thresholding of 0.25 is applied to discard
low confidence boxes. The output is then transformed into
a format compatible with the ByteTrack tracking algorithm
and sent to the tracking unit. A reduced ByteTrack algorithm
without its association metric serves as the central component
within the tracking module. Upon receipt, the detection results
are processed by ByteTrack and with the use of the Kalman
filter, a list of predicted tracks are created. This list will then
be used together with the detection results of the upcoming
image for the association of the same vehicle across the
sequential video frames. Each track is assigned a tracker ID
and paired with the detection exhibiting the highest intersection
over union (IOU) score. In case a detection is paired with
multiple tracks, only the combination with the highest IOU is
considered.

These combinations are then transmitted to the other mod-
ules for traffic analysis. The traffic flow computation compo-
nent is where counting of vehicles is performed. The module

requires a reference line perpendicular to the driving direction
with end points being pixel coordinates of the recording in
order to count vehicles. The end points of the line must be
placed in positions such that the visibility of moving targets is
optimal while traversing the line. As a vehicle moves from one
segment of the line to the other, the counter for its category
is incremented. At the end of each 60 s intervals, the number
vehicles counted for that period is divided by 60 to calculate
traffic flow in vehicles per minute.

The speed estimation module needs two reference lines per-
pendicular to the driving direction to operate. The calculation
of speed for individual vehicles involves determining the time
taken to traverse the distance from passing the initial reference
line and crossing the subsequent line. The same concept used
for vehicle counting is applied to understand when a target
is traversing a reference line. Distance between lines can be
estimated by adding the length of individual road markings.
The traffic density estimation unit makes use of a rectangular
box such that two of its edges are perpendicular to the driving
direction. The region of interest formed must be located where
the detection of vehicle is reliable.

For each 60 s, an average count of vehicles within the
specified area in each frame is calculated. This count is divided
by the number of lanes and the distance between the edges
perpendicular to the driving direction, and then multiplied by
10 to obtain the traffic density per lane in vehicle per 10 m.
Fig. 3 shows the activities of the speed estimation module,
starting by initializing the speed list to null and positioning
the two reference lines needed to calculate the speed of
vehicles. Through an examination of tracker IDs associated
with recognized vehicles, a distinction is made between new
and previously identified vehicles. Newly identified vehicles
have their coordinates stored for future reference, while those
previously recognized undergo a comparison between their
current positions and their last known positions. This assess-
ment aims to ascertain whether these vehicles have crossed
either the initial or subsequent reference lines. When a tracker
ID is observed to have traversed both lines sequentially, the
average speed for that specific duration is computed and then
recorded in the speed list.

Fig. 4 describes the workings of the traffic density es-
timation unit, beginning by defining the coordinates of the
rectangular area within which the road traffic density will be
estimated. Within each frame, the centroids of all identified
vehicles are computed, and their presence within the desig-
nated region of interest is determined. Consequently, the traffic
density for that particular frame is evaluated based on the count
of vehicles within this region. Over a span of 60 s, an average
traffic density per lane is calculated.

D. ByteTrack

The instance takes a list of important arguments that
have huge impact on its precision and computation speed.
track thresh which is set to 0.25, defines the minimum thresh-
old needed so that an object and a track can be considered
a match. track buffer represent the number of frames a track
is kept alive without being updated. The assignment of this
parameter, chosen to be 30, necessitates meticulous consid-
eration, particularly in situations characterized by recurrent
occlusions. match thresh is the value used to know if two
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Fig. 3. Speed estimation module.

detections on a frame are the same object and it is configured
to a value of 0.8. aspect ratio thresh define maximum aspect
ratio difference two objects can have to be considered same and
it is set to be 3.0. min box area, chosen to be 1.0, refers to the
minimum area bounding boxes should have to be considered
for tracking.

Each detected and tracked vehicle is defined by the co-
ordinates of the four corners of its bounding box together
with a tracker ID. Whenever a tracker ID is identified for the
first time, the x-y coordinates of the corners are tested in a
mathematical calculation to find out if they are below or above
the line. The Boolean responses are stored in a dictionary.
Upon coming across the tracker ID in an upcoming frame,
the mathematical calculation is performed again to look for
any changes. If all Boolean responses are identical, we wait
until the tracker ID may be encountered again. In a situation

where only two responses have changed, it would imply that
only part of the vehicle has crossed the line. If all four Boolean
values have changed, this indicates that the vehicle has crossed
the line and is on the opposite side. Consequently, the new
values are stored in the dictionary so that the vehicle is not
re-identified as crossing the line whenever the tracker ID pops
up again.

For each tracked bounding boxes in each frame, its centre
point is found by averaging the positions of its four corners.
Then, the method cv2.pointPolygonTest from OpenCV is used
with the rectangular region and centre point as parameters to
find if the point is inside the area. In case of a positive outcome,
the vehicle represented by the bounding box is considered to
be inside the rectangular box.
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Fig. 4. Traffic density estimation unit.

E. Validation Stage

During the dataset annotation for training purposes, 280
labelled images were set aside to be used for validation.
These images were captured under identical conditions and
locations as the images used for training. Fig. 5 shows the
confusion matrix derived for the validation process. These
matrices portray the model’s capability to accurately detect
and classify 90% of the vehicle instances within the frames.
Notably, out of 3429 instances, 486 false positives and 264
false negatives were recorded. The model demonstrates a
comparatively higher reliability in identifying buses, while
being slightly less accurate for vans.

F. Testing

Test Cases used in this section include scenarios with dif-
ferent road traffic intensities at various locations in Mauritius.
The car category includes Support Utility Vehicles (SUV) and
the truck category includes lorries, and pickup trucks. The
remaining categories are buses, motorbikes and vans.

G. Vehicle Counting and System Speed Comparison

The tracking and counting module have also been built on
YOLOv8n and YOLOv8x so that fair accuracy and inference
speed comparisons can be made among the three versions. The
nano and extra-large versions have also been trained for 120
epochs on the same labelled dataset. From all the videos in test
cases, a manual count of vehicles for each category has been
done. Classification accuracy has been computed by dividing

Fig. 5. Confusion matrix.

the count for each vehicle class by their corresponding manual
count, find the average and then multiply by 100. The speed
of each model has been estimated by the rate at which it can
go through a video frame. The reference line for counting is
also placed at an optimal position to obtain realistic feedback
on correctness.

IV. EXPERIMENTS, RESULTS AND EVALUATION

A. Test Case 1: M1 Motorway Near Bagatelle Mall

A two minute video sequence was captured on the bi-
directional M1 motorway from the bridge near Bagatelle Mall.
The traffic driving to the north had a high traffic density while
the traffic moving to the south was sparser. The footage was
captured at around 8:30 in the morning. Tables I and II show
these results

The results from both directions show that all the three
YOLO versions are able to achieve excellent counting and
classification accuracies. The traffic flow in both directions
for the whole video and for each interval of 60s has also been
determined by the system. These values are compared with the
actual traffic flow as shown in Tables III and IV.

Observations from Tables III and IV suggest that all the
three versions of YOLO are able to estimate traffic flow with
very high accuracies. Fig. 6 shows a screenshot from the traffic
video used for test case 1.

B. Test Case 2: Brabant Street at Port-Louis

A three minutes video sequence was captured on the bi-
directional Brabant Street from the flyover. The road to the
north consist of only one lane and had a slow moving traffic
while the one to the south consist of two lanes and also had
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TABLE I. RESULTS FOR DRIVING DIRECTION: NORTH (TEST CASE 1)

Manual
Count

YOLOv8m YOLOv8n YOLOv8x

Car 158 157 158 156
Motorbike 10 10 10 10

Bus 5 5 5 5
Truck 24 22 22 23
Van 10 10 10 10
Total 207 204 205 204

Car Classification Accuracy
(%)

99.4 100 98.7

Motorbike Classification
Accuracy (%)

100 100 100

Bus Classification Accuracy
(%)

100 100 100

Truck Classification
Accuracy (%)

91.7 91.7 95.8

Van Classification Accuracy
(%)

100 100 100

Counting Accuracy (%) 98.6 99.0 98.6
Classification Accuracy (%) 98.2 98.3 98.9

Speed (FPS) 7 18 3

TABLE II. RESULTS FOR DRIVING DIRECTION: SOUTH (TEST CASE 1)

Manual
Count

YOLOv8m YOLOv8n YOLOv8x

Car 46 48 48 45
Motorbike 8 8 8 8

Bus 1 1 1 1
Truck 11 9 10 13
Van 7 7 6 6
Total 73 73 73 73

Car Classification
Accuracy (%)

95.7 95.7 97.8

Motorbike Classification
Accuracy (%)

100 100 100

Bus Classification
Accuracy (%)

100 100 100

Truck Classification
Accuracy (%)

81.8 90.9 81.8

Van Classification
Accuracy (%)

100 85.7 85.7

Counting Accuracy (%) 100 100 100
Classification Accuracy

(%)
95.5 94.5 93.1

Speed (FPS) 7 18 3

TABLE III. TRAFFIC FLOW RESULTS FOR DRIVING DIRECTION: NORTH
(TEST CASE 1)

Traffic Flow
(Vehicle/min)

Manual Count YOLOv8m YOLOv8n YOLOv8x

0 s–60 s 71 70 71 71
60 s–120 s 68 65 65 65

60 s Intervals
Accuracy (%)

97.1 97.8 97.8

TABLE IV. TRAFFIC FLOW RESULTS FOR DRIVING DIRECTION: SOUTH
(TEST CASE 1)

Traffic Flow
(Vehicle/min)

Manual Count YOLOv8m YOLOv8n YOLOv8x

0 s–60 s 25 24 24 24
60 s–120 s 35 35 35 35

60 s Intervals
Accuracy (%)

98.0 98.0 98.0

vehicles moving slowly. The scenario is trickier compared to
test case one as a bus stop is found on the road and buses tend
to cause vehicle occlusions when they are stationary. This road
is also frequently taken by many motorcycles. The footage was
captured at around 11:30 in the morning. Tables V and VI show

Fig. 6. YOLOv8m output video.

the results.

TABLE V. RESULTS FOR DRIVING DIRECTION: NORTH (TEST CASE 2).

Manual
Count

YOLOv8m YOLOv8n YOLOv8x

Car 14 13 15 14
Motorbike 20 19 19 18

Bus 12 12 9 11
Truck 4 1 1 3
Van 1 1 1 0
Total 51 46 45 46

Car Classification Accuracy
(%)

92.9 92.9 100

Motorbike Classification
Accuracy (%)

95.0 95.0 90.0

Bus Classification Accuracy
(%)

100 75.0 91.7

Truck Classification
Accuracy (%)

25.0 25.0 75.0

Van Classification Accuracy
(%)

100 100 0

Counting Accuracy (%) 90.2 88.2 90.2
Classification Accuracy (%) 82.6 77.6 71.3

Speed (FPS) 7 18 3

TABLE VI. RESULTS FOR DRIVING DIRECTION: SOUTH (TEST CASE 2)

Manual
Count

YOLOv8m YOLOv8n YOLOv8x

Car 10 10 10 10
Motorbike 17 17 17 17

Bus 7 6 9 8
Truck 7 5 1 5
Van 1 1 1 0
Total 42 39 38 40

Car Classification
Accuracy (%)

100 100 100

Motorbike
Classification
Accuracy (%)

100 100 100

Bus Classification
Accuracy (%)

85.7 71.4 85.7

Truck Classification
Accuracy (%)

71.4 14.3 71.4

Van Classification
Accuracy (%)

100 100 0

Counting Accuracy
(%)

92.9 90.5 95.2

Classification
Accuracy (%)

91.4 77.1 71.4

Speed (FPS) 7 18 3

As test case 2 is a more challenging environment, more
variations in the results are seen. YOLOv8m outperforms the
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two other YOLO versions in classifying the vehicles in their
respective categories. Categorization of trucks seems to be
more difficult for all the three models. The results from Tables
VII and VIII show that all the three versions of YOLO are able
to estimate the traffic with accuracies above 80%. Table VII
shows a screenshot from the traffic video used for test case 2.
Fig. 7 shows the YOLOv8m output video.

TABLE VII. TRAFFIC FLOW RESULTS FOR DRIVING DIRECTION: NORTH
(TEST CASE 2)

Traffic Flow
(Vehicle/min)

Manual Count YOLOv8m YOLOv8n YOLOv8x

0 s–60 s 13 13 12 13
60 s–120 s 15 10 11 11
120 s–180 s 14 13 11 12

60 s Intervals
Accuracy (%)

86.5 81.4 86.3

TABLE VIII. TRAFFIC FLOW RESULTS FOR DRIVING DIRECTION: SOUTH
(TEST CASE 2)

Traffic Flow
(Vehicle/min)

Manual Count YOLOv8m YOLOv8n YOLOv8x

0 s–60 s 5 4 5 5
60 s–120 s 10 8 7 9
120 s–180 s 21 21 20 20

60 s Intervals
Accuracy (%)

86.7 88.4 95.1

Fig. 7. YOLOv8m output video.

C. Test Case 3: Motorway M1 Near Bagatelle Mall

A 4 min video sequence was captured on the bi-directional
M1 motorway from the bridge near Bagatelle Mall at around
6 o’clock in the afternoon. Traffic density was very light
during this time. Tables IX and X show that all three versions
have performed exactly the same while achieving about 99%
classification accuracy for both driving directions. The drop in
illumination does not seem to have any effect on the detectors’
ability to count and classify vehicles.

Tables XI and XII illustrate that all three models had the
same performance for traffic flow estimation for each direction.
They show that they are able to obtain traffic flow values with
accuracies higher than 96%. Fig. 8 shows a screenshot from
the traffic video used for test case 3.

In terms of counting accuracy, all the three YOLO versions
perform close to each other with YOLOv8x having the slight

TABLE IX. RESULTS FOR DRIVING DIRECTION: NORTH (TEST CASE 3)

Manual
Count

YOLOv8m YOLOv8n YOLOv8x

Car 40 38 38 38
Motorbike 5 5 5 5

Bus 2 2 2 2
Truck 6 6 6 6
Van 4 4 4 4
Total 57 55 55 55

Car Classification Accuracy
(%)

95.0 95.0 95.0

Motorbike Classification
Accuracy (%)

100 100 100

Bus Classification Accuracy
(%)

100 100 100

Truck Classification
Accuracy (%)

100 100 100

Van Classification Accuracy
(%)

100 100 100

Counting Accuracy (%) 96.5 96.5 96.5
Classification Accuracy (%) 99.0 99.0 99.0

Speed (FPS) 7 18 3

TABLE X. RESULTS FOR DRIVING DIRECTION: SOUTH (TEST CASE 3)

Manual
Count

YOLOv8m YOLOv8n YOLOv8x

Car 56 55 55 55
Motorbike 1 1 1 1

Bus 0 0 0 0
Truck 3 3 3 3
Van 6 6 6 6
Total 66 65 65 65

Car Classification Accuracy
(%)

98.2 98.2 98.2

Motorbike Classification
Accuracy (%)

100 100 100

Bus Classification Accuracy
(%)

- - -

Truck Classification
Accuracy (%)

100 100 100

Van Classification Accuracy
(%)

100 100 100

Counting Accuracy (%) 98.5 98.5 98.5
Classification Accuracy (%) 99.6 99.6 99.6

Speed (FPS) 7 18 3

TABLE XI. TRAFFIC FLOW RESULTS FOR DRIVING DIRECTION: NORTH
(TEST CASE 3)

Traffic Flow
(Vehicle/min)

Manual Count YOLOv8m YOLOv8n YOLOv8x

0 s–60 s 17 17 17 17
60 s–120 s 11 10 10 10

120 s–180 s 12 12 12 12
180 s–240 s 15 16 16 16

60 s Intervals
Accuracy (%)

96.1 96.1 96.1

TABLE XII. TRAFFIC FLOW RESULTS FOR DRIVING DIRECTION: SOUTH
(TEST CASE 3)

Traffic Flow
(Vehicle/min)

Manual Count YOLOv8m YOLOv8n YOLOv8x

0 s–60 s 20 19 19 19
60 s–120 s 18 18 18 18

120 s–180 s 16 16 16 16
180 s–240 s 9 9 9 9

60 s Intervals
Accuracy (%)

98.8 98.8 98.8

edge. As predicted, counting results shows that test case 2
was the most challenging as it often had motorbikes and small
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Fig. 8. YOLOv8m output video.

cars being hidden behind large buses waiting at a bus stop.
This poses major difficulties for detection and tracking. As
for classification accuracy, clear differences can be easily seen
among the different models. YOLOv8m achieved a classifi-
cation accuracy of 94.4% while the accuracy for YOLOv8x
was only 88.9%. Test case 2 proved to be challenging for
YOLOv8m and YOLOv8x as they misclassified or missed
buses and trucks.

As for the operating speed, YOLOv8n outperforms the two
others with an average fps of 18 as it is a much lighter detector
with fewer parameters. YOLOv8n is more than twice faster
than YOLOv8m and almost four times faster than YOLOv8x.
The slight variation in speed between different test cases is due
to dependency on the number of objects detected. This testing
shows YOLOv8m can operate in real-time if a powerful GPU
is used. All the three YOLO models are capable of evaluating
traffic flow with good accuracies. YOLOv8x is slightly more
suited for this task with an overall accuracy of 95.4%.

D. Traffic Density

With a known distance provided for the length of the region
of interest (ROI), the system is able to determine traffic density
for each lane. Values for traffic density per lane in the ROIs has
been manually estimated by counting the number of vehicles
present inside the selected areas, divides this figure by the
length of the region and the number of lanes then multiplied
by ten.

1) Test Case 4: Motorway M1 near bagatelle mall: A
three minutes video was recorded on the bi-directional M1
motorway from the bridge near Bagatelle Mall at 9 o’clock
in the morning. The video had about 106 vehicles moving
north along with about 55 vehicles going south. Both directions
consisted of three lanes. A region with a length of sixty was
chosen as the length to be inspected for both directions. Tables
XIII and XIV show the results.

Values obtained from test case 4 show that the system is
able to estimate the traffic density with high accuracies. Fig.
9 shows the outputs from test case 4.

2) Test Case 5: Brabant street at port-louis: A three
minutes video was captured on the bi-directional Brabant
Street from the flyover at 11 o’clock in the morning. The road
to the north consist of only one lane and while the one to the

TABLE XIII. RESULTS OF DRIVING DIRECTION TO THE NORTH (TEST
CASE 4)

Interval Traffic Density per Lane
Manually Evaluated

(Vehicles/per Lane/10 m)

YOLOv8m
(Vehi-

cles/per
Lane/10

m)

Accuracy
(%)

0 s–60 s 1.80 1.77 98.3
60 s–120 s 1.99 1.94 97.5

120 s–180 s 2.11 2.30 91.0

TABLE XIV. RESULTS OF DRIVING DIRECTION TO THE SOUTH
(TEST CASE 4)

Interval Traffic Density Per Lane
Manually Evaluated

(Vehicles/per Lane/10 m)

YOLOv8m
(Vehi-

cles/per
Lane/10

m)

Accuracy
(%)

0 s–60 s 1.14 1.17 97.4
60 s–120 s 1.00 1.06 94.0

120 s–180 s 0.90 0.89 98.9

Fig. 9. Output video frame (Test Case 4).

south consist of two lanes. The video had about 18 vehicles
moving north along with about 31 vehicles going south. A
region with a length of thirty meters was chosen as the area
to be inspected for both directions. Tables XV and XVI show
the results.

TABLE XV. RESULTS OF DRIVING DIRECTION TO THE NORTH (TEST
CASE 5)

Interval Traffic Density per Lane
Manually Evaluated

(Vehicles/per Lane/10 m)

YOLOv8m
(Vehi-

cles/per
Lane/10

m)

Accuracy
(%)

0 s–60 s 1.86 2.00 92.5
60 s–120 s 1.61 2.02 74.5

120 s–180 s 2.46 2.55 96.3

For the north direction, during the interval 60 s–120 s, a
road marking was wrongly identified as a car for a brief period
of time which caused a significant decrease in the accuracy.
Fig. 10 shows the outputs from test case 5.

3) Test Case 6: M1 Motorway near bagatelle mall: A three
minutes recording was also captured on the bi-directional M1
motorway from the bridge near Bagatelle Mall at around 6
o’clock in the afternoon. The video had around 22 vehicles
moving north along with about 30 vehicles going south. A
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TABLE XVI. RESULTS OF DRIVING DIRECTION TO THE SOUTH (TEST
CASE 5)

Interval Traffic Density Per Lane
Manually Evaluated

(Vehicles/per Lane/10 m)

YOLOv8m
(Vehi-

cles/per
Lane/10

m)

Accuracy
(%)

0 s–60 s 1.22 1.26 96.7
60 s–120 s 1.20 1.24 96.7

120 s–180 s 2.71 2.71 100

Fig. 10. Output video frame (Test Case 5).

region with a length of forty meters was chosen as the area
to be inspected for both directions. There are 3 lanes in both
directions. Tables XVII and XVIII show the results. Fig. 11
shows the outputs from test case 6.

TABLE XVII. RESULTS OF DRIVING DIRECTION TO THE NORTH (TEST
CASE 6)

Interval Traffic Density per
Lane Manually

Evaluated
(Vehicle/per
Lane/10 m)

YOLOv8m
(Vehi-
cle/per

Lane/10
m)

Accuracy
(%)

0 s–60 s 0.80 0.80 100
60 s–120 s 0.40 0.42 95.0

120 s–180 s 0.62 0.64 96.8

TABLE XVIII. RESULTS OF DRIVING DIRECTION TO THE SOUTH (TEST
CASE 6)

Interval Traffic Density Per
Lane Manually

Evaluated
(Vehicle/per
Lane/10 m)

YOLOv8m
(Vehi-
cle/per

Lane/10
m)

Accuracy
(%)

0 s–60 s 0.98 1.00 98.0
60 s–120 s 0.90 0.88 97.8

120 s–180 s 0.64 0.68 93.8

According to the figures obtained from the three test cases,
the implementation with YOLOv8m is able to produce an over-
all mean accuracy of 95.3% for traffic density. An automated
real-time traffic monitoring system using computer vision and
deep learning offers several advantages. It provides imme-
diate traffic data for better decision-making and congestion
management. With automated vehicle counting and tracking,
the system ensures higher accuracy and reduces human error.
Data obtained from this system can be used by the relevant
authorities for decongestion strategies. The system can also be

Fig. 11. Output video frame (Test Case 6).

used to enhance road safety by identifying dangerous driving
patterns and enable faster emergency responses. Since less time
is spent in traffic, it contributes to environmental sustainability
by reducing vehicle emissions. For drivers, the system im-
proves their overall driving experience by minimising travel
time and stress.

V. CONCLUSION

The recent changes in road infrastructure to incorporate
the metro pathway, combined with the constant increase in
the number of vehicles in Mauritius, are causing severe traffic
congestions on the country’s highways and in major towns.
The system designed and implemented can undoubtedly serve
as the foundation for a solution to this problem. The proposed
system is able to detect, track, classify and count vehicles
with reasonable accuracy under different traffic conditions.
Traffic flow and traffic density can also be estimated in real-
time with good accuracy. The system can also estimate the
speed of moving targets and give a representation of average
driving speed for each category of vehicles. Once deployed, the
proposed system can perform these tasks without any human
intervention. It is also designed to be scalable and can be
integrated with existing monitoring systems to provide detailed
information about the traffic state of any roads in the Republic
of Mauritius. This will enable the relevant authorities to gain
a comprehensive understanding of traffic conditions on any
road in Mauritius, facilitating more informed decision-making
for road management and future infrastructure projects. As the
system evolves, we aim to enhance its robustness by collecting
and analyzing additional data from various locations and times,
including night-time monitoring, to account for variations in
road structures, traffic patterns, and lighting conditions. Future
enhancements will focus on refining detection accuracy under
challenging conditions, such as poor weather or very heavy
traffic, to ensure that the system remains reliable and adaptable
for the long-term needs of the transport infrastructure in
Mauritius.
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