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Abstract—Breast ultrasound (BUS) imaging is widely utilized
for detecting breast cancer, one of the most life-threatening can-
cers affecting women. Computer-aided diagnosis (CAD) systems
can assist radiologists in diagnosing breast cancer; however, the
performance of these systems can be degrade by speckle noise,
artifacts, and low contrast in BUS images. In this paper, we
propose a novel method for breast tumor classification based on
the dynamic pooling of BUS sequences. Specifically, we introduce
a weighted dynamic pooling approach that models the temporal
evolution of breast tissues in BUS sequences, thereby reducing
the impact of noise and artifacts. The dynamic pooling weights
are determined using image quality metrics such as blurriness
and brightness. The pooled BUS sequence is then input into
an efficient hybrid vision transformer-CNN network, which is
trained to classify breast tumors as benign or malignant. Exten-
sive experiments and comparisons on BUS sequences demonstrate
the effectiveness of the proposed method, achieving an accuracy
of 93.78%, and outperforming existing methods. The proposed
method has the potential to enhance breast cancer diagnosis and
contribute to lowering the mortality rate.
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I. INTRODUCTION

Breast cancer in women is one of the most life-threatening
cancers worldwide [1], [2]. Early detection significantly re-
duces the mortality rate, and mammography, an X-ray imag-
ing technique of the breast, remains the gold standard for
population-based breast cancer screening. Despite its effective-
ness in detecting breast cancer, mammography has limitations,
including low sensitivity and high false-positive rates, where
normal cases are incorrectly classified as cancerous. To address
these limitations, alternative imaging technologies such as
magnetic resonance imaging (MRI), 3D tomosynthesis, and
ultrasound are often used [3].

Breast ultrasound (BUS) imaging has been effectively used
in the detection and diagnosis of breast cancer, specially in
the case of women having dense breast tissue or with cases
who are at high risk of developing breast cancer [4], [5]. The
main merits of BUS imaging are non-invasive and non-ionizing
technology, widely available and cost-effective solution, and
capable of producing real-time images, which can enhance
breast cancer detection sensitivity.

In the last two decades, various computer-aided detection
(CAD) systems have been developed for breast cancer de-
tection. In particular, artificial intelligence (AI) based CAD

systems have helped in detecting breast cancer early by assist-
ing radiologists in interpreting medical images, including BUS
images [6]. AI-powered CAD systems can analyze images
quickly and accurately, detecting subtle abnormalities and
highlighting region of interest (ROIs), thereby boosting the
sensitivity and specificity of breast cancer detection. It should
be noted that BUS imaging has some limitations, notably poor
contrast, speckle noise, and shadowing artifacts, which can
degrade image quality and complicate interpretation (see Fig.
1). These issues make it challenging to differentiate between
various tissues and structures. Additionally, BUS is operator-
dependent, with image quality varying based on the skill and
experience of the sonographer. This highlights the need for
effective image processing, noise mitigation techniques, and
robust AI-based image classification models, to improve the
performance of these CAD systems in breast cancer detection.

In recent years, deep learning has significantly enhanced
the automated analysis of BUS images over the past decade
by extracting powerful representations from them. This has
led to the development of several deep-learning aid (DLA)
tools for detecting breast cancer and distinguishing between
benign and malignant tumors. Recently, several DLA tools
has been proposed, for instance, Ellis et al. of [7] explored
deep learning as a classification tool for detecting cancerous
ultrasound breast images, aiming to develop a simple, mobile-
based classifier. With ResNet50, the CAD system achieved
an accuracy of approximately 64% with minimal images, and
up to 78% when pretrained. The authors of [8] introduced
a novel few-shot learning approach for classifying ultrasound
breast cancer images, leveraging the power of meta-learning
techniques. Specifically, the authors employed prototypical net-
works and model-agnostic meta-learning (MAML) algorithms
to enable our model to learn from limited data and adapt
to new, unseen breast cancer images. Lanjewar et al. [9]
integrated three widely used pretrained Convolutional Neural
Network (CNN) models, namely, MobileNetV2, ResNet-50,
and VGG16 with a long short term memory (LSTM) to extract
features from BUS images. The authors used the synthetic
minority over-sampling with Tomek (SMOTETomek) method
in order to balance the number of extracted features. With the
VGG16 model, they achieved an F1 score of 99.0%, Kappa
coefficient of 98.9%, and an area under the curve (AUC) of
1.0.

The majority of existing studies have focused on clas-
sifying breast tumors using only one ultrasound image per

www.ijacsa.thesai.org 1099 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

tumor, whereas some studies, such as [10], [11], have utilized
BUS sequences for detecting breast cancer malignancy. In
this paper, we consider the quality of BUS images when
designing the classification model. In particular, we propose
a novel approach for breast tumor classification utilizing dy-
namic pooling of BUS image sequences. Specifically, this new
method captures the temporal evolution of breast tissues in
BUS sequences, effectively mitigating the influence of noise
and artifacts. The dynamic pooling weights are computed
based on image quality metrics, including blurriness and
brightness. The resulting pooled BUS sequence is processed by
the MobileViTv3 network, which is trained to classify breast
tumors as either benign or malignant.

The remainder of this research is organized as follows:
Section II reviews related work on breast lesion classification
in ultrasound images. Section III details the proposed method.
Section IV presents and discusses the experimental results. Fi-
nally, Section V concludes the study and provides suggestions
for future work.

II. RELATED WORK

It should be noted that most existing breast cancer CAD
systems are trained to receive one ultrasound image (OUI) to
determine whether it is benign or malignant [12], [13], [14],
[15]. For instance, He et al. [16] proposed a new method
for breast cancer classification using a wavelet-based vision
transformer network. By incorporating the discrete wavelet
transform (DWT) into the network input, we enhance the
neural network’s receptive fields, enabling the capture of sig-
nificant features in the frequency domain. The proposed model
effectively captures intricate characteristics of breast tissue,
allowing for accurate breast cancer classification with high
precision and efficiency. We evaluated the model using two
breast tumor ultrasound datasets, comprising 780 cases from
Baheya hospital in Egypt and 267 patients from the UDIAT
Diagnostic Centre of Sabadell in Spain. The results show
that the proposed transformer network achieves outstanding
performance in breast cancer classification, with an AUC
scores of 0.984 and 0.968 on both datasets.

Some recent studies showed that BUS sequences may
give better detection results. For instance, the authors of [11]
proposed a four-stage CAD system: super-resolution calcula-
tion, ROI extraction, feature extraction, and classification. The
authors used five manually designed features, derived from
various image analysis techniques, including GLCM, LBP,
HOG, phase congruency-based LBP, and pattern lacunarity
spectrum, to classify breast tumors into malignant and benign
categories from a BUS image. However, this conventional ap-
proach has several limitations, including being computationally
time-consuming, less resilient, and requiring specific feature
choices and preprocessing activities.

To handle this issues mentioned above, recent studies
employed deep learning networks for feature extraction. For
instance, Yang et al. [17] presented a temporal sequence dual-
branch network (TSDBN) breast cancer classification based
on BUS and contrast-enhanced ultrasound (CEUS) sequences.
It has two branches: one for BUS sequences and the other
for CEUS sequences. In the branch of the BUS sequences,
the ResNeXt-18 is employed. In the other branch, temporal

sequence regression and a shuffle temporal sequence mecha-
nisms are employed to enhance the temporal features of CEUS
sequnces. They used a private dataset to evaluate their method.
The dataset has 268 samples: 146 malignant and 122 benign.
For each case, the BUS and CEUS sequences were recorded.
TSDBN achieved an accuracy of 92.2%. One of the main
limitation of this method is that it requires US and CEUS
sequences for the same cases, which may not be available.
Also, it does not consider the effect of noise and artifacts in
US and CEUS sequences in the classification results. The study
of [18] used 3D ResNet-50 to classify breast lesions in BUS
sequences and 2D ResNet-50 to classify the same lesions in
static images, finding that the BUS sequences lead to a higher
AUC value of 0.969.

Han et al. [19] presented a ResViT model that combines
residual neural networks with vision transformer to extract fea-
tures from CEUS sequences, and employed a temporal segment
network (TSN) to aggregate the spatio-temporal features of all
frames in the input sequences. They achieved an accuracy of
78.79% with a private CEUS sequence dataset. Zhang et al.
[20] proposed a segment-attention generator (SAG) module
that can help deep learning classification models to focus
on BUS sequence segments that have clear appearances for
classifying breast lesions. The study of [10] introduced a deep-
learning-based radiomics approach utilizing BUS sequences,
comprising three key components. The ConvNeXt network,
a deep CNN trained in the vision transformer style, is em-
ployed for radiomic feature extraction. An efficient pool-
ing mechanism is also proposed to combine the malignancy
scores of each breast US sequence frame, based on image-
quality statistics. Finally, visual interpretations are provided
to facilitate understanding. However, this methods achieved
acceptable results, there is a big room for further enhancing
the classification accuracy.

As mentioned earlier, a common limitation of existing
studies is that they neglect the temporal information and
image quality of BUS videos when developing classification
models. Moreover, they rely on a single BUS image to
develop their methods. However, the noisy nature of BUS
images, the similarity between normal and abnormal tissues,
and the degradation of image quality due to dense breast fat
and glandular tissue, which attenuate ultrasonic waves, make
accurate diagnosis challenging. These issues pose a significant
challenge to building a robust BUS image classification model.
The proposed method consider that the temporal information
embedded in the BUS sequences and mitigate the effect of the
noise utilizing the the weighted dynamic pooling technique.

III. MATERIAL AND METHOD

A. Dataset

The proposed CAD system was developed and evaluated
using a database consisting of 31 malignant and 28 benign
BUS sequences, with each sequence corresponding to a single
patient. The BUS sequences created by the Engineering De-
partment of Cambridge University1. This dataset is a subset of
a larger clinical database of ultrasonic radiofrequency strain
imaging data, which was created by the Engineering De-
partment at Cambridge University. The dataset includes 3911

1http://mi.eng.cam.ac.uk/research/projects/elasprj/
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Fig. 1. Examples of BUS images having malignant tumors and benign lesions with various artifacts and challenges like poor contrast, ambiguous lesion or
tumor boundaries, and speckle noise.

images containing benign tumors and 5245 images having
malignant tumors.

B. Proposed Method

Fig. 2 presents the key components of the proposed
method: 1) generating dynamic BUS image from the input
BUS sequence, 2) applying transfer learning on MobileViTv3
[21] to extract local and global features from BUS images
to differentiate between benign and malignant tumors, and 3)
employing different visual interpretation methods to explain
the decisions of the classification model.

1) Dynamic BUS sequence pooling: Let S =
[s1, s2, . . . , sM ] is an input BUS sequence, where si

qt =
1

W

t+W∑
i=t

si. (1)

where W is a time window.

TVA can be expressed as follows:

qt =

1
t

t∑
i=1

si

∥ 1
t

t∑
i=1

si∥
. (2)

After obtaining the smoothed version of BUS images, a
rank-pooling method can be employed to learn the relative
ranks of the BUS images in the input sequence, for instance
qn comes after qn−1, qn−1 comes after qn−2, and so on. This
relative ranks can expressed as follows:

qn ≻ qn−1 ≻ qn−2 . . . q1 (3)

The rank-pooling technique is used to learn pairwise linear
functions ρ(qt;α), where α ∈ RD. The ranking score of qt is
computed as ρ(qt;α) = αT .qt.

The parameters α of ρ(qt;α) are optimized using the
following objective function [22]:

argmin
α

1

2
∥α∥2 + δ

∑
∀i,j,qi≻qj

θij , s.t. αT (qti − qtj ) ≥ 1− θij ,

θij ≥ 0,
(4)

In this expression, δ stands for the regularization parameter
and θ stands for the tolerance margin. The term {αT (qti −
qtj ) ≥ 1 − θij} represents the the constraint of the objective
function ∀ti, tj qti ≻ qtj ⇐⇒ αT .qti ≻ αT .qtj .

2) Image quality-aware dynamic BUS image generation:
The quality of the BUS images can considered when generat-
ing the dynamic BUS image from the input BUS sequence by
modifying Eq. 1 and Eq. 2 as follows:

qt =
1

W

t+W∑
i=t

ωi.si. (5)

qt =

1
t

t∑
i=1

ωi.si

∥ 1
t

t∑
i=1

ωi.si∥
. (6)

where ωi represents the quality of the th BUS image in the
input sequence. The value of wi may be 0 or 1, where a value
of 1 denotes that the BUS image quality exceeds the thresholds
of the BUS image quality metrics.

In this study, two efficient general-purpose image quality
assessment metrics are used to estimate the quality of BUS
images, namely the brightness and blurriness [23], [24], [25].

BUS image blurriness metric: Here, we employ the image
blurriness measure presented in [24], where a Gaussian filter
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Fig. 2. Overview of the proposed method which consists of three consecutive steps: dynamic BUS sequence pooling, feature extracting using MobileViTv3 and
malignancy classification.

is used to suppress the noise from the input image. Let I is a
BUS image, the Gaussian filter can be written as:

f(a, b) =
1

(2πσ2)
e−

(a2+b2)
2σ2 , (7)

Here, σ is the standard deviation of the Gaussian distribution,
and a and b are the coordinates of I .

After suppressing the noise, the variance of Laplacian
operator is computed and used as a blurriness score. The 2D
Laplacian operator can be expressed as follows:

∇2I(a, b) =
∂2I

∂a2
+

∂2I

∂b2
, (8)

BUS images with a blurriness score lower than a threshold
are considered as blurry images. Following [24], the blurriness
threshold is set to the average blurriness value of benign and
malignant BUS images from the training dataset.

BUS image brightness/darkness metric: In this study,
we employ the brightness estimation algorithm proposed by
Bezryadin et al. [25] as a BUS image quality metric. Follow-
ing the study of [10], we selected the range from 10 to 30 for
the brightness score.

3) Feature extraction: The main powerful approaches to
extract features from images are CNNs and ViTs. In the context
of breast tumors in ultrasound images, previous studies such
as [9], [7] focused in the use of CNN models, [26], [27]
used vision transformers, while [28] combined the decisions of
different CNN and vision transformers. ViTs produce features
representing global information in the images, due to their
self-attention mechanism. CNNs extract local features in the
images. Several hybrid models have emerged, integrating the
strengths of both CNNs and ViTs into a single architecture. By
combining the self-attention mechanism of ViTs, which excels
at capturing long-range dependencies, with the local kernels of
CNNs, which are adept at extracting local information, these
models aim to achieve superior performance on various vision
tasks. In order to extract robust descriptors from BUS images,
in this paper we employ one of the most effective deep learning
model that combines CNNs and ViTs, namely, MobileViTv3
[21].

Fig. 3 shows the block diagram of the MobileViTv3 that
contains three blocks: local representation (LR) block, global
representation (GR) block, and fusion block. The LR block

(CNN components) consists of two layers: a 3× 3 depthwise
convolution layer and a 1×1 convolution layer. The GR block
(ViT components) includes N linear transformations (self-
attention). The fusion block uses 1 × 1 convolution layer to
fuse the local and global features.

This study involves adapting and training various self-
attention based deep vision transformer architectures to extract
robust features, which can classify breast cancers as benign
or malignant and predict the malignancy score of each input
ultrasound image. By leveraging the transfer learning theory,
the pre-trained vision transformer network and its parameters
can be fine-tuned and applied to the target breast ultrasound
dataset, enabling effective knowledge transfer. A support vec-
tor machine (SVM) classifier with a radial basis function
(RBF) is used for classification.

4) Visual interpretation: To produce visual interpreta-
tions (explanations) for the proposed breast tumor classifi-
cation model, this study employs the Grad-CAM (Gradient-
weighted Class Activation Mapping) [29] and Local Inter-
pretable Model-agnostic Explanations (LIME) techniques [30].
Let’s denote the input image as I , the class of interest (benign
or malignant) as c, and the output probability of the class
as P (c|I). The goal of Grad-CAM is to generate a heatmap
Lc
Grad−CAM that highlights the important regions of each BUS

image that contribute to the prediction of the proposed model.

LIME is a model-agnostic method, which works by gener-
ating a dataset of similar instances around a specific instance
for which we want to understand the model’s prediction. Let’s
denote the original machine learning model as f , and the
instance for which we want to explain the prediction as x.
LIME generates a dataset of m perturbed instances around
x, denoted as x′, by randomly sampling from a distribution
π(x′|x). The perturbed instances x′ are then used to generate a
new dataset D = (x′

1, f(x
′
1)), . . . , (x

′
m, f(x′

m)). Next, LIME
trains an interpretable model g (e.g. a linear model) on the
dataset D to approximate the behavior of the original model
f locally around x.

C. Evaluation metrics

To assess the performance of the proposed method for
breast tumor classification in BUS sequences, we employ
four well-known evaluation metrics, namely, the accuracy,
precision, recall, and F1-score. The mathematical expression
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Fig. 3. Overview of the block diagram of the MobileViTv3 that consists of three interconnected blocks: LR, GR, and fusion.

of each evaluation metric is given below:

Accuracy =
TP + TN

P +N
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-score =
TP

TP + 0.5(FP + FN)
(12)

In these expressions, TP and TN denote the number of
BUS sequences having malignant and benign tumors that have
been successfully detected by the proposed method, respec-
tively. Conversely, FN stands for the number of malignant
tumors wrongly identified by the proposed method as benign
tumors. FP stands for the number of benign tumors wrongly
identified by the proposed method as malignant tumors.

IV. EXPERIMENTAL RESULTS

A. Training Details

As the BUS images varied in size, all were resized to
224×224 pixels. The AdamW optimizer was employed with
an initial learning rate of 0.001, a weight decay of 0.01,
and a cosine learning rate scheduler, using binary cross-
entropy loss to optimize the model. The training process
was conducted with a batch size of two images over 50
epochs. To augment the training data, the input BUS sequences
were split into overlapping sub-sequences with a window size
of 20, generating multiple dynamic BUS images from each
sub-sequence. Additional data augmentation techniques were
applied, including 90-degree image rotation, 0.2 image scaling,
horizontal flipping (with a probability of 0.5), median filter
blurring, and contrast-limited adaptive histogram equalization.
All models were developed in Python using the PyTorch
framework and trained on an NVIDIA GeForce GTX 1070Ti
GPU with 8 GB of RAM.

B. Results

Table I compares various backbone feature extractors,
including CNNs, vision transformers, and hybrid models.
MobileViTv3-S emerges as the top-performing model, sig-
nificantly outperforming others with an accuracy of 89.33%,
which is more than 1.2% higher than the second-best model,
ConvNeXt V2. This demonstrates the strength of hybrid ar-
chitectures like MobileViT, which combine the local feature-
capturing ability of CNNs with the global context awareness
of transformers. Despite its depth, ResNet-150 performs good
but does not achieved similar results as MobileViTv3-S, rec-
ommending that deeper CNNs do not necessarily yield better
performance in this task.

The transformer-based models, DEiT and BEiT v2, show
satisfactory performance, indicating that transformers may
require more fine-tuning for optimal results. XCiT performs
the weakest, further highlighting the limitations of transformers
without additional optimization. In contrast, the MobileViTv3
family, particularly MobileViTv3-S, shows the advantage of
hybrid architectures, offering the best balance between effi-
ciency and accuracy. Even the smaller versions, MobileViTv3-
XS and XXS, perform well, making them suitable for resource-
constrained situation while still providing competitive perfor-
mance.

Table II presents the affect of various smoothing techniques
on the performance of the proposed method for classifying
breast ultrasound images into benign and malignant. Firstly,
without applying any smoothing, the model achieved satisfac-
tory results in classifying between the two types of lesions.
When the MA smoothing technique was applied, there was a
slight improvement in the model’s ability to accurately classify
the ultrasound images.

However, the most important advancement was observed
when the TVA smoothing technique employed. TVA leads to
a significant improvement in the classification performance,
enhancing the accuracy, precision, recall, and F1-score by
approximately 2%. This suggests that TVA allows the model
to more effectively capture and utilize the subtle variations
in ultrasound imaging data, which is critical for differentiating
between benign and malignant lesions. TVA’s ability to smooth
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TABLE I. RESULTS OF THE PROPOSED METHOD WITH VARIOUS BACKBONE FEATURE EXTRACTORS WITHOUT SMOOTHING

Method Accuracy Precision Recall F1-score
ResNet-152 [31] 85.91 85.18 84.66 84.91
MobileViTv3-S [21] 89.33 88.90 88.79 88.84
MobileViTv3-XS [21] 86.55 84.61 84.02 84.31
MobileViTv3-XXS [21] 83.76 81.97 80.35 81.15
ConvNeXt V2 [32] 88.10 88.22 86.05 87.12
DEiT [33] 86.75 85.82 84.95 85.38
BEiT v2 [34] 85.46 84.24 83.74 83.98
XCiT [35] 83.67 82.54 81.78 82.15

the data while preserving key features seems to help the
model focus on more relevant regions, thus improving overall
diagnostic accuracy and reducing the risk of misclassification,
which is crucial in breast cancer detection.

TABLE II. RESULTS OF THE PROPOSED METHOD WITH DIFFERENT
SMOOTHING METHODS

Method Accuracy Precision Recall F1-score
W/o smoothing 89.33 88.90 88.79 88.84
MA 89.56 88.94 88.86 88.89
TVA 91.58 90.76 90.11 90.43

Table III compares the performance of the proposed
method with and without the use of quality weights, evaluating
key metrics. The inclusion of quality weights clearly improves
performance across all metrics. When quality weights are not
applied, the method achieves an accuracy of 91.58%, with
a precision of 90.76%, recall of 90.11%, and F1-score of
90.43%. These are strong results, indicating that the model
can effectively make predictions, but there is room for im-
provement in its ability to generalize and balance precision
and recall.

TABLE III. RESULTS OF THE PROPOSED METHOD WITH AND WITHOUT
QUALITY WEIGHTS

Method Accuracy Precision Recall F1-score
w/o quality weights 91.58 90.76 90.11 90.43
with quality weights 93.78 93.65 92.94 93.29

When quality weights are introduced, the performance
improves substantially, with accuracy increasing to 93.78%, a
significant boost over the baseline. Similarly, precision rises
to 93.65%, recall to 92.94%, and the F1-score to 93.29%.
This improvement can be attributed to the model’s ability
to assign higher importance to more informative lesion or
tumor related features during training, resulting in more refined
feature extraction and better classification outcomes. The use
of quality weights enhances the model’s ability to focus on
higher-quality data, leading to better overall predictions and
higher consistency in its results. Fig. 4 shows the area under
the receiver operating characteristic (AUROC) scores of 0.94
and 0.97 for the model without and with quality weights,
respectively.

Fig. 5 shows the explainability of the proposed model using
GradCam and LIME. The red refers to a higher probability of
the presence of lesion or tumor, while the blue represents a
lower probability of the existence of background region. Based
on visual inspection, the model correctly identified both benign
lesions [Fig. 5(a), (b)] by focusing on hypoechoic regions.
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Fig. 4. The AUROC curves of the proposed method with and without quality
weights.

Additionally, small tumors [Fig. 5(c), (d)] with ambiguous
boundaries were accurately classified as malignant, with the
model highlighting critical regions while ignoring background
pixels.

C. Comparisons with Related Methods and Discussion

Table IV compares the performance of the proposed
method with an existing method from the literature, specifically
the method from [10]. The proposed method achieves the
highest performance across all metrics, with an accuracy of
93.78%, precision of 93.65%, recall of 92.94%, and F1-score
of 93.29%. These results demonstrate a clear improvement
over the existing method, which, while still effective, yields
slightly lower accuracy (91.66%) and F1-score (92.33%).

The improved performance of the proposed method can
be attributed to its ability to better capture important features
and balance precision and recall. The higher F1-score indicates
that the proposed method handles the trade-off between preci-
sion and recall more effectively, resulting in more accurate
and reliable predictions. In comparison, while [10] method
performs well, it falls short in terms of overall accuracy and
F1-score, suggesting that the proposed method offers a more
refined approach to the problem.
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Image GradCam LIME
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Fig. 5. Explanation of the proposed model using Grad-CAM [29] and LIME [30] methods. (a,b) benign cases, and (c,d) malignant cases.

TABLE IV. STATE-OF-THE-ART RESULTS COMPARISON

Method Accuracy Precision Recall F1-score
Proposed 93.78 93.65 92.94 93.29
[10] 91.66 93.05 92.69 92.33
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V. CONCLUSION AND FUTURE WORK

This paper presents a novel approach to breast tumor classi-
fication using dynamic pooling of BUS sequences, combining
the strengths of both CNN and transformer architectures. By
incorporating weighted dynamic pooling based on image qual-
ity metrics, such as blurriness and brightness, our method ef-
fectively mitigates the impact of noise and artifacts commonly
found in BUS images. Comprehensive experiments demon-
strate that our approach, particularly when using MobileViTv3-
S, significantly outperforms existing methods, achieving an
accuracy of 93.78%. The inclusion of quality weights further
enhances classification performance, highlighting the impor-
tance of prioritizing high-quality image frames. Not only does
our model achieve higher accuracy, but it also provides better
interpretability through Grad-CAM visualizations, facilitating
the understanding of tumor characteristics. The results suggest
that our approach can offer a robust, reliable, and interpretable
solution for breast cancer detection in clinical settings.

One limitation of this study is the reliance on a single
BUS video sequence dataset to evaluate the efficacy of the
proposed method. Additionally, the small sample size of the
dataset presents another limitation.

Future work will focus on integrating additional ultrasound
modalities (e.g. BUS and CEUS) with the proposed method
to further enhance classification accuracy. Additionally, larger
and more diverse datasets will be collected to improve the
robustness and performance of the developed classification
models.
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