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Abstract—As the global emphasis on sports data analysis and 

athlete performance optimization continues to grow, traditional 

badminton training methods are increasingly insufficient to meet 

the demands of modern high-level competitive sports. The 

exploration and reasoning of badminton tactics can significantly 

aid coaches and athletes in better comprehending game strategies, 

playing a vital role in the analysis and optimization of training 

methods. By utilizing knowledge graph-based badminton tactics 

mining, an approach involving heterogeneous graph splitting is 

employed, coupled with the incorporation of a cross-relational 

attention mechanism within relational graph neural networks. 

This mechanism assigns varying weights based on the importance 

of neighboring nodes across different relations, facilitating 

information aggregation and dissemination across multiple 

relationships. Furthermore, to address the challenges posed by the 

complexity of large-scale knowledge graphs, which feature 

numerous entity relationships and intricate internal structures, 

techniques such as training subgraph sampling, positive-negative 

sampling, and block-diagonal matrix decomposition are 

introduced. These techniques help to reduce the computational 

load and complexity of model training, while also enhancing the 

model's generalization capabilities. Finally, comparative 

experiments conducted on a proprietary badminton tactics dataset 

demonstrated the effectiveness and superiority of the proposed 

model improvements when reasonable parameters were applied. 

The case study shows that this approach holds considerable 

promise for the analysis and optimization of badminton players' 

training strategies. 
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I. INTRODUCTION 

As competitive sports continue to evolve, the demands on 
athletes to demonstrate exceptional performance in matches 
have become increasingly stringent. To meet these challenges, 
athletes need not only strong physical and psychological 
qualities but also advanced technical and tactical skills to 
identify and address their weaknesses while maximizing their 
strengths. Effective and scientifically sound training is crucial 
for enhancing athletes' competitive levels. However, the current 
training systems still largely rely on coaches' experience, with 
insufficient support from systematic data. This is particularly 
evident in badminton training, where the focus on technical and 
tactical training is relatively low, often depending on the 
subjective judgments of coaches and the personal feelings of 

athletes. This reliance on traditional methods has led to the 
underutilization of critical match data and a lack of scientifically 
based standards for evaluating technical and tactical 
performance. 

In this context, the application of information technology is 
essential for improving traditional training models. However, 
current information technologies face significant challenges in 
data collection, analysis, and training optimization: data 
collection is often untimely, incomplete, and inaccurate, making 
integration difficult; data analysis lacks depth, failing to produce 
actionable insights; and personalized technical and tactical 
training programs are scarce and lack scientific backing. 
Additionally, the speed of information feedback does not match 
the fast pace of training and competition, ultimately affecting 
athletes' performance. 

Therefore, the effective collection and utilization of training 
and competition data, as well as the development of 
personalized training programs based on this data, have become 
urgent tasks. With the advancement of modern database 
technologies and data mining techniques, these tools have 
increasingly been applied in the sports domain. Establishing a 
badminton sports database and data analysis system can 
significantly enhance the efficiency and depth of data collection, 
providing valuable insights through in-depth data analysis to 
inform coaches' training decisions and optimize training 
methods. 

To fill these gaps, this paper explores how badminton tactics 
mining and reasoning based on knowledge graphs can assist 
coaches and athletes in better understanding match strategies 
and play a crucial role in the analysis and optimization of 
training methods. We propose a tactics mining approach based 
on heterogeneous graph decomposition, which incorporates a 
cross-relational attention mechanism to assign different weights 
in relational graph neural networks, enabling the aggregation 
and transmission of information across relationships. 
Additionally, to address the complexity challenges posed by 
large-scale knowledge graphs with intricate relational structures, 
we introduce techniques such as training subgraph sampling, 
positive-negative sampling, and block-diagonal matrix 
decomposition to reduce computational complexity and enhance 
model generalization. Comparative experiments conducted on a 
proprietary badminton tactics dataset demonstrate the 
effectiveness and superiority of the improvements made to our 
model. 
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II. LITERATURE REVIEW 

This section reviews existing related work on data mining to 
highlight the gaps in existing research. 

A. Data Mining Techniques 

Data mining technology has found widespread use in the 
global sports arena [1]. A well-known example is the Advanced 
Scout system employed by teams in the American professional 
basketball league, which processes game data to generate key 
insights, such as identifying high-percentage shooting areas and 
determining the most effective player rotations. This system aids 
head coaches in developing evidence-based training plans and 
making real-time strategic decisions during games [2]. In the 
National Football League (NFL), Schatz’s study of league 
statistics revealed a link between league averages and the 
performance success of players in specific offensive roles [3]. 
Similarly, in the National Collegiate Athletic Association 
(NCAA), Jay Coleman and his team analyzed historical sports 
data, formulating a predictive model for game outcomes that 
boasts an accuracy rate of 84.5% [4]. 

In the realm of tennis, Damien Demaj tracked the serve 
trajectories of opponents and, utilizing spatial and temporal data 
analysis techniques, discerned patterns in player movements. 
This allowed athletes to gain a better understanding of their 
opponents’ technical and tactical tendencies, ultimately 
improving their match performance [5][6]. Additionally, Rajiv 
Maheswara and his team leveraged data mining and machine 
learning to scrutinize the movements of players, referees, and 
basketballs captured by high-speed cameras during NBA games. 
Their analysis focused on offensive scoring efficiency and 
defensive effectiveness, providing coaches with critical 
information to structure more strategic training programs for 
their teams [7]. 

B. Traditional Knowledge Reasoning 

Rule-based reasoning relies on a predefined set of rules to 
logically derive new knowledge, directly incorporating expert 
domain knowledge. While this approach is effective, it is often 
time-consuming to create these rules, and the system’s 
scalability is generally limited. For instance, knowledge graphs 
like NELL [8] and YAGO [9] use rule-based methods to expand 
their knowledge bases. Meanwhile, first-order probabilistic 
language models focus on achieving precise "local" reasoning, 
proving effective in tasks such as entity resolution by extending 
stochastic logic programs and employing PageRank variants 
[10] for inference. Additionally, the TensorLog system 
integrates knowledge graph reasoning with gradient-based deep 
learning [11], achieving linear computational efficiency through 
a tractable reasoning process. 

Ontology-based reasoning, on the other hand, generates new 
knowledge by interpreting, reasoning, and integrating 
ontologies—core structures that describe entities, attributes, 
relationships, and concepts. For example, a semi-automatic 
schema construction approach [12] addresses the complex 
schema challenges in RDF knowledge bases, while a system 
based on Markov logic networks is employed to clean and refine 
the original knowledge base [13]. Furthermore, the method 
proposed by Pujara et al. [14], which uses joint inference with 
probabilistic soft logic [15][16], tackles issues of noise and 

incomplete information in large-scale knowledge graphs. The 
ontology path discovery algorithm OP developed by Chen et al. 
further enhances knowledge graphs through optimization 
techniques [17]. 

In summary, although traditional reasoning methods can be 
effectively applied to knowledge graphs, ontology-based 
methods typically offer higher accuracy, making them suitable 
for scenarios where precision is critical. However, these 
methods face challenges with large-scale knowledge 
instantiation, struggling with inference efficiency and recall, 
while noise in the raw data can lead to inference errors, limiting 
the scope and applicability of these traditional approaches. 

C. Distributed Knowledge Reasoning Approach 

Distributed representation learning centers on transforming 
traditional symbolic representations into numerical 
representations in vector space through mapping functions as a 
way to mitigate dimensionality catastrophe and capture implicit 
connections between entities and relationships. These methods 
are generally divided into two main categories: rule-based 
reasoning and ontology-based reasoning. 

The TransE model [18] is a distance-based approach that 
embeds entities and relations in a low-dimensional vector space 
to model multi-relational data. It predicts links by making the 
sum of the head entity vector and the relation vector as close as 
possible to the tail entity vector. TransE has demonstrated strong 
performance across several knowledge bases, surpassing 
advanced methods of its time, and thus gained attention. While 
simple and fast to train, its main limitation is that it only handles 
one-to-one relationships. To address this, Zhen et al. [19] 
introduced an improved version that considers complex 
relationships, such as one-to-many, many-to-one, and many-to-
many. The TransH model followed, performing translation on a 
hyperplane to better handle diverse relationships, while 
maintaining similar complexity to TransE. Additionally, 
specific strategies were introduced to mitigate incorrect negative 
labels, improving performance on tasks like link prediction and 
fact extraction in knowledge graphs like WordNet and Freebase. 

The RESCAL model, proposed by Nickel et al. [20], is a 
tensor decomposition-based inference method that enables 
collective learning through its latent components and offers 
efficient factorization. RESCAL demonstrated significant 
improvements in speed and accuracy over other tensor methods. 
Based on RESCAL, Chang et al. [21] proposed TRESCAL, 
which excels in relationship extraction by leveraging entity type 
information, allowing faster and more accurate discovery of new 
relations in databases. 

Inference methods based on distributed representations are 
more advanced than traditional methods. The TransE series, 
known for its simplicity and effectiveness, has become a 
research focus, achieving significant results despite limited 
further research space. The RESCAL series, favored for its 
interpretability and performance, holds great potential, despite 
higher model complexity. 

D. Research Gaps 

Although progress has been made in applying graph neural 
networks and association rule mining to knowledge graphs [22], 
significant gaps remain in their application to badminton tactical 
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reasoning and training. Current algorithms fail to fully consider 
dynamic player positioning, opponent adaptability, and the data 
requirements of input models. 

1) Model adaptability and flexibility: Existing graph neural 

networks can simulate some aspects of badminton tactics but 

struggle with the complexity and real-time nature of tactical 

changes. These models require deeper integration of tactical 

theory and practical experience, and current approaches are 

often inefficient due to heavy reliance on data annotation and 

feature design. 

2) Dataset standardization: The lack of unified standards 

for data collection and preprocessing in badminton tactics leads 

to inconsistencies and hinders the generalizability of different 

studies. Without standardized data representation, tactical 

reasoning methods face challenges in coherence and adaptability. 

3) Complex tactical reasoning: Current techniques struggle 

with recognizing and reasoning about complex tactical 

combinations and rapidly changing scenarios. They often 

underperform in long-term tactical evolution and opponent 

strategy adaptation, requiring further optimization. 

In summary, future research should focus on developing 
more adaptable models and standardized datasets to enhance 
tactical reasoning, thereby improving technical and tactical 
teaching and game strategy analysis in badminton. 

III. IDEAS FOR IMPROVING REASONING IN VERY LARGE 

SCALE KNOWLEDGE GRAPHS 

A. Heterogeneous Graph Splitting 

Entities and relationships in a knowledge graph often exhibit 
diverse types and properties, creating a heterogeneous graph 
structure. This heterogeneity is crucial in reasoning since 
different types of entities and relationships may involve distinct 
rules, constraints, and semantics. 

In this study, we employ a knowledge graph splitting 
approach. Heterogeneous graph splitting involves dividing a 
large, complex graph into smaller, more manageable subgraphs 
based on specific rules. This method enhances the scalability, 
maintainability, and processing efficiency of large knowledge 
graphs, particularly in distributed environments where 
managing smaller subgraphs is more practical. 

The process of splitting a heterogeneous knowledge graph 
involves several key steps: 

 Defining Splitting Rules: Based on the characteristics 
and application needs of the knowledge graph, we 
establish rules for splitting—such as dividing by entity 
types, relationship types, or attributes. 

 Constructing Topologies: Using the defined rules, we 
construct the topology for each subgraph. This can be 
achieved through graph-based clustering algorithms or 
similarity calculations based on meta-paths. 

 Performing the Split: Entities and relationships in the 
original graph are divided into multiple subgraphs 
according to the constructed topologies. 

 Storing and Managing Subgraphs: Each subgraph is 
stored in different computing nodes or distributed 
storage systems, with appropriate management and 
maintenance. 

In our study, we focus on splitting subgraphs based on 
relationship types. During the reasoning process, these 
subgraphs are embedded to better capture the distinct semantic 
information inherent in the heterogeneous graph structure. For 
example, as illustrated in Fig. 1, an original directed graph with 
five nodes and two types of relationships can be split into two 
subgraphs, each retaining the directed nature of the original 
structure. This allows for more precise reasoning based on the 
specific types of relationships in each subgraph. 
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Fig. 1. Schematic diagram of knowledge graph heterogeneous graph 

splitting. 

B. Training Subgraph Sampling 

Training graph neural networks on large-scale datasets 
presents challenges, such as high computational complexity and 
issues like gradient vanishing or explosion. To address these, 
this study employs random sampling to generate subgraphs for 
training. Random sampling reduces noise by excluding 
irrelevant nodes and edges, thereby lowering computational and 
storage demands and improving training efficiency. However, 
tuning sampling parameters is necessary to balance subgraph 
size with the importance of sampled components. 

Additionally, positive and negative sampling is used to 
preprocess training data by selecting real (positive) and non-
existent (negative) edges or nodes. This approach offers several 
benefits: 

 Addressing Data Imbalance: By balancing the number of 
positive and negative examples, the model avoids bias 
towards predicting positive instances, enhancing its 
overall prediction capabilities. 

 Reducing Computation: Sampling limits the data used 
for training, cutting down on computational load and 
improving efficiency. 

 Improving Generalization: Positive and negative 
sampling enables the model to learn a broader range of 
features, enhancing its adaptability to different graph 
datasets. 

In summary, the introduction of positive and negative 
sampling in this study is crucial for addressing data imbalance, 
boosting computational efficiency, and enhancing the model's 
generalization ability. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

89 | P a g e  

www.ijacsa.thesai.org 

IV. IMPROVED KNOWLEDGE GRAPH LINK PREDICTION 

ALGORITHM 

In a knowledge graph, link prediction involves forecasting 
the relationship between two entities based on the existing graph 
structure, often referred to as relationship extraction. This 
process is crucial for expanding the knowledge graph, as 
manually labeling every entity and relationship is impractical 
given their vast number. Link prediction enables the automatic 
discovery of new entities and relationships from large volumes 
of unlabeled data, thereby enhancing the graph’s scale and 
richness. The primary objective is to predict potential 
relationships between entities or to identify links between 
entities and relationships. This task has broad applications in 
fields such as information retrieval, natural language processing, 
recommender systems, and Q&A, where it helps to uncover 
correlations within the knowledge graph, thereby improving the 
effectiveness of these systems. 

In this study, building on the concepts outlined in Fig. 1, we 
aim to enhance the knowledge graph link prediction algorithm 
by integrating key techniques such as knowledge graph 
embedding, data preprocessing, and graph neural networks. This 
approach will enable convolutional learning of entities and 
relationships, utilize the DistMult decoder for scoring, and apply 
association rule mining to select the ternary elements for 
evaluation. The overall architecture of the improved algorithm 
is depicted in Fig. 2. 

A. Knowledge Graph Input to the Algorithm 

Before modeling a knowledge graph, the entities and 
relationships within it must be converted into vector 
representations. This conversion is crucial because it allows us 
to use vector space distance and similarity measures to assess 
relationships between entities and infer connections between 
unknown entities—this process is known as knowledge graph 
embedding. 

As illustrated in Fig. 3, the entity set in the knowledge graph 
is first encoded as text. These encoded entities are then mapped 

to corresponding sequence numbers, which typically start from 
0 and increment sequentially. A dictionary is constructed to link 
each sequence number to an entity in the knowledge graph. 
During model inference, these sequence numbers are 
consistently used to process entity information. Additionally, a 
dictionary is created to map sequence numbers to vector 
representations, ensuring that each sequence number 
corresponds to a low-dimensional vector representing the final 
entity. 

For the edge set in the knowledge graph, each edge type 𝑒𝑖 
is transformed into a relation 𝑟𝑖. Similar to entities, a dictionary 
is created to map relations to sequence numbers, and another 
dictionary links these sequence numbers to relation vectors. 
Through this process, the knowledge graph is transformed 
into 𝐺 = (𝑉, 𝜀, 𝑅), converting the knowledge within the graph 
into vector representations that can be used as inputs for 
subsequent algorithms. 

B. Node Information Aggregation based on Node Cross-

Relational Attention Mechanism 

After transforming the entities and relationships in the 
knowledge graph into vectors, the structure of graph neural 
network is used to aggregate the information of the nodes to 
realize the task of link prediction in the existing knowledge 
graph. The entire knowledge graph is represented as a set of 𝐺 =
(𝑉, 𝜀, 𝑅) vectors, where {𝑉} = {1,2,3, . . . , 𝑛} is the set of all the 
entities in the knowledge graph, {𝜀} is the set of all the edges, 
and {𝑅} is the set of relationships. Assuming that the head node 
of the triad is 𝑣𝑖 ∈ 𝑉, the tail node is 𝑣𝑗 ∈ 𝑉, and the relation 

between nodes is 𝑟 ∈ 𝑅, then this triad can be represented as 
(𝑣𝑖 , 𝑟, 𝑣𝑗) ∈ 𝜀. 

In GCN, the embedding vector of a node can be computed 
by using the Eq. (1). 

ℎ(𝑙+1) = 𝜎 (�̃�−
1

2�̃��̃�−
1

2ℎ(𝑙)𝑊(𝑙))  (1) 
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Fig. 2. Algorithm architecture diagram. 
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Fig. 3. Schematic of the conversion of knowledge graph triples to vectors. 

where, ℎ
(𝑙)

 is the node embedding vector of layer l , 𝑊(𝑙) is 

the trainable weight matrix of layer l , �̃� = 𝐴 + 𝑙is the sum of 

the adjacency and self-connectivity matrices of the graph, �̃� is 

the degree matrix of �̃�, and   is the activation function. 

Based on Eq. (1), the process of GCN information 
aggregation can be expressed by Eq. (2). 

ℎ𝑖
(𝑙+1)

= 𝜎 ( ∑
𝑗∈𝑁𝑖

1

√𝑑𝑖𝑑𝑗
ℎ𝑗
(𝑙)
𝑊(𝑙))    (2) 

where, ℎ𝑖
(𝑙+1)

 denotes the embedding vector of node i at 

layer 𝑙 + 1, 𝑊(𝑙)is the trainable weight matrix, 𝑁𝑖 is the set of 

neighbors of node i , 𝑑�̃� and 𝑑�̃� are the degrees of node i  and 

node j  in matrix �̃�, respectively. 

As can be seen from Eq. (2), in GCN, the information of 
nodes converges in different relations sharing the same weight 
matrix 𝑊, so GCN actually treats the graph as a homomorphic 
graph for processing, in this study, we will consider the 
heteromorphism in the knowledge graph, and we have already 
transformed the entities and relations in the knowledge graph 
into vectors in the above paper and constructed the mapping 
between the serial numbers and vectors of the entities and 
relations, using the correspondence between serial number and 
vector, which makes it easier to split the knowledge graph into 
different heteromorphic graphs for processing according to 
different relations, which is reflected in the fact that different 
relations construct different maps between entities and relations. 
Using the correspondence between the serial number and the 
vector, we can easily split the knowledge graph into different 
heterogeneous graphs according to different relationships, 
which is reflected in the construction of different weight 
matrices for different relationships, instead of using the same 
weight matrix for all relationship types as in the case of GCN. 

On the basis of GCN, considering the heterogeneity of the 
graph, the information is aggregated for different types of edges 
between nodes, as shown in Eq. (3). 

ℎ𝑖
(𝑙+1)

= 𝜎 ( ∑
𝑟∈𝑅

∑
𝑗∈𝑁𝑖

𝑁

1

𝑐𝑖,𝑟
𝑊𝑟

(𝑙)
ℎ𝑗
(𝑙)

+𝑊0
(𝑙)
ℎ𝑖
(𝑙)
)  (3) 

Where, ℎ𝑖
(𝑙+1)

 denotes the embedding of node i  in the 𝑙 + 1 

layer, 𝜎 is the activation function, 𝑅 is the set of relations, 𝑁𝑖
𝑟is 

the set of neighboring nodes of node i  under relation r , 𝑐𝑖,𝑟is 

the normalization constant, and 𝑊𝑟
(𝑙)

 is the weight matrix of 
relation r . Since the information of nodes themselves needs to 
be taken into account, the self-loop of nodes is introduced. The 
self-loop of a node can be treated as a special type of edge, and 

the self-loop weight matrix is denoted by 𝑊0
(𝑙)

. 

As can be seen from Eq. (3), for each relationship, a separate 
weight matrix 𝑊𝑟 is computed. In large-scale knowledge graphs, 
due to the large number of relationships, the number of 
parameters in the inference process is also unusually large, 
which further increases the complexity of the inference process. 
Specifically, assuming that a graph 𝐺 contains 𝑁 nodes and 𝑀 
relationship types, each relationship type has a corresponding 
weight matrix 𝑊𝑟 , size 𝐷𝑙 × 𝐷𝑙−1 , where 𝐷𝑙  is the feature 
dimension of the current layer of the relationship type, and 𝐷𝑙−1 
is the feature dimension of the previous layer. Since each node 
has different embedding vectors under different relation types, 
these weight matrices need to be computed separately at each 
node, resulting in an extremely large number of parameters. 

In order to reduce the complexity of the model and improve 
the generalization performance, the diagonal decomposition of 
the weight matrix is performed, which transforms the complex 
weight matrix into a block diagonal matrix, thus reducing the 
number of parameters and improving the generalization 
performance of the model. Specifically, as shown in Eq. (4), 

where the size of 𝑄𝑏𝑟
(𝑙)

 matrix is (𝑑(𝑙+1)/𝐵) × (𝑑(𝑙)/𝐵) , the 

block diagonal decomposition of the weight matrix through a 
series of matrices of the summation, which greatly reduces the 
size of the parameters of the weight matrix and simplifies the 
computation process. 

𝑊𝑟
(𝑙)

=⊕

𝑏=1
𝐵

𝑄𝑏𝑟
(𝑙)

= 𝑑𝑖𝑎𝑔(𝑄1𝑟
(𝑙)
, . . . , 𝑄𝐵𝑟

(𝑙)
) (4) 

In the above node information aggregation process, each 
relation type uses an independent weight matrix for information 
transfer, and the node embedding is obtained by splicing the 
information of each relation type. This approach may lead to the 
uneven contribution of each relationship type in node 
embedding, and the contribution of some relationship types may 
be masked or weakened. To solve this problem, this study 
introduces the Node-level Across Relation Attention mechanism, 
which adjusts the weight of each relation type in the node 
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embedding by learning a node-level attention vector for each 
node. 

Before calculating the node's attention mechanism, firstly, 
for the similarity between node i  and node j under a specific 

relation r, the weight matrix corresponding to relation r is 
multiplied and spliced with node i and node j, respectively, and 
then multiplied with a trainable attention vector, and then the 
similarity between node i and node j under relation r is finally 
obtained by an activation function. As shown in Eq. (5), where 

𝑒𝑖𝑗
𝑟  denotes the similarity between node i and node j under 

relation r, �⃗�𝑟  is a trainable attention vector, �⃗⃗⃗⃗�𝑟  is the weight 
matrix under relation r, and   denotes the vector splicing 

operation. 

𝑒𝑖𝑗
𝑟 = ReLU(�⃗�𝑟 ⋅ [�⃗⃗⃗⃗�𝑟ℎ𝑖

(1)
⊕ �⃗⃗⃗⃗�𝑟ℎ𝑗

(1)
]) (5) 

The calculation process of attention is shown in Fig. 4. The 
final information aggregation process of a single node is shown 
in Fig. 5. 
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Fig. 4. Attention calculation process. 

Based on Eq. (5), in the iterative process of graph neural 
network, each node in the knowledge graph calculates the 
similarity of its neighboring nodes under all the relationships, 
and then uses the similarity to calculate the attention of the 
node's neighboring nodes, and ultimately the information 
convergence of nodes in each layer is shown in Eq. (6). The 
whole information aggregation process is shown in Fig. 6, and 
finally the whole network outputs the embedding vector 
representation of nodes and relationships. 
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Fig. 5. Individual node final information aggregation process. 

 

Fig. 6. Schematic diagram of node information aggregation process. 

C. Training Sampling and Loss Functions 

In the link prediction task, dealing with an entire knowledge 
graph can be challenging due to its size, often exceeding the 
capacity of a single GPU's memory. To address this, we sample 
smaller subgraphs for training. By using random sampling, we 
can maintain the integrity of the graph's structure while avoiding 
memory bottlenecks associated with processing large-scale 
knowledge graphs. This study employs uniform random 
sampling, where each node or edge is selected with equal 
probability. This method is straightforward, offering good 
randomness and repeatability, and can be executed using a 
random number generator. 

The sampling process involves the following steps: 

1) Determine the sample size: Set a 

hyperparameter, batch_size, to define the number of nodes or 

edges to sample. 

2) Initialize the sample set: Create a set to store the sampled 

nodes or edges. 

3) Random sampling: For each node or edge, generate a 

random number; if it falls below the sampling probability, 

include the node or edge in the sample set. 

4) Return the sample set: Use this set for subsequent 

training or other tasks. 
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After random sampling, a training subgraph is obtained. To 
further enhance prediction accuracy and generalization, the 
study introduces positive and negative sampling. For each node 
pair (i, j), both positive samples (existing links) and negative 
samples (non-existent links) are generated. Negative samples 
are constructed using a random sampling strategy, with a 
negative sampling factor 𝜇 , where the ratio of positive to 
negative samples is 1: 𝜇. 

The loss function for the final model training is shown in 
Eq. (7) as follows. 

𝐿 = − ∑
(𝑖,𝑗)∈𝐸

𝑙𝑜𝑔 𝜎 (𝑦(𝑖,𝑗)) − ∑
(𝑖,𝑗)∈�̃�

𝑙𝑜𝑔 𝜎 (�̃�(𝑖,𝑗)) (7) 

Where, E denotes the set of positive sample edges, E  

denotes the set of negative sample edges, and 
( , )i jy  denotes the 

predicted probability of the existence of an edge between node i 
and node j, which can be computed by Eq. (8). 

𝑦(𝑖,𝑗) =
1

𝑘
∑

𝑡=1
𝑘

𝜎(ℎ𝑖
(𝐿)

⋅ 𝑟𝑖
(𝐿)
ℎ𝑗
(𝐿)
)  (8) 

where k denotes the number of negative samples sampled, 
( )l
ih and ( )l

jh  denote the embedding vectors of node i and node j 

in the last layer, and ( )L
tr  denotes the weight vector of relation 

type tr  in the Lth layer.   denotes the sigmoid function, which 

is used to map the predicted values to a range between 0 and 1. 
The first term of the loss function is the cross-entropy loss for 
positive samples, indicating that the higher the probability that 
the model predicts the existence of positive edges, the lower the 
loss. The second term is the cross-entropy loss of negative 
samples, which means that the higher the probability that the 
model predicts that the negative sample edge does not exist, the 
lower the loss. By minimizing the loss function, it allows the 
model to predict the likelihood of edge existence more 
accurately between nodes. 

V.  COMPARATIVE EXPERIMENTS AND ANALYSIS 

This section presents comparative experiments to evaluate 
the model's effectiveness, focusing on the experimental 
environment, dataset, evaluation criteria, control group design, 
and final result analysis to validate the improvements made in 
this study. 

A. Experimental Environment and Datasets 

Due to the large knowledge graph dataset used in this 
experiment and the complexity of model computation, the 
experiment needs to be carried out on GPUs. The server used for 
the experiment is the one equipped in the lab, Windows 10 64bit 
system, 16GB RAM and equipped with high-computing-power 
GPUs. In terms of software, Python was used as the 
programming language for the model, PyCharm was used to 
compile the software, and PyTorch was used as the basic 
implementation library for the model. 

This paper presents a custom-built knowledge graph dataset 
named BadmintonKG, specifically created for the badminton 
domain. It is designed to support applications such as tactical 
reasoning, match analysis, and training assistance. 
BadmintonKG includes 9,742 entities, 135 types of relationships, 

and 198,563 triples (i.e., relationships between entities). Unlike 
other common knowledge graph datasets, BadmintonKG 
focuses on the specific domain of badminton, covering various 
entities and relationships such as players, tactics, courts, 
techniques, and coaching styles. The training, validation and test 
sets are divided as shown in Table I. 

TABLE I.  BADMINTONKG DATA SET DELINEATION TABLE 

Dataset segmentation Entities Relations triples 

Original dataset 9,742 135 198,563 

Training set 9,742 135 176,421 

Validation set 9,742 135 19,989 

Test set 9,742 135 11,072 

B. Evaluation Criteria and Control Group Design 

MRR (Mean Reciprocal Rank) is one of the commonly used 
evaluation metrics in the task of knowledge graph link 
prediction. The core idea of MRR is to find the true tail entity t 
among all possible tail entities `t  for each test ternary ( , , )h r t , 

and compute the inverse of its score ranking. Finally, the average 
of the ranked inverts of all the test triples is used as the MRR 
score of the model. This is calculated as shown in Eq. (9). 

𝑀𝑅𝑅 =
1

|𝑇|
∑

(ℎ,𝑟,𝑟)∈𝑇

1

rank(ℎ𝑟,𝑡)
   (9) 

In knowledge graph link prediction, Hits@ N is a commonly 
used evaluation metric to measure whether the algorithm can 
correctly predict the correct entity or relation in the test set 
among the first N candidate entities or relations. Specifically, 
assuming that the correct answer for each ternary (ℎ, 𝑟, 𝑡) in the 
test set is t, then for each (ℎ, 𝑟) pair, we can sort all its possible 
entities according to the algorithm's prediction scores in 
descending order and compute whether the first N predicted 
entities contain the correct answer t. If the correct answer is t, 
then it is called a hit. If it does, it is called a hit (hit), otherwise 
it is called a miss. The final hit rate is the average hit rate of all 
test triples among the first N candidate entities. This is shown in 
Eq. (10). 

Hits@𝑁 =
1

|𝑇|
∑

(ℎ,𝑟,𝑡)∈𝑇
𝛱(rank(ℎ,𝑟,𝑡) ≤ 𝑁)  (10) 

To validate the effectiveness of the proposed knowledge 
graph inference algorithm based on graph neural networks and 
association rule mining, experiments will be conducted on 
BadmintonKG. The experimental model will be compared with 
three other neural network models: Graph Convolutional 
Network (GCN), Graph Attention Network (GAT), and 
Relational Graph Convolutional Network (R-GCN). The 
comparison will focus on the evaluation metrics MRR and 
Hits@N, and the impact of different training subgraph sizes on 
model performance will also be assessed. 

Knowledge Graph Link Prediction with GCN: GCN is a 
graph convolutional neural network that treats the knowledge 
graph as a homogeneous graph, using node neighbors to perform 
convolution. It aggregates neighbor information with a weighted 
adjacency matrix, enabling it to learn node representations 
through multi-layer convolution. GCNs are particularly 
effective for graphs with similar node features. 
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Knowledge Graph Link Prediction with GAT: GAT extends 
GCN by incorporating an attention mechanism that weights the 
importance of each neighboring node. This allows for the 
aggregation of neighbor information with varying degrees, 
resulting in richer and more accurate node representations. 

Knowledge Graph Link Prediction with R-GCN: R-GCN is 
designed for multi-relational graphs, using relational matrices in 
its convolution operations. Unlike traditional GCNs, R-GCN 
employs a learnable convolution kernel that adjusts to different 
types of relations, making it more effective for handling multi-
relational data. 

C. Experimental Results and Analysis 

In this control group, this experimental model is compared 
with the other two models on two datasets, and the number of 
model iterations for the experiments is set to 6000, the stochastic 
inactivation rate is set to 0.2, the learning rate is set to 0.01, the 
output dimension of the hidden layer is set to 500, and the 

sampling mode of the training subgraphs is set to uniform. The 
test set evaluation results from the above training results are 
plotted in a table, as shown in Table II. 

The above table was plotted as a line graph as shown in 
Fig. 7 and 8. From the above experimental data performance, the 
model in this study shows excellent performance on both 
datasets, and outperforms the other three models in all 
indicators. 

In the BadmintonKG dataset, when the size of the training 
subgraph is 30000, this model outperforms the GCN, GAT, and 
R-GCN models in all the metrics, but the difference is relatively 
small, and when the size of the training subgraph is 80000, the 
MRR metrics of this model reaches 0.2753, which is higher than 
that of 0.1910 for the GCN, GAT, and R-GCN models, 0.2503 
and 0.2653, which is about 40% higher than that of the GCN 
model, 10% higher than that of the GAT model, and 3.8% higher 
than that of the R-GCN model. 

TABLE II.  SUMMARY OF EXPERIMENTAL RESULTS 

BadmintonKG 
The size of the training subgraph is 30000 The size of the training subgraph is 80,000  

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 

Our 0.2458 0.1576 0.2677 0.4249 0.2753 0.1811 0.3066 0.4638 

GCN 0.1673 0.0873 0.1927 0.3201 0.1910 0.0990 0.2283 0.3684 

GAT 0.2144 0.1283 0.2373 0.3855 0.2503 0.1610 0.2695 0.4403 

R-GCN 0.2412 0.1404 0.2531 0.4085 0.2653 0.1715 0.2856 0.4536 
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Fig. 7. BadmintonKG comparison of models (training subgraph size 30000). 
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Fig. 8. BadmintonKG comparison of models (training subgraph size 80000). 

Overall, the model in this study achieves better performance 
than the link prediction models based on GCN, GAT and R-
GCN in the knowledge graph link prediction task, and shows 
good robustness and generalization ability, and the experimental 
results in this study prove the effectiveness and superiority of 
the proposed model in the knowledge graph link prediction task. 

VI. CONCLUSION 

In this study, we applied knowledge graph and graph neural 
network techniques to the mining and reasoning of badminton 
tactics, demonstrating the effectiveness of this approach in 
analyzing and optimizing players' training patterns. Technically, 
the introduction of training subgraph sampling, positive and 
negative sampling, and block diagonal matrix decomposition 
significantly reduced the computational complexity, improved 
the handling of large-scale knowledge graphs, and enhanced the 
model's generalization capabilities. These techniques not only 
optimized the data processing workflow but also improved the 
model's performance and accuracy in practical applications. 

Through comparative experiments on a proprietary 
badminton tactics dataset, we validated the superiority of the 
proposed method over traditional approaches in tactical 
reasoning and training optimization. The results showed that our 
model more accurately predicted and reasoned about tactical 
changes in matches, offering strong scientific support for 
badminton training and competition. In conclusion, this study 
provides a novel technical approach for tactical analysis in 
badminton and offers a potential methodological reference for 
other sports. 
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