
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

86 | P a g e

www.ijacsa.thesai.org

Knowledge Graph-Based Badminton Tactics Mining

and Reasoning for Badminton Player Training Pattern

Analysis and Optimization

Xingli Hu1*, Jiangtao Li2, Ren Cai3

School of Physical Education, University of Sanya, Sanya 572022, Hainan, China1, 2

Hainan Medical College, Haikou 571157, Hainan, China3

Abstract—As the global emphasis on sports data analysis and

athlete performance optimization continues to grow, traditional

badminton training methods are increasingly insufficient to meet

the demands of modern high-level competitive sports. The

exploration and reasoning of badminton tactics can significantly

aid coaches and athletes in better comprehending game strategies,

playing a vital role in the analysis and optimization of training

methods. By utilizing knowledge graph-based badminton tactics

mining, an approach involving heterogeneous graph splitting is

employed, coupled with the incorporation of a cross-relational

attention mechanism within relational graph neural networks.

This mechanism assigns varying weights based on the importance

of neighboring nodes across different relations, facilitating

information aggregation and dissemination across multiple

relationships. Furthermore, to address the challenges posed by the

complexity of large-scale knowledge graphs, which feature

numerous entity relationships and intricate internal structures,

techniques such as training subgraph sampling, positive-negative

sampling, and block-diagonal matrix decomposition are

introduced. These techniques help to reduce the computational

load and complexity of model training, while also enhancing the

model's generalization capabilities. Finally, comparative

experiments conducted on a proprietary badminton tactics dataset

demonstrated the effectiveness and superiority of the proposed

model improvements when reasonable parameters were applied.

The case study shows that this approach holds considerable

promise for the analysis and optimization of badminton players'

training strategies.

Keywords—Badminton tactical analysis; graph neural networks;

attention mechanisms; training pattern optimization; heterogeneous

graph splitting; artificial intelligence

I. INTRODUCTION

As competitive sports continue to evolve, the demands on
athletes to demonstrate exceptional performance in matches
have become increasingly stringent. To meet these challenges,
athletes need not only strong physical and psychological
qualities but also advanced technical and tactical skills to
identify and address their weaknesses while maximizing their
strengths. Effective and scientifically sound training is crucial
for enhancing athletes' competitive levels. However, the current
training systems still largely rely on coaches' experience, with
insufficient support from systematic data. This is particularly
evident in badminton training, where the focus on technical and
tactical training is relatively low, often depending on the
subjective judgments of coaches and the personal feelings of

athletes. This reliance on traditional methods has led to the
underutilization of critical match data and a lack of scientifically
based standards for evaluating technical and tactical
performance.

In this context, the application of information technology is
essential for improving traditional training models. However,
current information technologies face significant challenges in
data collection, analysis, and training optimization: data
collection is often untimely, incomplete, and inaccurate, making
integration difficult; data analysis lacks depth, failing to produce
actionable insights; and personalized technical and tactical
training programs are scarce and lack scientific backing.
Additionally, the speed of information feedback does not match
the fast pace of training and competition, ultimately affecting
athletes' performance.

Therefore, the effective collection and utilization of training
and competition data, as well as the development of
personalized training programs based on this data, have become
urgent tasks. With the advancement of modern database
technologies and data mining techniques, these tools have
increasingly been applied in the sports domain. Establishing a
badminton sports database and data analysis system can
significantly enhance the efficiency and depth of data collection,
providing valuable insights through in-depth data analysis to
inform coaches' training decisions and optimize training
methods.

To fill these gaps, this paper explores how badminton tactics
mining and reasoning based on knowledge graphs can assist
coaches and athletes in better understanding match strategies
and play a crucial role in the analysis and optimization of
training methods. We propose a tactics mining approach based
on heterogeneous graph decomposition, which incorporates a
cross-relational attention mechanism to assign different weights
in relational graph neural networks, enabling the aggregation
and transmission of information across relationships.
Additionally, to address the complexity challenges posed by
large-scale knowledge graphs with intricate relational structures,
we introduce techniques such as training subgraph sampling,
positive-negative sampling, and block-diagonal matrix
decomposition to reduce computational complexity and enhance
model generalization. Comparative experiments conducted on a
proprietary badminton tactics dataset demonstrate the
effectiveness and superiority of the improvements made to our
model.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

87 | P a g e

www.ijacsa.thesai.org

II. LITERATURE REVIEW

This section reviews existing related work on data mining to
highlight the gaps in existing research.

A. Data Mining Techniques

Data mining technology has found widespread use in the
global sports arena [1]. A well-known example is the Advanced
Scout system employed by teams in the American professional
basketball league, which processes game data to generate key
insights, such as identifying high-percentage shooting areas and
determining the most effective player rotations. This system aids
head coaches in developing evidence-based training plans and
making real-time strategic decisions during games [2]. In the
National Football League (NFL), Schatz’s study of league
statistics revealed a link between league averages and the
performance success of players in specific offensive roles [3].
Similarly, in the National Collegiate Athletic Association
(NCAA), Jay Coleman and his team analyzed historical sports
data, formulating a predictive model for game outcomes that
boasts an accuracy rate of 84.5% [4].

In the realm of tennis, Damien Demaj tracked the serve
trajectories of opponents and, utilizing spatial and temporal data
analysis techniques, discerned patterns in player movements.
This allowed athletes to gain a better understanding of their
opponents’ technical and tactical tendencies, ultimately
improving their match performance [5][6]. Additionally, Rajiv
Maheswara and his team leveraged data mining and machine
learning to scrutinize the movements of players, referees, and
basketballs captured by high-speed cameras during NBA games.
Their analysis focused on offensive scoring efficiency and
defensive effectiveness, providing coaches with critical
information to structure more strategic training programs for
their teams [7].

B. Traditional Knowledge Reasoning

Rule-based reasoning relies on a predefined set of rules to
logically derive new knowledge, directly incorporating expert
domain knowledge. While this approach is effective, it is often
time-consuming to create these rules, and the system’s
scalability is generally limited. For instance, knowledge graphs
like NELL [8] and YAGO [9] use rule-based methods to expand
their knowledge bases. Meanwhile, first-order probabilistic
language models focus on achieving precise "local" reasoning,
proving effective in tasks such as entity resolution by extending
stochastic logic programs and employing PageRank variants
[10] for inference. Additionally, the TensorLog system
integrates knowledge graph reasoning with gradient-based deep
learning [11], achieving linear computational efficiency through
a tractable reasoning process.

Ontology-based reasoning, on the other hand, generates new
knowledge by interpreting, reasoning, and integrating
ontologies—core structures that describe entities, attributes,
relationships, and concepts. For example, a semi-automatic
schema construction approach [12] addresses the complex
schema challenges in RDF knowledge bases, while a system
based on Markov logic networks is employed to clean and refine
the original knowledge base [13]. Furthermore, the method
proposed by Pujara et al. [14], which uses joint inference with
probabilistic soft logic [15][16], tackles issues of noise and

incomplete information in large-scale knowledge graphs. The
ontology path discovery algorithm OP developed by Chen et al.
further enhances knowledge graphs through optimization
techniques [17].

In summary, although traditional reasoning methods can be
effectively applied to knowledge graphs, ontology-based
methods typically offer higher accuracy, making them suitable
for scenarios where precision is critical. However, these
methods face challenges with large-scale knowledge
instantiation, struggling with inference efficiency and recall,
while noise in the raw data can lead to inference errors, limiting
the scope and applicability of these traditional approaches.

C. Distributed Knowledge Reasoning Approach

Distributed representation learning centers on transforming
traditional symbolic representations into numerical
representations in vector space through mapping functions as a
way to mitigate dimensionality catastrophe and capture implicit
connections between entities and relationships. These methods
are generally divided into two main categories: rule-based
reasoning and ontology-based reasoning.

The TransE model [18] is a distance-based approach that
embeds entities and relations in a low-dimensional vector space
to model multi-relational data. It predicts links by making the
sum of the head entity vector and the relation vector as close as
possible to the tail entity vector. TransE has demonstrated strong
performance across several knowledge bases, surpassing
advanced methods of its time, and thus gained attention. While
simple and fast to train, its main limitation is that it only handles
one-to-one relationships. To address this, Zhen et al. [19]
introduced an improved version that considers complex
relationships, such as one-to-many, many-to-one, and many-to-
many. The TransH model followed, performing translation on a
hyperplane to better handle diverse relationships, while
maintaining similar complexity to TransE. Additionally,
specific strategies were introduced to mitigate incorrect negative
labels, improving performance on tasks like link prediction and
fact extraction in knowledge graphs like WordNet and Freebase.

The RESCAL model, proposed by Nickel et al. [20], is a
tensor decomposition-based inference method that enables
collective learning through its latent components and offers
efficient factorization. RESCAL demonstrated significant
improvements in speed and accuracy over other tensor methods.
Based on RESCAL, Chang et al. [21] proposed TRESCAL,
which excels in relationship extraction by leveraging entity type
information, allowing faster and more accurate discovery of new
relations in databases.

Inference methods based on distributed representations are
more advanced than traditional methods. The TransE series,
known for its simplicity and effectiveness, has become a
research focus, achieving significant results despite limited
further research space. The RESCAL series, favored for its
interpretability and performance, holds great potential, despite
higher model complexity.

D. Research Gaps

Although progress has been made in applying graph neural
networks and association rule mining to knowledge graphs [22],
significant gaps remain in their application to badminton tactical

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

88 | P a g e

www.ijacsa.thesai.org

reasoning and training. Current algorithms fail to fully consider
dynamic player positioning, opponent adaptability, and the data
requirements of input models.

1) Model adaptability and flexibility: Existing graph neural

networks can simulate some aspects of badminton tactics but

struggle with the complexity and real-time nature of tactical

changes. These models require deeper integration of tactical

theory and practical experience, and current approaches are

often inefficient due to heavy reliance on data annotation and

feature design.

2) Dataset standardization: The lack of unified standards

for data collection and preprocessing in badminton tactics leads

to inconsistencies and hinders the generalizability of different

studies. Without standardized data representation, tactical

reasoning methods face challenges in coherence and adaptability.

3) Complex tactical reasoning: Current techniques struggle

with recognizing and reasoning about complex tactical

combinations and rapidly changing scenarios. They often

underperform in long-term tactical evolution and opponent

strategy adaptation, requiring further optimization.

In summary, future research should focus on developing
more adaptable models and standardized datasets to enhance
tactical reasoning, thereby improving technical and tactical
teaching and game strategy analysis in badminton.

III. IDEAS FOR IMPROVING REASONING IN VERY LARGE

SCALE KNOWLEDGE GRAPHS

A. Heterogeneous Graph Splitting

Entities and relationships in a knowledge graph often exhibit
diverse types and properties, creating a heterogeneous graph
structure. This heterogeneity is crucial in reasoning since
different types of entities and relationships may involve distinct
rules, constraints, and semantics.

In this study, we employ a knowledge graph splitting
approach. Heterogeneous graph splitting involves dividing a
large, complex graph into smaller, more manageable subgraphs
based on specific rules. This method enhances the scalability,
maintainability, and processing efficiency of large knowledge
graphs, particularly in distributed environments where
managing smaller subgraphs is more practical.

The process of splitting a heterogeneous knowledge graph
involves several key steps:

 Defining Splitting Rules: Based on the characteristics
and application needs of the knowledge graph, we
establish rules for splitting—such as dividing by entity
types, relationship types, or attributes.

 Constructing Topologies: Using the defined rules, we
construct the topology for each subgraph. This can be
achieved through graph-based clustering algorithms or
similarity calculations based on meta-paths.

 Performing the Split: Entities and relationships in the
original graph are divided into multiple subgraphs
according to the constructed topologies.

 Storing and Managing Subgraphs: Each subgraph is
stored in different computing nodes or distributed
storage systems, with appropriate management and
maintenance.

In our study, we focus on splitting subgraphs based on
relationship types. During the reasoning process, these
subgraphs are embedded to better capture the distinct semantic
information inherent in the heterogeneous graph structure. For
example, as illustrated in Fig. 1, an original directed graph with
five nodes and two types of relationships can be split into two
subgraphs, each retaining the directed nature of the original
structure. This allows for more precise reasoning based on the
specific types of relationships in each subgraph.

V1

V2

V3
V4

V5

V1

V2

V3
V4

V5

V1

V2

V3
V4

V5

Fig. 1. Schematic diagram of knowledge graph heterogeneous graph

splitting.

B. Training Subgraph Sampling

Training graph neural networks on large-scale datasets
presents challenges, such as high computational complexity and
issues like gradient vanishing or explosion. To address these,
this study employs random sampling to generate subgraphs for
training. Random sampling reduces noise by excluding
irrelevant nodes and edges, thereby lowering computational and
storage demands and improving training efficiency. However,
tuning sampling parameters is necessary to balance subgraph
size with the importance of sampled components.

Additionally, positive and negative sampling is used to
preprocess training data by selecting real (positive) and non-
existent (negative) edges or nodes. This approach offers several
benefits:

 Addressing Data Imbalance: By balancing the number of
positive and negative examples, the model avoids bias
towards predicting positive instances, enhancing its
overall prediction capabilities.

 Reducing Computation: Sampling limits the data used
for training, cutting down on computational load and
improving efficiency.

 Improving Generalization: Positive and negative
sampling enables the model to learn a broader range of
features, enhancing its adaptability to different graph
datasets.

In summary, the introduction of positive and negative
sampling in this study is crucial for addressing data imbalance,
boosting computational efficiency, and enhancing the model's
generalization ability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

89 | P a g e

www.ijacsa.thesai.org

IV. IMPROVED KNOWLEDGE GRAPH LINK PREDICTION

ALGORITHM

In a knowledge graph, link prediction involves forecasting
the relationship between two entities based on the existing graph
structure, often referred to as relationship extraction. This
process is crucial for expanding the knowledge graph, as
manually labeling every entity and relationship is impractical
given their vast number. Link prediction enables the automatic
discovery of new entities and relationships from large volumes
of unlabeled data, thereby enhancing the graph’s scale and
richness. The primary objective is to predict potential
relationships between entities or to identify links between
entities and relationships. This task has broad applications in
fields such as information retrieval, natural language processing,
recommender systems, and Q&A, where it helps to uncover
correlations within the knowledge graph, thereby improving the
effectiveness of these systems.

In this study, building on the concepts outlined in Fig. 1, we
aim to enhance the knowledge graph link prediction algorithm
by integrating key techniques such as knowledge graph
embedding, data preprocessing, and graph neural networks. This
approach will enable convolutional learning of entities and
relationships, utilize the DistMult decoder for scoring, and apply
association rule mining to select the ternary elements for
evaluation. The overall architecture of the improved algorithm
is depicted in Fig. 2.

A. Knowledge Graph Input to the Algorithm

Before modeling a knowledge graph, the entities and
relationships within it must be converted into vector
representations. This conversion is crucial because it allows us
to use vector space distance and similarity measures to assess
relationships between entities and infer connections between
unknown entities—this process is known as knowledge graph
embedding.

As illustrated in Fig. 3, the entity set in the knowledge graph
is first encoded as text. These encoded entities are then mapped

to corresponding sequence numbers, which typically start from
0 and increment sequentially. A dictionary is constructed to link
each sequence number to an entity in the knowledge graph.
During model inference, these sequence numbers are
consistently used to process entity information. Additionally, a
dictionary is created to map sequence numbers to vector
representations, ensuring that each sequence number
corresponds to a low-dimensional vector representing the final
entity.

For the edge set in the knowledge graph, each edge type 𝑒𝑖
is transformed into a relation 𝑟𝑖. Similar to entities, a dictionary
is created to map relations to sequence numbers, and another
dictionary links these sequence numbers to relation vectors.
Through this process, the knowledge graph is transformed
into 𝐺 = (𝑉, 𝜀, 𝑅), converting the knowledge within the graph
into vector representations that can be used as inputs for
subsequent algorithms.

B. Node Information Aggregation based on Node Cross-

Relational Attention Mechanism

After transforming the entities and relationships in the
knowledge graph into vectors, the structure of graph neural
network is used to aggregate the information of the nodes to
realize the task of link prediction in the existing knowledge
graph. The entire knowledge graph is represented as a set of 𝐺 =
(𝑉, 𝜀, 𝑅) vectors, where {𝑉} = {1,2,3, . . . , 𝑛} is the set of all the
entities in the knowledge graph, {𝜀} is the set of all the edges,
and {𝑅} is the set of relationships. Assuming that the head node
of the triad is 𝑣𝑖 ∈ 𝑉, the tail node is 𝑣𝑗 ∈ 𝑉, and the relation

between nodes is 𝑟 ∈ 𝑅, then this triad can be represented as
(𝑣𝑖 , 𝑟, 𝑣𝑗) ∈ 𝜀.

In GCN, the embedding vector of a node can be computed
by using the Eq. (1).

ℎ(𝑙+1) = 𝜎 (�̃�−
1

2�̃��̃�−
1

2ℎ(𝑙)𝑊(𝑙)) (1)

Knowledge

Graph to be

completed

Knowledge graph

embedding

Neo4j graph database

Entity and relational

vector transformation

Heterogeneous graph

resolution

Relational rule mining

Item-level division

Apriori algorithm

Filter relational rule

Data preprocessing

Data set partitioning

Training subgraph

sampling

Positive and negative

sampling

Graph neural network

Multi-relationship

information aggregation

Cross-relational

attention mechanism

Block diagonal matrix

decomposition

DistMult Decoder

Calculate the triples

Computational

evaluation ranking

Construct the triplet to be evaluated

Fig. 2. Algorithm architecture diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

90 | P a g e

www.ijacsa.thesai.org

Text-entity Code

Entity-Serial number Dic

Serial number-Vector Dic

Relation-Serial number Dic

Serial number-Vector Dic

Entity serial number Relation serial number Entity serial numbe

Relationship

Triples

Fig. 3. Schematic of the conversion of knowledge graph triples to vectors.

where, ℎ
(𝑙)

 is the node embedding vector of layer l , 𝑊(𝑙) is

the trainable weight matrix of layer l , �̃� = 𝐴 + 𝑙is the sum of

the adjacency and self-connectivity matrices of the graph, �̃� is

the degree matrix of �̃�, and is the activation function.

Based on Eq. (1), the process of GCN information
aggregation can be expressed by Eq. (2).

ℎ𝑖
(𝑙+1)

= 𝜎 (∑
𝑗∈𝑁𝑖

1

√𝑑𝑖𝑑𝑗
ℎ𝑗
(𝑙)
𝑊(𝑙)) (2)

where, ℎ𝑖
(𝑙+1)

 denotes the embedding vector of node i at

layer 𝑙 + 1, 𝑊(𝑙)is the trainable weight matrix, 𝑁𝑖 is the set of

neighbors of node i , 𝑑�̃� and 𝑑�̃� are the degrees of node i and

node j in matrix �̃�, respectively.

As can be seen from Eq. (2), in GCN, the information of
nodes converges in different relations sharing the same weight
matrix 𝑊, so GCN actually treats the graph as a homomorphic
graph for processing, in this study, we will consider the
heteromorphism in the knowledge graph, and we have already
transformed the entities and relations in the knowledge graph
into vectors in the above paper and constructed the mapping
between the serial numbers and vectors of the entities and
relations, using the correspondence between serial number and
vector, which makes it easier to split the knowledge graph into
different heteromorphic graphs for processing according to
different relations, which is reflected in the fact that different
relations construct different maps between entities and relations.
Using the correspondence between the serial number and the
vector, we can easily split the knowledge graph into different
heterogeneous graphs according to different relationships,
which is reflected in the construction of different weight
matrices for different relationships, instead of using the same
weight matrix for all relationship types as in the case of GCN.

On the basis of GCN, considering the heterogeneity of the
graph, the information is aggregated for different types of edges
between nodes, as shown in Eq. (3).

ℎ𝑖
(𝑙+1)

= 𝜎 (∑
𝑟∈𝑅

∑
𝑗∈𝑁𝑖

𝑁

1

𝑐𝑖,𝑟
𝑊𝑟

(𝑙)
ℎ𝑗
(𝑙)

+𝑊0
(𝑙)
ℎ𝑖
(𝑙)
) (3)

Where, ℎ𝑖
(𝑙+1)

 denotes the embedding of node i in the 𝑙 + 1

layer, 𝜎 is the activation function, 𝑅 is the set of relations, 𝑁𝑖
𝑟is

the set of neighboring nodes of node i under relation r , 𝑐𝑖,𝑟is

the normalization constant, and 𝑊𝑟
(𝑙)

 is the weight matrix of
relation r . Since the information of nodes themselves needs to
be taken into account, the self-loop of nodes is introduced. The
self-loop of a node can be treated as a special type of edge, and

the self-loop weight matrix is denoted by 𝑊0
(𝑙)

.

As can be seen from Eq. (3), for each relationship, a separate
weight matrix 𝑊𝑟 is computed. In large-scale knowledge graphs,
due to the large number of relationships, the number of
parameters in the inference process is also unusually large,
which further increases the complexity of the inference process.
Specifically, assuming that a graph 𝐺 contains 𝑁 nodes and 𝑀
relationship types, each relationship type has a corresponding
weight matrix 𝑊𝑟 , size 𝐷𝑙 × 𝐷𝑙−1 , where 𝐷𝑙 is the feature
dimension of the current layer of the relationship type, and 𝐷𝑙−1
is the feature dimension of the previous layer. Since each node
has different embedding vectors under different relation types,
these weight matrices need to be computed separately at each
node, resulting in an extremely large number of parameters.

In order to reduce the complexity of the model and improve
the generalization performance, the diagonal decomposition of
the weight matrix is performed, which transforms the complex
weight matrix into a block diagonal matrix, thus reducing the
number of parameters and improving the generalization
performance of the model. Specifically, as shown in Eq. (4),

where the size of 𝑄𝑏𝑟
(𝑙)

 matrix is (𝑑(𝑙+1)/𝐵) × (𝑑(𝑙)/𝐵) , the

block diagonal decomposition of the weight matrix through a
series of matrices of the summation, which greatly reduces the
size of the parameters of the weight matrix and simplifies the
computation process.

𝑊𝑟
(𝑙)

=⊕

𝑏=1
𝐵

𝑄𝑏𝑟
(𝑙)

= 𝑑𝑖𝑎𝑔(𝑄1𝑟
(𝑙)
, . . . , 𝑄𝐵𝑟

(𝑙)
) (4)

In the above node information aggregation process, each
relation type uses an independent weight matrix for information
transfer, and the node embedding is obtained by splicing the
information of each relation type. This approach may lead to the
uneven contribution of each relationship type in node
embedding, and the contribution of some relationship types may
be masked or weakened. To solve this problem, this study
introduces the Node-level Across Relation Attention mechanism,
which adjusts the weight of each relation type in the node

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

91 | P a g e

www.ijacsa.thesai.org

embedding by learning a node-level attention vector for each
node.

Before calculating the node's attention mechanism, firstly,
for the similarity between node i and node j under a specific

relation r, the weight matrix corresponding to relation r is
multiplied and spliced with node i and node j, respectively, and
then multiplied with a trainable attention vector, and then the
similarity between node i and node j under relation r is finally
obtained by an activation function. As shown in Eq. (5), where

𝑒𝑖𝑗
𝑟 denotes the similarity between node i and node j under

relation r, �⃗�𝑟 is a trainable attention vector, �⃗⃗⃗⃗�𝑟 is the weight
matrix under relation r, and denotes the vector splicing

operation.

𝑒𝑖𝑗
𝑟 = ReLU(�⃗�𝑟 ⋅ [�⃗⃗⃗⃗�𝑟ℎ𝑖

(1)
⊕ �⃗⃗⃗⃗�𝑟ℎ𝑗

(1)
]) (5)

The calculation process of attention is shown in Fig. 4. The
final information aggregation process of a single node is shown
in Fig. 5.

r

ije

ReLU

r

a
r

a

} }
)(w l

jrh
)(w l

irh

Fig. 4. Attention calculation process.

Based on Eq. (5), in the iterative process of graph neural
network, each node in the knowledge graph calculates the
similarity of its neighboring nodes under all the relationships,
and then uses the similarity to calculate the attention of the
node's neighboring nodes, and ultimately the information
convergence of nodes in each layer is shown in Eq. (6). The
whole information aggregation process is shown in Fig. 6, and
finally the whole network outputs the embedding vector
representation of nodes and relationships.

ℎ𝑖
(1+1)

=

𝜎(∑
𝑟∈𝑅

∑
𝑗∈𝑁𝑖

𝑟

𝑒𝑥𝑝(ReLU(�⃗⃗�𝑟⋅[�⃗⃗⃗⃗�𝑟ℎ𝑖
(𝑙)
⊕�⃗⃗⃗⃗�𝑟ℎ𝑗

(1)
]))

∑

𝑘∈𝑁
𝑖
(
𝑒𝑥𝑝(ReLU(𝑎𝑟⋅[�⃗⃗⃗⃗�𝑟

ℎℎ
𝑖
(𝑙)
⊕�⃗⃗⃗⃗�𝑟ℎ𝑘

(1)
]))
𝑊𝑟

(𝑙)
ℎ𝑗
(𝑙)

+

𝑊0
(𝑙)
ℎ𝑖
(𝑙)
) (6)

r

12e

r

13e

r

14e

r

11e
)(

2h l

)(

3h l

)(

4h l

)(

1h l

r

12e

r

13e

r

14e

r

11e
)(

2h l

)(

3h l

)(

4h l

)(

1h l

ReLU

...

)1(

ih l

Fig. 5. Individual node final information aggregation process.

Fig. 6. Schematic diagram of node information aggregation process.

C. Training Sampling and Loss Functions

In the link prediction task, dealing with an entire knowledge
graph can be challenging due to its size, often exceeding the
capacity of a single GPU's memory. To address this, we sample
smaller subgraphs for training. By using random sampling, we
can maintain the integrity of the graph's structure while avoiding
memory bottlenecks associated with processing large-scale
knowledge graphs. This study employs uniform random
sampling, where each node or edge is selected with equal
probability. This method is straightforward, offering good
randomness and repeatability, and can be executed using a
random number generator.

The sampling process involves the following steps:

1) Determine the sample size: Set a

hyperparameter, batch_size, to define the number of nodes or

edges to sample.

2) Initialize the sample set: Create a set to store the sampled

nodes or edges.

3) Random sampling: For each node or edge, generate a

random number; if it falls below the sampling probability,

include the node or edge in the sample set.

4) Return the sample set: Use this set for subsequent

training or other tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

92 | P a g e

www.ijacsa.thesai.org

After random sampling, a training subgraph is obtained. To
further enhance prediction accuracy and generalization, the
study introduces positive and negative sampling. For each node
pair (i, j), both positive samples (existing links) and negative
samples (non-existent links) are generated. Negative samples
are constructed using a random sampling strategy, with a
negative sampling factor 𝜇 , where the ratio of positive to
negative samples is 1: 𝜇.

The loss function for the final model training is shown in
Eq. (7) as follows.

𝐿 = − ∑
(𝑖,𝑗)∈𝐸

𝑙𝑜𝑔 𝜎 (𝑦(𝑖,𝑗)) − ∑
(𝑖,𝑗)∈�̃�

𝑙𝑜𝑔 𝜎 (�̃�(𝑖,𝑗)) (7)

Where, E denotes the set of positive sample edges, E

denotes the set of negative sample edges, and
(,)i jy denotes the

predicted probability of the existence of an edge between node i
and node j, which can be computed by Eq. (8).

𝑦(𝑖,𝑗) =
1

𝑘
∑

𝑡=1
𝑘

𝜎(ℎ𝑖
(𝐿)

⋅ 𝑟𝑖
(𝐿)
ℎ𝑗
(𝐿)
) (8)

where k denotes the number of negative samples sampled,
()l
ih and ()l

jh denote the embedding vectors of node i and node j

in the last layer, and ()L
tr denotes the weight vector of relation

type tr in the Lth layer. denotes the sigmoid function, which

is used to map the predicted values to a range between 0 and 1.
The first term of the loss function is the cross-entropy loss for
positive samples, indicating that the higher the probability that
the model predicts the existence of positive edges, the lower the
loss. The second term is the cross-entropy loss of negative
samples, which means that the higher the probability that the
model predicts that the negative sample edge does not exist, the
lower the loss. By minimizing the loss function, it allows the
model to predict the likelihood of edge existence more
accurately between nodes.

V. COMPARATIVE EXPERIMENTS AND ANALYSIS

This section presents comparative experiments to evaluate
the model's effectiveness, focusing on the experimental
environment, dataset, evaluation criteria, control group design,
and final result analysis to validate the improvements made in
this study.

A. Experimental Environment and Datasets

Due to the large knowledge graph dataset used in this
experiment and the complexity of model computation, the
experiment needs to be carried out on GPUs. The server used for
the experiment is the one equipped in the lab, Windows 10 64bit
system, 16GB RAM and equipped with high-computing-power
GPUs. In terms of software, Python was used as the
programming language for the model, PyCharm was used to
compile the software, and PyTorch was used as the basic
implementation library for the model.

This paper presents a custom-built knowledge graph dataset
named BadmintonKG, specifically created for the badminton
domain. It is designed to support applications such as tactical
reasoning, match analysis, and training assistance.
BadmintonKG includes 9,742 entities, 135 types of relationships,

and 198,563 triples (i.e., relationships between entities). Unlike
other common knowledge graph datasets, BadmintonKG
focuses on the specific domain of badminton, covering various
entities and relationships such as players, tactics, courts,
techniques, and coaching styles. The training, validation and test
sets are divided as shown in Table I.

TABLE I. BADMINTONKG DATA SET DELINEATION TABLE

Dataset segmentation Entities Relations triples

Original dataset 9,742 135 198,563

Training set 9,742 135 176,421

Validation set 9,742 135 19,989

Test set 9,742 135 11,072

B. Evaluation Criteria and Control Group Design

MRR (Mean Reciprocal Rank) is one of the commonly used
evaluation metrics in the task of knowledge graph link
prediction. The core idea of MRR is to find the true tail entity t
among all possible tail entities `t for each test ternary (, ,)h r t ,

and compute the inverse of its score ranking. Finally, the average
of the ranked inverts of all the test triples is used as the MRR
score of the model. This is calculated as shown in Eq. (9).

𝑀𝑅𝑅 =
1

|𝑇|
∑

(ℎ,𝑟,𝑟)∈𝑇

1

rank(ℎ𝑟,𝑡)
 (9)

In knowledge graph link prediction, Hits@ N is a commonly
used evaluation metric to measure whether the algorithm can
correctly predict the correct entity or relation in the test set
among the first N candidate entities or relations. Specifically,
assuming that the correct answer for each ternary (ℎ, 𝑟, 𝑡) in the
test set is t, then for each (ℎ, 𝑟) pair, we can sort all its possible
entities according to the algorithm's prediction scores in
descending order and compute whether the first N predicted
entities contain the correct answer t. If the correct answer is t,
then it is called a hit. If it does, it is called a hit (hit), otherwise
it is called a miss. The final hit rate is the average hit rate of all
test triples among the first N candidate entities. This is shown in
Eq. (10).

Hits@𝑁 =
1

|𝑇|
∑

(ℎ,𝑟,𝑡)∈𝑇
𝛱(rank(ℎ,𝑟,𝑡) ≤ 𝑁) (10)

To validate the effectiveness of the proposed knowledge
graph inference algorithm based on graph neural networks and
association rule mining, experiments will be conducted on
BadmintonKG. The experimental model will be compared with
three other neural network models: Graph Convolutional
Network (GCN), Graph Attention Network (GAT), and
Relational Graph Convolutional Network (R-GCN). The
comparison will focus on the evaluation metrics MRR and
Hits@N, and the impact of different training subgraph sizes on
model performance will also be assessed.

Knowledge Graph Link Prediction with GCN: GCN is a
graph convolutional neural network that treats the knowledge
graph as a homogeneous graph, using node neighbors to perform
convolution. It aggregates neighbor information with a weighted
adjacency matrix, enabling it to learn node representations
through multi-layer convolution. GCNs are particularly
effective for graphs with similar node features.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

93 | P a g e

www.ijacsa.thesai.org

Knowledge Graph Link Prediction with GAT: GAT extends
GCN by incorporating an attention mechanism that weights the
importance of each neighboring node. This allows for the
aggregation of neighbor information with varying degrees,
resulting in richer and more accurate node representations.

Knowledge Graph Link Prediction with R-GCN: R-GCN is
designed for multi-relational graphs, using relational matrices in
its convolution operations. Unlike traditional GCNs, R-GCN
employs a learnable convolution kernel that adjusts to different
types of relations, making it more effective for handling multi-
relational data.

C. Experimental Results and Analysis

In this control group, this experimental model is compared
with the other two models on two datasets, and the number of
model iterations for the experiments is set to 6000, the stochastic
inactivation rate is set to 0.2, the learning rate is set to 0.01, the
output dimension of the hidden layer is set to 500, and the

sampling mode of the training subgraphs is set to uniform. The
test set evaluation results from the above training results are
plotted in a table, as shown in Table II.

The above table was plotted as a line graph as shown in
Fig. 7 and 8. From the above experimental data performance, the
model in this study shows excellent performance on both
datasets, and outperforms the other three models in all
indicators.

In the BadmintonKG dataset, when the size of the training
subgraph is 30000, this model outperforms the GCN, GAT, and
R-GCN models in all the metrics, but the difference is relatively
small, and when the size of the training subgraph is 80000, the
MRR metrics of this model reaches 0.2753, which is higher than
that of 0.1910 for the GCN, GAT, and R-GCN models, 0.2503
and 0.2653, which is about 40% higher than that of the GCN
model, 10% higher than that of the GAT model, and 3.8% higher
than that of the R-GCN model.

TABLE II. SUMMARY OF EXPERIMENTAL RESULTS

BadmintonKG
The size of the training subgraph is 30000 The size of the training subgraph is 80,000

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Our 0.2458 0.1576 0.2677 0.4249 0.2753 0.1811 0.3066 0.4638

GCN 0.1673 0.0873 0.1927 0.3201 0.1910 0.0990 0.2283 0.3684

GAT 0.2144 0.1283 0.2373 0.3855 0.2503 0.1610 0.2695 0.4403

R-GCN 0.2412 0.1404 0.2531 0.4085 0.2653 0.1715 0.2856 0.4536

0

0.1

0.2

0.3

0.4

0.5

MRR HITS@1 HITS@3 HITS@10

Our method

GCN

R-GCN

GAT

Fig. 7. BadmintonKG comparison of models (training subgraph size 30000).

0

0.1

0.2

0.3

0.4

0.5

MRR HITS@1 HITS@3 HITS@10

Our method

GCN

R-GCN

GAT

Fig. 8. BadmintonKG comparison of models (training subgraph size 80000).

Overall, the model in this study achieves better performance
than the link prediction models based on GCN, GAT and R-
GCN in the knowledge graph link prediction task, and shows
good robustness and generalization ability, and the experimental
results in this study prove the effectiveness and superiority of
the proposed model in the knowledge graph link prediction task.

VI. CONCLUSION

In this study, we applied knowledge graph and graph neural
network techniques to the mining and reasoning of badminton
tactics, demonstrating the effectiveness of this approach in
analyzing and optimizing players' training patterns. Technically,
the introduction of training subgraph sampling, positive and
negative sampling, and block diagonal matrix decomposition
significantly reduced the computational complexity, improved
the handling of large-scale knowledge graphs, and enhanced the
model's generalization capabilities. These techniques not only
optimized the data processing workflow but also improved the
model's performance and accuracy in practical applications.

Through comparative experiments on a proprietary
badminton tactics dataset, we validated the superiority of the
proposed method over traditional approaches in tactical
reasoning and training optimization. The results showed that our
model more accurately predicted and reasoned about tactical
changes in matches, offering strong scientific support for
badminton training and competition. In conclusion, this study
provides a novel technical approach for tactical analysis in
badminton and offers a potential methodological reference for
other sports.

ACKNOWLEDGMENT

Thanks to all the people and organizations that contributed
to this study.

REFERENCES

[1] Fu T, Li P, Liu S. An imbalanced small sample slab defect recognition
method based on image generation[J]. Journal of Manufacturing
Processes, 2024, 118: 376-388.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

94 | P a g e

www.ijacsa.thesai.org

[2] Fu T, Liu S, Li P. Intelligent smelting process, management system:
Efficient and intelligent management strategy by incorporating large
language model[J]. Frontiers of Engineering Management, 2024: 1-17.

[3] Schatz, A. Pro Football Prospectus: Statistics, Analysis, and Insight for
the Information Age[M]. 2006 Edition. Workman Publishing
Company,2006.

[4] Coleman, J.&A. Lynch. NCAA Men's Basketball Tournament Score
Card[EB/OL].

[5] Fu T, Liu S, Li P. Digital twin-driven smelting process management
method for converter steelmaking[J]. Journal of Intelligent Manufacturing,
2024: 1-17.

[6] Damien Demaj.Using spatial analytics to study spatio-temporal patterns
in sport[EB/OL]. http://blogs.esri.com/esri/arcgis/2013/02/19/using-
spatial-analytics-to-study-spatio-temporal -patterns-in-sport.

[7] Maheswaran R,Chang Y H,Henehan A,et al.Deconstructing the rebound
with optical tracking data[C].The MIT Sloan Sports Analytics
Conference.Boston,2012.

[8] Carlson A, Betteridge J, Kisiel B, et al. Proceedings of the Twenty-Fourth
AAA I Conference on Artificial Intelligence (AAAI-10) Toward an
Architecture for NeverEnding Language Learning[Л]. 2011.

[9] Suda M, Weidenbach C, Wischnewski P . On the Saturation of
YAGO[C]// Inter national Conference on Automated Reasoning.
Springer-Verlag, 2010.

[10] Page L, Brin S , Motwani R, et al. The PageRank citation ranking:
Bringing ord er to the Web. Technical report. 1919.

[11] Cohen W W . TensorLog: A Differentiable Deductive Database:,
10.48550/arXiv. 1 605.06523[P].2016.

[12] L Bühmann, Lehmann J . Pattern Based Knowledge Base Enrichment[C]//
12th I nternational Semantic Web Conference, 21-25 October 2013,
Sydney, Australia. Springer, Berlin, Heidelberg, 2013.

[13] Jiang S , Lowd D , Dou D . Learning to Refine an Automatically Extracted
Kno wledge Base Using Markov Logic[C]// IEEE International
Conference on Data Minin g;ICDM2012. 0 .

[14] Pujara J , Miao H , Getoor L, et al. Knowledge Graph Identification[C]//
Intern ational Semantic Web Conference. Springer-Verlag New York, Inc.
2013.

[15] Zheng H, Liu S, Zhang H, et al. Visual-triggered contextual guidance for
lithium battery disassembly: a multi-modal event knowledge graph
approach[J]. Journal of Engineering Design, 2024: 1-26.

[16] Kimmig A, Bach S , Broecheler M , et al. A Short Introduction to
Probabilistic Soft Logic[J]. Dec-2012, 2013.

[17] Chen Y , Goldberg S , Wang D Z, et al. Ontological Pathfinding[C]// the
2016 I nternational Conference. ACM, 2016.

[18] Bordes A, Usunier N , Garcia-Duran A, et al. Translating Embeddings for
Mod eling Multi-relational Data[C]// Neural Information Processing
Systems. Curran Asso ciates Inc. 2013.

[19] Zhen W , Zhang J , Feng J , et al. Knowledge Graph Embedding by
Translating on Hyperplanes[C]// National Conference on Artificial
Intelligence. AAAI Press, 201 4.

[20] Nickel M , Tresp V , Kriegel H P. A Three-Way Model for Collective
Learning on Multi-Relational Data[C]// International Conference on
International Conference o n Machine Learning. Omnipress, 2011.

[21] Chang K W , Yih W T , Yang B, et al. Typed Tensor Decomposition of
Knowle dge Bases for Relation Extraction[J]. 2014.

[22] Liu S, Zheng P, Xia L, et al. A dynamic updating method of digital twin
knowledge model based on fused memorizing-forgetting model[J].
Advanced Engineering Informatics, 2023, 57: 102115.

