
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Towards Interpretable Diabetic Retinopathy
Detection: Combining Multi-CNN Models with

Grad-CAM

Zakaria Said1*, Fatima-Ezzahraa Ben-Bouazza2, Mounir Mekkour3
Mathematical Analysis and Applications Laboratory, University Sidi Mohamed Ben Abdellah, Fes, Morocco1

Faculty of Science and Technology, Hassan I University, Settat, Morocco2

Mohammed VI University of Health Sciences, Casablanca, Morocco2

LaMSN, La Maison Des Sciences Numériques, France2

Mathematical Analysis and Applications Laboratory, University Sidi Mohamed Ben Abdellah, Fes, Morocco3

Abstract—Diabetic retinopathy (DR) is a leading cause of
vision impairment and blindness, necessitating accurate and
early detection to prevent severe outcomes. This paper discusses
the utility of ensemble learning methodologies in enhancing
the prediction accuracy of Diabetic Retinopathy detection from
retinal images and the prospective utilization of Gradient-
weighted Class Activation Mapping (Grad-CAM) to maximize
model interpretability. Using a dataset of 1,437 color fundus
images, we explored the potential of different pre-trained con-
volutional neural networks (CNNs), including Xception, VGG16,
InceptionV3, and DenseNet121. Their respective accuracies on the
test set were 89.27%, 91.44%, 89.06%, and 93.35%. Our objective
was to improve the accuracy of diabetic retinopathy detection. We
explored methods to combine predictions from these four models
we began with weighted voting, which achieved an accuracy
of 93.95%, and subsequently employed meta-learners, achieving
an improved accuracy of 94.63%. These approaches surpassed
individual models in distinguishing between non-proliferative
and proliferative phases of DR. These findings underscore the
potential of these approaches in developing robust diagnostic
tools for diabetic retinopathy. Furthermore, techniques like Grad-
CAM enhance interpretability, opening the door for further
advancements in early-stage detection and clinical integration
automatically while maximising accuracy and interpretability.
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I. INTRODUCTION TO DIABETIC RETINOPATHY
DETECTION

A. Background

Diabetes is one of the most prevalent diseases worldwide.
It is a chronic condition characterized by elevated blood
sugar levels (hyperglycemia) [1]. It involves the assimilation,
utilization, and storage disorder of sugars in the diet.It occurs
when the body fails to effectively utilize the insulin it produces
or when the pancreas does not produce an adequate amount.
Insulin is a hormone that is indispensable for the regulation
of blood sugar levels by permitting glucose to access the
body’s cells. Excessive urine excretion, intense thirst, constant
appetite, weight loss, impaired vision, and fatigue are among
the most prevalent symptoms.In order to prevent long-term
complications that affect various body systems, particularly
nerves and blood vessels meticulous management is necessary.

According to a report by the World Health Organization
(WHO) [2], more than 400 million people are suffering from
diabetes in the world. It is anticipated that this figure will
rise to 552 million in 2024. The World Health Organization
also reports that diabetes is a significant cause of blindness,
amputations, and mortality. One of the primary causes of blind-
ness is diabetic retinopathy. More than 5 million people around
the world with diabetes are blind. This number is expected to
double by 2030. Research at a Jakarta government hospital in
2011 [3] indicated that the highest diabetes complication was
neuropathy (54%), followed by diabetic retinopathy (33.4%)
in second place.

The relationship between diabetes and diabetic retinopathy
is both direct and causal. Diabetic retinopathy is an ocular
complication caused directly by diabetes. The chronic hyper-
glycemia (high blood sugar levels) associated with diabetes
damages the microscopic blood vessels in the retina [4]. This
can lead to blood leakage, the formation of abnormal new
blood vessels, and other alterations in the retina. The risk
of developing diabetic retinopathy increases with the duration
of diabetes and inadequate glycemic control. The longer the
diabetes and the lesser the glycemic control, the higher the risk.
Initially, diabetic retinopathy may be asymptomatic. However,
as it progresses, it can cause mild to severe vision problems,
even leading to blindness. A comprehensive eye examination
by an optometrist can enable the early detection of diabetes
and diabetic retinopathy, reducing the risk of visual loss. Early
detection and effective management of diabetes, including
excellent glycemic control, is essential to prevent or delay
the progression of diabetic retinopathy. In summary, diabetic
retinopathy is a direct and frequent consequence of diabetes,
underscoring the significance of its detection and monitoring
in preserving ocular health.

Deep learning algorithms have made significant advances
in improving diabetic retinopathy detection in recent years,
which can help physicians make informed decisions about the
most effective treatment plan for each patient. This article
will discuss the application of deep learning to detect diabetic
retinopathy and the exploitation of some techniques that will
help push the models performances in terms of diabetic
retinopathy detection and other systems that will improve
their results interpretability, It will also cover the performance
metrics and validation techniques used to assess the efficacy of
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these models. Finally, we will examine how these results may
influence future treatment procedures for diabetic retinopathy
patients [5], [6].

The following sections of our paper are structured in a
way that facilitates clarity and comprehensiveness. Section II
provides a comprehensive description of the Dataset we used
in our research. In Section III, we outline the approach we took
to ensure accurate and reliable results. Section IV discusses the
findings of our study and provides a comprehensive analysis
of the used methodologies. We then delve deeper into the im-
plications of our findings. Finally, in Section V, we present our
conclusions and suggest potential avenues for future research.

B. Literature Review

Research on the classification of Diabetic Retinopathy
(DR) has been extensive. Gondal et al. [7] introduced a CNN
model with 93.6% sensitivity and 97.6% specificity , using
Kaggle and DiaretDB1 datasets. Wang et al. [8] introduced a
model that combined different networks and achieved AUC
scores of 0.978 and 0.960 . Quelle et al. [9] worked on
CNN models for binary classification and lesions detection.
Chandrakumar and Kathirvel [10] achieved 94% accuracy on
the DRIVE and STARE datasets using a CNN model with
dropout regularization. Memon et al. [11] applied nonlocal
mean denoising and brightness equalization, achieving a kappa
score accuracy of 0.74. Pratt et al. [12] developed a CNN for
five DR stages but struggled with mild stage classification due
to dataset imbalance. Yang et al. [13] introduced a DCNN
for normal and NPDR stages with lesion highlighting and
grading. Garcia et al. [14] assessed CNN models (Alexnet,
VGGnet16) on the Kaggle dataset, achieving 83.68% accuracy
on VGG16. Dutta et al. [15] used the Kaggle dataset to assess
three deep learning models, with the best training accuracy of
89.6% on a DNN. Recent advancements include Luo et al.
[16], who proposed Multi-View DRD (MVDRNet) combining
DCNNs and attention mechanisms, though it failed to train a
network with lesion explanation. Chen [17] introduced a multi-
scale shallow CNN model for early DR recognition, but it
did not significantly improve classification precision. Martinez-
Murcia et al. [18] created a CNN for routine DR diagnosis,
which was not practical for clinical applications. Deepa et
al. [19] created a Deep CNN (MPDCNN) for fundus image
recognition, but it lacked advanced neural network architec-
tures for more accurate detection. Das et al. [20] designed
a deep learning architecture for DR categorization based on
segmented fundus images, while Kalyani et al. [21] introduced
a reformed capsule network for feature extraction from fundus
images. Oh et al. [22] developed a novel DRD method using
top fundus photography and deep learning techniques but did
not effectively set an ROI for minimizing complexity. Erciyas
and Barısci [23] applied deep learning techniques for automatic
lesion detection through ROI extraction, but their method did
not optimize system resource utilization.

To summarize, research on DR classification may be
categorized into binary and multi-class classification. Binary
classification is limited in assessing the severity of Diabetic
Retinopathy (DR). On the other hand, multi-class classification
categorizes Diabetic Retinopathy (DR) into five distinct phases.
Currently used models face challenges with the learning of
the abstracted characteristics out of the different stages the

diabetic retinopathy and accurately categorizing the stages of
diabetic retinopathy in the inference process , which is crucial
for successful therapy outcomes.

In response to this, our study aims to identify the stages
of diabetic retinopathy accurately. We focused on maximizing
the accuracy of the models and providing an interpretability
approach to maximize the potential of our approach and assist
the medical staff in making decisions based on concrete factors
[24], [25], [26].

C. Research Contribution

Our contribution involves a focused effort on enhancing the
performance of our models to detect diabetic retinopathy more
effectively compared to others addressing the same issue. Our
primary goal was to improve the effectiveness of our models
in identifying diabetic retinopathy. We adjusted our strategy to
enhance the model’s ability to differentiate between the three
main phases of diabetic retinopathy [27] NDR (No Diabetic
Retinopathy), NPDR (Non-Proliferative Diabetic Retinopa-
thy), and PDR (Proliferative Diabetic Retinopathy). Exploring
multiple models for the task allowed us to evaluate their
effectiveness and refine our approach for greater efficiency.

In the following section, we delve into interpretability and
visual assistance concepts. This is relevant because diabetic
retinopathy is caused by high blood sugar levels, which de-
grade capillary walls and result in leakage. This leads to the
rupture and bursting of retinal vessels. Our goal is to equip
medical professionals with a visualization technique using
our advanced deep learning models. This method emphasizes
crucial areas to help doctors detect abnormalities and potential
lesions by focusing on the regions influencing the model’s
prediction.

The combination of these two methods enables precise
detection and the creation of a comprehensive interpretive
framework. This progress will enable the establishment of a
system that greatly aids doctors in timely and accurate diag-
noses, resulting in improved patient outcomes and a reduced
risk of vision loss. Furthermore, this technology promises to
streamline the diagnostic process, enabling prompt treatment
and intervention as necessary.

II. DATASET AND PREPARATION

To realize our project, we sought a representative database
[28], [29] that would encompass the various stages and man-
ifestations of diabetic retinopathy. After extensive research,
we selected a comprehensive dataset comprising 1437 color
fundus images, meticulously collected and classified by expert
ophthalmologists. Further details about the dataset, including
its composition, and the preprocessing steps undertaken to
prepare the data for analysis, will be covered in the next sub-
sections. This comprehensive approach ensures that our study
is based on reliable and clinically relevant data, enhancing the
accuracy and applicability of our findings.

A. Dataset Composition

The dataset “Fundus Images for the Study of Diabetic
Retinopathy” [28] comprises 1437 color fundus images ac-
quired at the Department of Ophthalmology, Hospital de
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Clı́nicas, Facultad de Ciencias Médicas, Universidad Nacional
de Asunción, Paraguay. Created by a team of researchers and
ophthalmologists, this dataset was collected using the Visucam
500 camera from Zeiss, following clinical procedures. Expert
ophthalmologists have meticulously classified the images into
seven categories: No DR signs (711 images), Mild NPDR
(6 images), Moderate NPDR (110 images), Severe NPDR
(210 images), Very Severe NPDR (139 images), PDR (116
images), and Advanced PDR (145 images). This classification
aids in the detection and study of Non-Proliferative Diabetic
Retinopathy (NPDR) and Proliferative Diabetic Retinopathy
(PDR) at various stages. The dataset is a valuable resource for
researchers and clinicians focusing on the early detection and
management of diabetic retinopathy.

B. Dataset Preparation

This section provides a comprehensive overview of the
steps undertaken to collect, analyze, and preprocess the data.
This includes detailed descriptions of the procedures for data
cleaning, formatting, and transformation. We also address any
data quality issues encountered during the process and explain
how they were resolved. Our primary objective is to ensure that
our data preparation process is clearly and transparently docu-
mented, supporting the accuracy, reliability, and reproducibility
of our research findings. Through this meticulous approach,
we aim to establish a robust foundation for our subsequent
analysis, ensuring that the data used is of the highest quality
and integrity.

1) Data exploration: For this research section, we delved
into our database and analyzed the data through diverse charts
and summaries. Fig. 1 enabled us to have quantitative measures
to evaluate our dataset qualitatively. This visual representation
allow us to easily identify trends and patterns within the
data, helping us make informed decisions moving forward. By
analyzing both the count and percentage of each stage, we
can gain a comprehensive understanding of the distribution of
diabetic retinopathy stages in our dataset.

Fig. 1. Percentage distribution of diabetic retinopathy stages.

2) Data preprocessing: Analyzing the distribution graph
reveals significant class imbalances. To address the primary
stages of interest related to diabetic retinopathy, which include

the no diabetic retinopathy (NDR) class, non-proliferative dia-
betic retinopathy (NPDR), and proliferative diabetic retinopa-
thy (PDR), we merged the pathological sub-stages into these
three main categories by assigning each sub-stage to its cor-
responding main category. This reorganization not only helps
balance the distribution in our dataset but also aligns logically
with the objectives of our research. The ultimate goal is to
develop an automated diagnostic system that assists doctors in
accurately predicting the stage of diabetic retinopathy, thereby
improving clinical decision-making.

Fig. 2. Post-Merging label distribution of diabetic retinopathy stages.

After analyzing the Fig. 2 representing the distribution
of labels post-merging, it is evident that the issue of class
imbalance remains prevalent. This imbalance underscores the
necessity of implementing data augmentation techniques to
create a more balanced dataset, which is crucial for training
our models effectively, as it helps prevent biases and improves
the overall performance and generalization of the models.
Therefore, we must incorporate appropriate data augmentation
strategies to address this imbalance and enhance the robustness
of our machine-learning models.

To tackle the class imbalance in our dataset, we employed
several data augmentation techniques, including horizontal
flip, vertical flip, 90-degree rotation, 180-degree rotation, 270-
degree rotation, and zoom. These transformations were care-
fully selected to maintain the realistic characteristics of the
original data while increasing the representation of underrep-
resented classes. By applying these augmentation techniques,
we created an enhanced dataset that ensured each class had
sufficient samples. The resulting distribution, depicted in Fig.
3, shows a significantly more balanced dataset. This balanced
dataset facilitates more accurate and reliable model training,
thereby improving performance and generalization.

The dataset was divided into 80% for training and 20%
for testing. Subsequently, the training set was further split,
allocating 80% for training and 20% for validation. The sample
sizes for the three classes (NDR, NPDR, PDR) across the
training, validation, and testing sets were as follows: training
set - NDR: 1920, NPDR: 1785, PDR: 1001; validation set -
NDR: 480, NPDR: 447, PDR: 251; testing set - NDR: 600,
NPDR: 558, PDR: 314.

III. PROPOSED APPROACH

Developing different pathways to illustrate our models is
the main objective of our research which aims at improving the
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Fig. 3. Distribution of labels in training, testing, and validation sets after
data augmentation.

performance and interpretability of predictive models. We will
first train and investigate Gradient-weighted Class Activation
Mapping (Grad-CAM) technique. It is a powerful visualization
tool that allows us to understand how convolutional neural
networks (CNNs) make decisions by showing which parts of
the input image have the most influence on the model’s predic-
tions. After that we will use ensemble methods for enhancing
model performance namely meta-learners for increased pre-
dictive accuracy. This approach not only reveals interpretative
routes of our models but also boosts their prediction abilities
significantly.

A. Models Training

1) Elaboration and evaluation of the base CNN model: In
our initial training experiment, we designed the convolutional
neural network (CNN) depicted in Fig. 4 using Keras to
evaluate the model’s performance on the retinal image dataset
of images resized to 112x112x3. The network architecture
included three convolutional layers, each with 64 filters, a
3x3 kernel size, and ReLU activation, followed by 2x2 max-
pooling layers, and two fully connected layers with 128
units each, incorporating dropout regularization with a dropout
rate of 0.5. The model was compiled with a set of hyper-
parameters summarized in Table I below and to enhance
the effectiveness of our training we used callbacks such as
ReduceLROnPlateau to adjust the learning rate by a factor
of 0.2 with a patience of 5 epochs (minimum learning rate of
0.0001), EarlyStopping to prevent overfitting with a patience of
10 epochs, and ModelCheckpoint to save the best model based
on validation accuracy. Training was initially launched for 80
epochs with validation on a separate test set, providing insights
into the model’s generalization capabilities and guiding further
optimization efforts.

Fig. 4. Layered visualization of base convolutional neural network.

TABLE I. SUMMARY OF HYPERPARAMETERS USED DURING TRAINING

Hyperparameter Value

Input Size 112×112×3

Batch Size 32

Number of Epochs 80

Learning Rate 0.001

Loss Function Categorical Crossentropy

Optimizer Adam

Fig. 5. Training and validation accuracy and loss for base CNN model.

The results of our initial model training are depicted in Fig.
5, illustrating the performance evolution of our base model.
The accuracy plot shows a consistent increase in training
accuracy, surpassing 90% by the end of the training period,
while the validation accuracy exhibits significant fluctuations
and stabilizes around 75%. Concurrently, the loss plot indicates
a steady decrease in training loss, reaching below 0.3, whereas
the validation loss remains relatively high and variable, around
0.7. These observations suggest early signs of overfitting,
possibly due to the limited size of our dataset.

To address this issue, we plan to leverage pretrained models
for transfer learning. By utilizing a large, pretrained model,
we can benefit from its learned representations, which are
generally more robust and less prone to overfitting. Transfer
learning allows us to adapt these prelearned features to our
specific task, typically requiring less data and thereby reducing
the risk of overfitting to our training set.

In the upcoming subsection, we will detail our imple-
mentation of transfer learning tailored to our task, aiming to
maximize the accuracy of our models.

2) Exploring pretrained CNN models for improved perfor-
mance: In the following section, we considered a selection of
pretrained models for our project. The selection of the models
was influenced by specific characteristics such as accuracy,
architectural diversity, and efficiency as outlined in the table
proposed by Keras [30] depicting models performances on the
ImageNet validation dataset. Our choice included Xception
[31], DenseNet121 [32], VGG16 [33], and InceptionV3 [34]
for classifying diabetic retinopathy images, this choice is well-
founded due to the high accuracy, architectural diversity, and
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efficiency of these models, which are essential for effective
classification of diabetic retinopathy images. Xception’s depth-
wise separable convolutions ensure detailed feature extraction
with reduced computational complexity, vital for detecting
subtle variations in retinal images. DenseNet121’s densely
connected layers maximize information flow and feature reuse,
enhancing the learning of complex patterns crucial for accurate
diagnosis. VGG16’s straightforward architecture contributes to
robust performance, making it a practical choice for clinical
applications due to its ability to deliver consistent results.
InceptionV3 achieves a balance between high accuracy and
efficiency by utilizing factorized convolutions and dimension-
ality reduction techniques, which enable effective analysis even
with limited computational resources. Together, these models
offer a comprehensive approach, combining high performance,
diverse methodologies, and operational flexibility, essential for
reliable and precise diabetic retinopathy classification.

In our transfer learning experiment, we retrained the four
selected models, each adapted for a three-class classification
task. The training protocol was meticulously designed to
optimize model performance. Each model was initialized with
ImageNet weights and fine-tuned by replacing the original
classification head with a dense layer of size 3, followed by
a softmax activation. The training was conducted using the
Adam optimizer with a learning rate of 0.001, minimizing cat-
egorical crossentropy loss. The training was initialized for 80
epochs, with the following key hyperparameters that included
a batch size of 32, a dropout rate of 0.5 to prevent overfitting,
and L2 regularization with a lambda of 0.01. We employed
ReduceLROnPlateau to reduce the learning rate by 20% if the
validation loss plateaued over 5 epochs (minimum learning
rate of 0.0001), EarlyStopping to halt training if validation
loss stagnated for 10 epochs, and ModelCheckpoint to save
the best-performing model based on validation accuracy. The
models were evaluated on a the test validation set, with
accuracy and loss monitored throughout the training to assess
performance.

The Fig. 6 shows how the four models evolve during
the training process on our Diabetic Retinopathy dataset. It
illustrates a rapid increase in accuracy in the initial epochs,
followed by stabilization at high levels. While the training
accuracy of all models rapidly reaches near-perfect levels, the
validation accuracy stabilizes slightly lower, typically around
0.85 to 0.90. During the early stages, noticeable fluctuations in
both training and validation accuracies are observed, especially
within the first 5 to 10 epochs of training. These initial
fluctuations can be attributed to the fine-tuning process, where
the models, pre-trained on a different task with a different
set of images, are adjusting their weights to accommodate the
new data. The fluctuations are likely a result of the models
attempting to balance learning new features specific to the new
dataset while retaining the generalized knowledge acquired
from their pre-training. As training continues, the models
adapt gradually, resulting in fewer fluctuations and increased
stability in accuracy. The results obtained of this operation
were as follows, VGG16 demonstrated strong performance,
reaching a peak validation accuracy of 91.44% at epoch 33.
Despite initial success, the model exhibited some fluctuations
in validation accuracy, showing it was affected by changes
in the learning rate. However, the overall stability and high
accuracy make VGG16 a robust choice for our classification

(a) DenseNet121 training and validation
accuracy.

(b) VGG16 training and validation
accuracy.

(c) Xception training and validation
accuracy.

(d) Inception training and validation
accuracy.

Fig. 6. Training and validation evolution of pre-trained models.

task. DenseNet121 showed impressive results, achieving the
highest validation accuracy of 93.55% at epoch 43. This
model exhibited consistent performance with minor variations
in accuracy and loss, reflecting its ability to capture intricate
features effectively. InceptionV3 achieved a peak validation
accuracy of 92.80% at epoch 38, performing well on the
complex data and competing effectively with other models.
Xception achieved a peak validation accuracy of 92.35% at
epoch 36, showcasing high accuracy and efficient performance,
with slight variations in precise validation accuracy and loss
metrics.

These results underscore the efficacy of transfer learning
in leveraging pretrained models for specialized classification
tasks, demonstrating significant potential for diabetic retinopa-
thy classification task.

B. Enhancing Model Interpretability with Grad-CAM

After training models with enhanced accuracy in detecting
diabetic retinopathy, it is crucial to implement methods that
boost the visibility and interpretability of these deep learn-
ing predictions. Such methods enable practitioners to visu-
ally interpret model predictions, highlighting areas of interest
that may require further examination. Integrating Gradient-
weighted Class Activation Mapping (Grad-CAM) with our
most precise model, the Densenet model, offers a robust
solution.

Grad-CAM is a technique used to produce visual explana-
tions for the decisions made by convolutional neural networks
(CNNs). It works by utilizing the gradients of a target concept,
such as diabetic retinopathy, flowing into a convolutional
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layer of the CNN. By calculating these gradients, Grad-CAM
generates a heatmap that shows which regions of the input
image are most influential in the model’s decision-making
process. These heatmaps effectively pinpoint the critical areas
within retinal images that the model considers important for
diagnosing diabetic retinopathy.

In our approach to generate these Grad-CAM heatmaps, we
first constructed a gradient model that outputs the activations
from a convolutional layer and the model’s predictions. We
employed TensorFlow’s GradientTape to capture the gradients
of the predicted class score with respect to these activations. By
computing the mean intensity of the gradients for each output
channel of the convolutional layer, we obtained the importance
weights. These weights were then applied to the feature maps,
resulting in a heatmap that highlights the regions in the image
most relevant to the prediction.

Fig. 7. Grad-CAM visualization for No Diabetic Retinopathy (NDR).

Fig. 8. Grad-CAM visualization for Non-Proliferative Diabetic Retinopathy
(NPDR).

Fig. 9. Grad-CAM visualization for Proliferative Diabetic Retinopathy
(PDR).

To visualize the highlighted regions, as depicted in Fig.
7, 8 and 9, which represent the output of our approach
for different stages of diabetic retinopathy, we followed a
systematic process. First, we loaded the original image and
resized the heatmap to match its dimensions. The heatmap was
then colored using the jet colormap, scaled appropriately, and

superimposed onto the original image with a specified level
of transparency. Finally, we displayed the original image, the
heatmap, and the superimposed image side-by-side to provide
a comprehensive visual analysis of the model’s focus areas.
This approach allows for a clear and detailed examination of
the regions identified by the model, aiding in the interpretation
and validation of its predictions.

The three figures illustrate examples of diabetic retinopathy
classes: no diabetic retinopathy (NDR), non-proliferative dia-
betic retinopathy (NPDR), and proliferative diabetic retinopa-
thy (PDR). In each figure, the image on the right shows the
original retinograph, commonly used in medical practice. The
middle image represents the heatmap, also known as class
activation maps (CAM). These maps highlight critical regions
in an image responsible for specific predictions made by a
convolutional neural network (CNN), obtained by analyzing
the flow of gradients in a CNN layer. These maps demonstrate
how specific image regions influence the model’s predictions.

The Fig. 7 shows a case without diabetic retinopathy, where
the model uses the main blood vessels as key features to
classify a patient as healthy and without diabetic retinopathy.

The Fig. 8 presents an example of non-proliferative dia-
betic retinopathy (NPDR), also known as early-stage diabetic
retinopathy. This condition results in increased capillary per-
meability, microaneurysms, hemorrhages, exudates, and com-
plications such as macular ischemia and edema. Our model
accurately identifies these features in the three regions of
interest, depicted in the left image by the overlay of the original
image and the class activation map.

The Fig. 9 illustrates a case of proliferative diabetic
retinopathy (PDR), which develops after NPDR and is more
severe. It is characterized by the growth of new blood vessels,
often accompanied by fibrous tissue growth in front of the
retina. These new blood vessels can also form in the front
part of the eye, including the iris, contributing to severe vision
loss in proliferative retinopathy. These various symptoms are
well detected by our model, justifying the extensive regions of
interest given the presence of microvascularizations and clear
lesions in the example image represented by Fig. 9.

Examining the examples clearly shows the value of using
GradCAM to pinpoint specific areas of abnormality, enabling
the development of targeted detection and treatment proce-
dures. This advanced technology improves the accuracy and
efficiency of detecting retinopathy, leading to better patient
outcomes.

C. Boosting Model Performance through Ensemble Methods

In this section, our goal is to enhance the predictive
capabilities of our models. To achieve this, we will investigate
the collective capabilities of our trained models. Fig. 10
illustrates the conceptual diagram of our proposed approach,
leveraging the potential of our four trained models and the
generated GRAD-CAM to achieve a balance of precision and
interpretability.

Our goal is to enhance prediction accuracy and depend-
ability by leveraging the combined strengths of these models.
Fig. 11 illustrates the conceptual diagram of the proposed
ensemble learning prediction generation process. By adopting
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this strategy, we aim to utilize the variety and complementing
qualities of each model, resulting in a stronger and more
reliable prediction model.

This approach allows us to make informed decisions based
on the insights provided by each model, leading to more robust
predictions. Through this ensemble learning technique, we can
maximize the potential of our models and improve overall
performance.

Fig. 10. Conceptual diagram of the proposed approach.

Fig. 11. Conceptual diagram of the proposed ensemble learning prediction.

1) Improving accuracy with weighted ensemble predic-
tions: Within this section, we employed a weighted ensemble
of our four trained models to enhance their performance
in classifying diabetic retinopathy. The process operates as
follows: each model generates predictions on the test samples,
and we assess the correctness of each model. Subsequently,
these accuracies are utilized to allocate weights to the models,
with the more precise models being assigned larger weights.
The weights are normalized to ensure that their sum is equal
to one.

To get the ultimate forecast for each test sample, I employ
a weighted majority voting approach. The predicted result of
each model is multiplied by its corresponding weight, and
the class with the greatest weighted vote is selected as the
ultimate prediction. This approach leverages the advantages of
each individual model, leading to a more resilient and precise
total prediction.

Mathematically, this can be described as follows:

Let Mi denote the i-th model, and let pij be the prediction
of model Mi for sample j. The accuracy ai of model Mi

is used as its weight wi, where wi is normalized so that∑N
i=1 wi = 1.

The weighted vote vj(k) for class k for sample j is given
by:

vj(k) =

N∑
i=1

wi · I(pij = k) (1)

where, I is the indicator function, which is 1 if pij = k
and 0 otherwise.

The final prediction ŷj for sample j is:

ŷj = argmax
k

vj(k) (2)

The following Table II displays the precision of each
individual model as well as the collective ensemble model.
The findings reveal that the ensemble model obtained a greater
accuracy than any of the individual models, proving the
usefulness of the weighted ensemble technique.

TABLE II. PERFORMANCE METRICS OF INDIVIDUAL AND ENSEMBLE
MODEL

Model Precision Recall F1-Score Accuracy

Xception Model 0.892542 0.892663 0.892164 0.892663
Vgg Model 0.914305 0.914402 0.914229 0.914402
Inception Model 0.890399 0.890625 0.890181 0.890625
Densenet Model 0.937100 0.935462 0.935564 0.935462
Ensemble (Weighted Voting) 0.939495 0.939538 0.939275 0.939538

By adopting this weighted ensemble technique, the com-
bined model leverages the capabilities of each individual
model, leading to increased classification performance, as
indicated by the ensemble accuracy of 0.9395.

2) Advanced ensemble technique stacking generalization:
Stacking generalization is a sophisticated ensemble learning
technique designed to enhance predictive performance by in-
tegrating the outputs of numerous base models. Unlike simple
averaging or majority voting, stacking involves building a
meta-model to learn the best method to combine the predic-
tions of base models. This approach leverages the capabilities
of each individual model, leading to more accurate and robust
predictions.

The stacking process begins with training multiple base
models independently on the training data. These base models
can be of various types, or they can be the same type with
varying hyperparameters or training sets. Each model is trained
to optimize its performance on the given data, creating a
diverse set of models with unique strengths and limitations.

Once the base models are trained, the next stage is to
generate meta-features. This involves using the trained base
models to make predictions on the training set. The predictions
from each base model are put together, and if each model
outputs a probability for each class, these probabilities are used
as meta-features. For instance, in our classification problem
with three classes and four base models, each model will
output three probabilities per sample, resulting in a total of
12 meta-features per sample (4 models × 3 classes).

The collected meta-features are then used to train a new
model, known as the meta-model. The meta-model is trained
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on the meta-features generated from the training set, learning
how to combine the predictions of the basis models to create
the final prediction. Common choices for meta-models include
logistic regression, random forests, or another neural network,
etc. The meta-model aims to capture intricate relationships
between the base model predictions that simple averaging or
voting are unable to capture.

Finally, the trained meta-model is used to make final
predictions based on the meta-features of the test set. The
meta-model processes these meta-features and outputs the final
prediction for each sample. This final phase ensures that the
strengths of each base model are effectively combined to
produce the most accurate predictions.

In our application of this approach, we have leveraged
the four models we previously trained and utilized the meta-
characteristics generated by these retrained models to train
a set of meta-learners. Specifically, we investigated decision
trees, multi-layer perceptrons (MLP), Naive Bayes, k-nearest
neighbors (KNN), support vector machines (SVM), random
forests, and logistic regression. The results obtained from these
meta-learners are summarized in the table above. To analyze
and determine the best model among those evaluated, we need
to consider various factors such as accuracy, precision, recall,
and F1-score. Accuracy measures the overall correctness of the
model by calculating the ratio of correctly predicted instances
to the total instances. Precision is crucial when the cost of false
positives is high, as it indicates the proportion of true positive
predictions out of all positive predictions made by the model.
Recall, also known as sensitivity, is essential in scenarios
where false negatives are particularly costly, as it measures the
proportion of actual positives that are correctly identified. The
F1-score provides a balanced assessment by considering both
precision and recall, making it particularly useful when dealing
with imbalanced datasets. This comprehensive evaluation will
ensure that we identify the most effective model for our
specific application.

In order to acquire the findings represented in Table III,
we extensively fine-tuned the hyperparameters of each meta-
learner. By varying parameters such as learning rate, number
of estimators, kernel types, etc. we improved the performance
of each model to reach the best potential outcome. The fine-
tuning process comprises iterative testing and validation to
establish the highest performing meta-models.

For logistic regression, the optimal combination of hyper-
parameters was determined to be C = 10 and penalty = l2,
achieving an accuracy of 0.9436. Here, C controls the inverse
of the regularization strength, with smaller values indicating
stronger regularization, and penalty specifies the norm used
in the penalization .

In the case of the random forest, the best performance was
obtained with max depth = 20 and n estimators = 10,
resulting in an accuracy of 0.9341. The max depth parameter
limits the number of levels in each decision tree to prevent
overfitting, while n estimators defines the number of trees
in the forest.

For the support vector machine (SVM), using C = 10 and
a kernel = linear yielded the highest accuracy at 0.9450.
The C parameter is a regularization parameter, and the kernel

parameter specifies the kernel type used in the algorithm, with
“linear” indicating a linear kernel.

The k-nearest neighbors (KNN) model performed best with
n neighbors = 10 and weights = uniform, achieving an
accuracy of 0.9429. The n neighbors parameter determines
the number of neighbors to use, and the weights parameter
indicates how the influence of the neighbors is weighted, with
“uniform” meaning all neighbors are weighted equally.

The naive Bayes model, which did not require any hyper-
parameter tuning, reached an accuracy of 0.9212. Naive Bayes
models typically do not have tunable hyperparameters in their
basic form.

Lastly, the multi-layer perceptron (MLP) showed
optimal performance with activation = relu and
hidden layer sizes = (100, ), resulting in an accuracy
of 0.9450. The activation parameter specifies the activation
function for the hidden layer, with “relu” standing for
Rectified Linear Unit, and hidden layer sizes defines the
number of neurons in each hidden layer, with (100,) indicating
one hidden layer with 100 neurons.

The decision tree model achieved an accuracy of 0.9307
with max depth = 10. The max depth parameter limits the
number of levels in the tree, helping to prevent overfitting.

The KNN meta-learner scored the greatest accuracy of
0.9463, with good precision and F1-Scores across all classes,
indicating a well-balanced and robust performance. Logistic
Regression and Random Forest followed closely with accura-
cies of 0.9436 and 0.9429, respectively, indicating equal per-
formance in precision, recall, and F1-Score. Naive Bayes and
Decision Tree models revealed lower accuracies of 0.9212 and
0.9192, with higher variability in precision between classes.

In summary, stacking is a potent strategy in ensemble learn-
ing that may considerably boost prediction performance. By
training numerous base models and a meta-model to integrate
their outputs, stacking effectively exploits the capabilities of
each model as what was proved in our experience. the greatest
accuracy of our base models was of 0.9355 and were pushed
to 0.9463 performed by the KNN meta-learner resulting to a
more precise and reliable predictions wich was the purpose of
this investigation .

IV. EXPERIMENTAL RESULTS AND COMPREHENSIVE
DISCUSSION

A. Experimental Results

Our investigation first started by structuring the study area
in terms of three classes of important relevance in clinical
practice: NDR, NPDR and PDR, followed by the training
of a basic convolutional neural network (CNN) using Keras
to test its performance on retinal radiographs downsized to
112x112x3. The CNN design featured three convolutional
layers with 64 filters, each employing a 3x3 kernel size and
Rectified Linear Unit (ReLU) activation functions. This was
followed by 2x2 max-pooling layers and two completely linked
layers, each with 128 units. We applied dropout regularization
with a dropout rate of 0.5 to avoid overfitting. The model
was constructed using categorical crossentropy loss as the loss
function and employed the Adam optimizer with a learning
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TABLE III. PERFORMANCE METRICS OF META-LEARNERS IN ENSEMBLE APPROACH

Meta-Learner Meta-Model Accuracy Precision (Class 0) Precision (Class 1) Precision (Class 2) Recall F1-Score
Logistic Regression 0.943614 0.962046 0.932886 0.929577 0.943614 0.937721

Random Forest 0.942935 0.954323 0.936242 0.934046 0.942935 0.937622
SVM 0.942255 0.958746 0.933333 0.929329 0.942255 0.937170
KNN 0.946332 0.960461 0.937086 0.936057 0.946332 0.941698

Naive Bayes 0.921196 0.962712 0.802778 0.955939 0.921196 0.912088
MLP 0.940897 0.954173 0.935811 0.929204 0.940897 0.935344

Decision Tree 0.919158 0.919094 0.944637 0.906195 0.919158 0.916664

rate set to 0.001. To improve the training process, we imple-
mented callbacks such as ReduceLROnPlateau, EarlyStopping,
and ModelCheckpoint. Training ran for 80 epochs, including
validation on a unique test set to measure the model’s gener-
alization.

The results of our initial model training, depicted in Fig. 5,
showed a consistent increase in training accuracy, surpassing
90% by the end of the training period. However, the vali-
dation accuracy showed notable fluctuations before stabiliz-
ing at around 75%. Concurrently, the training loss steadily
decreased, while the validation loss remained relatively high
and variable, suggesting early signs of overfitting due to the
limited dataset size. To mitigate this, we utilized pretrained
models for transfer learning by adapting Xception, VGG16,
InceptionV3, and DenseNet121 for a three-class classification
task. Each model was initialized with ImageNet weights and
fine-tuned by replacing the original classification head with
a dense layer of size 3, followed by a softmax activation.
Training was conducted using the Adam optimizer with a
learning rate of 0.001, a batch size of 32, a dropout rate of
0.5, and L2 regularization with a lambda of 0.01. We employed
ReduceLROnPlateau, EarlyStopping, and ModelCheckpoint to
optimize the training process.

The training evolutions of these models, depicted in Fig.
6, revealed that VGG16 achieved a peak validation accuracy
of 91.44%, DenseNet121 reached the highest validation accu-
racy of 93.55%, InceptionV3 attained 92.80%, and Xception
achieved 92.35%. These results underscore the efficacy of
transfer learning in leveraging pretrained models for special-
ized classification tasks. Subsequently, we integrated Gradient-
weighted Class Activation Mapping (Grad-CAM) to improve
the interpretability of the models predictions. Grad-CAM gen-
erates heatmaps that highlight regions of input images most
influential in the model’s decision-making process. Fig. 7, 8,
and 9 show Grad-CAM outputs for various stages of diabetic
retinopathy. These show where the model’s focus is and help
in understanding and confirming its predictions.

To further enhance the predictive capabilities of our mod-
els, we explored ensemble methods. We employed a weighted
ensemble of our four trained models, allocating weights based
on each model’s accuracy. The combined model achieved an
accuracy of 93.95%, outperforming the individual models. We
explored stacking generalization, an advanced ensemble learn-
ing technique that combines the outputs of multiple base mod-
els through a meta-model. We trained several meta-learners,
including decision trees, multi-layer perceptrons, Naive Bayes,
k-nearest neighbors (KNN), support vector machines (SVM),
random forests, and logistic regression. The KNN meta-learner
achieved the highest accuracy of 94.63%, showcasing superior

performance in precision and F1-scores across all classes.
Logistic regression and random forest followed closely, with
accuracies of 94.36% and 94.29%, respectively.

The workflow outlined in our study, as illustrated by the
flowchart in Fig. 12, encapsulates the systematic approach we
employed to optimize diabetic retinopathy classification. By
combining data preprocessing, transfer learning with multiple
deep learning models, and advanced ensemble methods, we
were able to progressively enhance model accuracy and robust-
ness. The flowchart also highlights the use of interpretability
tools like Grad-CAM, which provided critical insights into the
model’s decision-making process. This visual representation
underscores the complexity and integration of the methodolo-
gies discussed, offering a clear, step-by-step view of how each
component contributed to the overall success of our approach.
This structured methodology not only improved classification
performance but also ensured that our models are interpretable
and clinically relevant, paving the way for their potential
application in real-world settings.

Fig. 12. Workflow for diabetic retinopathy classification using deep learning
and ensemble techniques.

B. Discussion

The outcomes of our experiments were the materialization
of our conceptual method illustrated in Fig. 10, aiding med-
ical professionals in achieving both precise classification of
diabetic retinopathy and visual assistance, thereby providing
dual support for clinical decision-making.

Our experiments yielded several important discoveries that
can be summarized as follows:

1) Transfer learning effectiveness: Pretrained models, par-
ticularly DenseNet121, substantially enhanced classification
performance compared to the initial base model. This demon-
strates the value of utilizing pretrained networks.
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2) Enhanced performance through ensemble methods:
Both weighted ensemble and stacking generalization tech-
niques effectively boosted the predictive accuracy of our
models. Notably, the KNN meta-learner achieved the highest
performance, showcasing the power of combining multiple
models to capture diverse patterns in the data.

3) Interpretability through Grad-CAM: The Grad-CAM
visualizations provided meaningful insights into the decision-
making process of the models, enhancing the interpretability
and trustworthiness of the predictions.

V. CONCLUSION AND PERSPECTIVES

In conclusion, our comprehensive approach integrated
transfer learning, Grad-CAM for interpretability, and ensemble
methods, resulting in significant improvements in the per-
formance and reliability of our predictive models. Testing
demonstrated that pre-trained models, advanced visualization
techniques, and sophisticated ensemble strategies markedly
enhance deep learning models for classifying diabetic retinopa-
thy. This methodology not only improved model accuracy but
also strengthen reliability.

Overall, our approach underscored the importance of lever-
aging diverse deep learning techniques to elevate the perfor-
mance of predictive models in medical image classification.
By incorporating these methods, we achieved substantial gains
in accuracy and reliability for detecting diabetic retinopathy.
The combination of these techniques not only enhances their
applicability in identifying abnormalities but also paves the
way for discovering new diseases and developing treatment
strategies. Advanced visualization techniques empower medi-
cal professionals to visually cluster abnormalities, ensuring the
development of robust and dependable systems that minimize
flaws inherent in automated methods.
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