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Abstract—Image dehazing is a crucial preprocessing step in
computer vision for enhancing image quality and enabling many
downstream applications. However, existing methods often do not
accurately restore hazy images while maintaining computational
efficiency. To overcome this challenge, we propose ERCO-Net
a new fusion framework that combines edge restriction and
contextual optimization methods. By using boundary constraints,
ERCO-Net extend the boundaries that help in protecting the
edges and structures of an image. Contextual optimization
impacts the final quality of the dehazed image by enhancing
smoothness and coherence. We compare ERCO-Net with con-
ventional approaches such as dark channel prior (DCP), All-
in-one dehazing network (AoD), and Feature fusion attention
network (FFA-Net). The comparative evaluation highlights the
effectiveness of the proposed fusion method, providing significant
improvement in image clarity, contrast, and colors. The combi-
nation of edge restriction and contextual optimization not only
enhances the quality of dehazing but also decreases computa-
tional complexity, presenting a promising avenue for advancing
image restoration techniques. The source code is available at
https://github.com/FatimaAyub12/Image-Dehazing-.

Keywords—Image dehazing; edge restriction; contextual opti-
mization; transmission map estimation; haze removal

I. INTRODUCTION

Enhancing visibility in foggy or hazy conditions is a crucial
objective in image processing, with picture dehazing playing
a key role in achieving this improvement [1], [2]. Dehazing
techniques improve image clarity and expose latent details
by lowering the effect of ambient scattering. These methods
quantify and eliminate haze-generated degradation using math-
ematical models while analysing pixel intensities and colours
[3]. Popular techniques for enhancing image contrast and
visibility include the dark channel prior [4] and atmospheric
light estimation [5]. Where effective analysis and decision-
making depend on clear, detailed images, dehazing finds uses
in many disciplines including computer vision, surveillance
and remote sensing. [6]. An illustration of a hazy image and
its corresponding dehazed version is presented in the Fig. 1.

Early methods for haze reduction mostly depended on
either several views of the same image or extra depth informa-
tion. Notable contributions in this field are shown by several
papers, including [2], [1], [3], [4]. Particles in the atmosphere
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partially polarise light as Schechner et al. [7] noted. The
researchers used this finding to propose a method for quickly
reducing haze using polarisation to take two pictures from
different angles.

Fig. 1. Example of the image with haze (left) and dehazed image (right).

However, despite the advancements in this field, existing
dehazing methods often struggle with maintaining a balance
between image restoration quality and computational effi-
ciency. Many of these techniques tend to either oversimplify
the haze model or fail to preserve critical image details, such
as edges and textures, resulting in suboptimal dehazed images
with artifacts and color distortions. Furthermore, the increas-
ing complexity of deep learning-based approaches introduces
significant computational overhead, making real-time dehazing
a challenging task Single image dehazing poses a challenge
due to its inherent lack of complete information, making it an
under-constrained problem. To address this, the conventional
approach involves integrating additional priors or constraints.
This paper delves into this notion by establishing an inherent
boundary constraint concerning scene transmission. For the
purpose of obtaining the illusive transmission parameters, an
optimisation framework is constructed using this restriction
alongside with a weighted L1 norm-based contextual optimisa-
tion among neighbouring pixels. ERCO-Net operates on a set
of fundamental assumptions and demonstrates the capability
to produce high-quality, haze-free images with accurate color
representation and intricate edge details. Summarizing, the
main contributions of this paper are:
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• Firstly, we introduce a novel constraint concerning
scene transmission. This straightforward constraint,
with its clear geometric interpretation, proves remark-
ably effective in image dehazing.

• Secondly, we propose a contextual optimization
method that allows us to integrate a filter bank into the
image dehazing process. These filters play a crucial
role in reducing image noise and enhancing significant
image features, such as abrupt edges and corners.

• Finally, we present an efficient optimization scheme,
enabling rapid dehazing of large-sized images.

The remainder of this paper is organized as: Section
II presents a detailed literature review, highlighting existing
approaches to image dehazing. Section III introduces the
proposed ERCO-Net framework, including edge restriction and
contextual optimization techniques. Section IV discusses the
methodology behind the edge restriction from the radiance
cube and contextual regularization. Section V provides a
comprehensive analysis of experimental results and a compar-
ison with other state-of-the-art methods. Finally, Section VI
concludes the paper with a summary of findings and future
research directions.

II. LITERATURE REVIEW

The related work critically examines seminal works in
image processing, atmospheric scattering models, and compu-
tational photography. It highlights the strengths and limitations
of existing algorithms, emphasizing the need for novel ap-
proaches to address challenges in dehazing, such as preserving
image details, handling varying haze densities, and improving
computational efficiency. By synthesizing insights from diverse
scholarly contributions, this review sets the foundation for
proposing innovative solutions to enhance visual clarity and
fidelity in hazy environments.

A. Network-Based Approaches for Image Dehazing

Convolutional Neural Networks (CNNs) play a pivotal role
in modern deep learning-driven dehazing networks. These net-
works utilize different modules including standard convolution,
dilated convolution, multi-scale fusion, feature pyramid, cross-
layer connections, and attention mechanisms. Typically, these
modules are combined into multiple basic blocks within a
dehazing network architecture. This approach aids in compre-
hending the underlying principles of different dehazing algo-
rithms. To facilitate understanding, the commonly used basic
blocks in network architectures are summarized as follows.

1) Standard convolution neural network: Research has
demonstrated the effectiveness of employing standard convo-
lution in a sequential manner for constructing neural networks.
Hence, it is a common practice to integrate standard convolu-
tion into dehazing models alongside other blocks [8], [9], [10],
[11].

2) Dilated convolution: In Dilated Fusion, a method is
used that enlarges the receptive field without changing the
dimensions of the convolution kernel. Various studies [12],
[13], [14], [15], [16] have shown its effectiveness in improving
global feature extraction. Additionally, integrating convolution
layers with varying dilation rates allows for the extraction of
features from different receptive fields.

3) Multi-scale fusion: Research has shown that employing
Convolutional Neural Networks (CNNs) with multi-scale con-
volution kernels can effectively extract features across various
visual tasks. This approach utilizes convolution kernels of
different scales and combines the extracted features, proving
beneficial in tasks such as dehazing [17], [18], [19], [20].
Through fusion strategies, these methods achieve multi-scale
details essential for image restoration. Typically, during feature
fusion, output features obtained from convolution kernels of
varying sizes are spatially concatenated or added together.

4) Feature pyramid: In the domain of digital image pro-
cessing research, the concept of a feature pyramid emerges
as a powerful tool. This pyramid allows for the extraction
of information at various resolutions from an image. Within
the domain of deep learning-based dehazing networks, re-
searchers [21], [22], [23], [24], [25], [11], [26] have em-
ployed this strategy within the intermediate of the network
layers. Here, the aim is to capture diverse scales of spatial
and channel information, enhancing the ability of network
to effectively dehaze images. The author in [27] introduces
a novel transformer-based architecture for image dehazing
that embeds transmission-aware information into the position
encoder, addressing the challenge of varying haze densities
across different spatial regions. It offers a new method of
global and local feature integration for enhanced image clarity.

5) Cross-layer interconnection: To improve information
exchange across different layers and strengthen the network’s
ability to extract features, CNNs frequently use cross-layer
connections. In the domain of dehazing networks, three pri-
mary types of cross-layer connections emerge: The authors
initially proposed ResNet, this approach is widely utilized
in [28], [29], [30], [31], [32]. The second type, Dense Con-
nection is applied in the works of [33], [34], [35]. While
the third, Skip Connection have been integrated into various
architectures [26], [36], [17], [13].

6) Attention dehazing: The attention mechanism has
proven to be highly effective in natural language processing
research. In the realm of computer vision, two commonly
used attention mechanisms are channel attention and spatial
attention. Channel attention plays a crucial role in the feature
extraction and reconstruction of 2D images. It emphasizes the
significant channels in a feature map, allowing the model to
concentrate on essential feature details. This targeted approach
boosts the efficiency of feature extraction. Meanwhile, spatial
attention centers on the variations in feature positions within
the map. For example, it can identify and prioritize regions
with distinct characteristics, such as areas heavily affected
by haze across the entire map. Integrating these attention
mechanisms into neural networks has led to significant ad-
vancements in various tasks, including image dehazing. Several
state-of-the-art dehazing methods [28], [37], [13], [30], [38],
[39], [40], [41], [14], [23], [42], [11] have been applied by a
number of advanced dehazing methods, which has greatly led
to their commendable performance gains. As shown in [43],
adversarial auto-augmentation techniques can improve the gen-
eralization of dehazing networks. This method adjusts haze
density and distribution, allowing the network to generalize
better across synthetic and real-world datasets.

The use of deep networks for image dehazing faced some
challenges that include increased computational complexity
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TABLE I. COMPARATIVE ANALYSIS OF IMAGE DEHAZING TECHNIQUES

Method Key Features/Approach Advantages Limitations Performance (PSNR /
SSIM)

Dark Channel Prior (DCP) [44] Atmospheric scattering model,
dark channel prior used to estimate
transmission map

Simple and effective for natural outdoor
scenes

Fails with bright
sky regions,
introduces halo
artifacts

16.62 / 0.817 (NHHaze)

All-in-One Dehazing Network
(AoD) [8]

CNN-based approach with end-to-
end learning

High computational efficiency, suitable
for real-time applications

May oversimplify
dehazing, causing
loss of details

19.06 / 0.85 (NHHaze)

Feature Fusion Attention Network
(FFA-Net) [40]

Multi-scale CNN with attention
mechanisms for feature fusion

Preserves fine details, improves image
contrast

High computational
cost, may overfit on
synthetic datasets

34.59 / 0.975 (NHHaze)

ERCO-Net (Proposed) Edge restriction and contextual op-
timization, boundary constraints on
transmission map

Maintains edge details, smooths transi-
tions, reduces computational complexity

Slightly more
complex than basic
CNN methods

37.61 / 0.991 (NHHaze)

and possible overfitting due to high parameters’ count. More-
over, sometimes deep networks do not work well enough for
capturing complex atmospheric scattering effects appropriately
in order to gain unsatisfactory quality in dehazed images.
In contrast, employing edge restrictions and contextual op-
timization offers distinct advantages. These methods provide
explicit guidance on preserving important image features and
structural details during dehazing, ensuring more accurate and
visually pleasing results. Moreover, they facilitate better incor-
poration of prior knowledge about haze distribution and scene
characteristics, leading to improved generalization and robust-
ness in various environmental conditions. Table I provides
a comparative analysis of the key methods discussed in the
literature, highlighting their features, advantages, limitations,
and performance. This analysis demonstrates the efficiency
of the proposed ERCO-Net method compared to existing
approaches

III. EDGE RESTRICTION AND CONTEXTUAL
OPTIMIZATION

Edge restriction in image processing is closely related to
using spatial information, where certain attention is paid to
edges and contours of images as needed [45], [46]. It also em-
phasizes the importance of providing margins and other small
details in various image enhancements. More specifically, in
the dehazing model, the boundary constraints must be applied
to enhance the accuracy of estimates of the transmission map.
This map is particularly useful when wanting to determine
the extent of the haze that may be obscuring parts of the
image [47], [48].

The core concept of the method entails controlling the
dehazing operation based on understanding the type of change
between objects or parts in the scene. It is mostly represented
in equation form as a regularizer added to the energy function
within the dehazing algorithm. Due to the priority given to
edges and boundaries, the given algorithm risks receiving an
infested image that lacks most of its necessary details while
at the same time maintaining the clean image as natural as
possible.

A. Working of Edge Restriction

The downsizing of the edges in the ERCO-Net is a sig-
nificant component of the enhanced procedure. Because the
transmission map would be required to estimate the edges
of the objects, enhance edge preservation by the dehazing

algorithm would be necessary [1]. Through the assignment of
boundary constraints, the algorithm takes advantage of spatial
information to improve the accuracy of the regression equa-
tions for the estimation of transmission map. Mathematically,
this can be expressed in the following equation:

Eboundary = λb

∫
∥∇I −∇J∥2 dx (1)

In this context, Eboundary denotes the energy associated with
boundary constraints. The variable I represents the hazy input
image, J stands for the resulting dehazed image, and λb is a
parameter that weights the boundary constraints appropriately.

B. Contextual Optimization in Dehazing

Contextual Optimization is the another prominent feature
of the given approach which is crucial to be considered. It
should resolve the issue of enhancing the dehazing process
using contextual data at similar effectiveness. Contextual Opti-
mization tends to enhance the neighboring pixels’ coherency in
an image thus enhancing the quality of the dehazed image [4].
Mathematically, it can be formulated as:

Econtext = λc

∫
∥∇2J∥2 dx (2)

In this context, Econtext denotes the energy associated with
contextual optimization. The variable J represents the dehazed
image, and λc is a parameter that optimizes this process.

By integrating edge restriction and contextual optimization,
ERCO-Net aims to advance single-image dehazing techniques,
providing a more robust solution to the challenges posed by
atmospheric haze.

The flow of ERCO-Net is illustrated in Fig. 2.

ERCO-Net brings three key improvements. Firstly, intro-
duce a new rule for how light travels through a scene. This
rule is straightforward and easy to understand, and it turns
out to be remarkably effective in clearing up hazy images.
Secondly, introduce a new way to smooth out images by
using a set of filters. These filters not only reduce unwanted
noise in the images but also make certain features, like sudden
changes and corners, stand out more. Lastly, a faster method
has been developed to clean up large images, allowing for
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Fig. 2. Flowchart of the ERCO-Net dehazing process.

quick improvements in image clarity without taking much
time.

The haze in the image is represented formally in a number
of noteworthy work reported in [44], [49], [50], [51], depicted
as follows:

Img(x) = st(x)R(x) + (1− st(x))At (3)

where, Img(x) is the observed image, R(x) is the scene
radiance, At is the global atmospheric light, and st(x) is
the scene transmission. It is worthy to mention that the
transmission function st(x) : (0 ≤ st(x) ≤ 1) is related to
the image depth.

The key objective of the image dehazing is to recover
the image radiance R(x) from Img(x) based on Eq. 3. This
requires us to estimate the transmission function st(x) and the
global atmospheric light At. Once st(x) and At are estimated,
the scene radiance can be recovered by:

R(x) =
Img(x)−At

[max(st(x), ϵ)]
λ
+At (4)

IV. EDGE RESTRICTION FROM RADIANCE CUBE

The concept of Boundary Constraint from Radiance Cube
is a critical aspect in the context of image dehazing. The
Radiance Cube represents the radiance values at different
combinations of scene radiance and atmospheric light. The
Boundary Constraint is employed to ensure that the estimated
radiance values are constrained within physically meaningful
bounds. In the context of image dehazing, this helps in pre-
venting unrealistic or exaggerated scene radiance estimations.

• Atmospheric Light Constraint: The atmospheric light
(At) is constrained to be within the range of 0 to 1.
0 ≤ At ≤ 1

• Scene Radiance Constraint:

The estimated scene radiance (R(x)) should be non-
negative. R(x) ≥ 0

• Transmission Constraint:
The transmission (st(x)) lies between 0 and 1. 0 ≤
st(x) ≤ 1
4. Radiance Cube Constraint:
The radiance cube values should be within a valid
radiometric range.
Lmin ≤ L(x, λ) ≤ Lmax
Here, Lmin and Lmax represent the minimum and
maximum radiance values, respectively.

• Boundary Constraint Equation:
Combining the above constraints into a comprehensive
boundary constraint equation:

R(x) =
Img(x)−At

[max(st(x), ϵ)]
λ
+At

(5)

This equation ensures that the estimated scene radi-
ance (R(x)) is computed within the physically plau-
sible boundaries while considering atmospheric light,
transmission, and the Radiance Cube constraints.

These equations collectively enforce the Boundary Con-
straint, contributing to more realistic and physically meaning-
ful results in the context of image dehazing. Adjustments to the
parameters (ϵ and λ) may be made based on specific dehazing
algorithms and requirements.

The above calculations can be depicted in Fig. 3.

Fig. 3. A cube with boundary limitations that emits light. For every value of
x, it is essential that the estimation of J(x) does not surpass the limits of

the radiance cube. Jb(x1) and Jb(x2) denote the precise positions that
define the boundary constraints.

In geometric terms, as described by Eq. 3, when fog
affects a pixel Img(x), it tends to shift closer to the overall
atmospheric light At, as illustrated in Fig. 3. Consequently,
this effect can be counteracted by reversing the process and
restoring the original clarity of the pixel, denoted as R(x),
through a linear extrapolation from At to Imgx. The extent of
this extrapolation is determined as follows:
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1

st(x)
=

|R(x)−At|
|Img(x)−At|

(6)

Let us contemplate the notion that the radiance of the scene
within a particular image remains constrained; that is to say

C0 ≤ R(x) ≤ C1, ∀x ∈ Ω (7)

In the context of the provided image, two constant vectors,
C0 and C1, hold significance. Thus, it is imperative that for any
given value of x, the extrapolation of Rx) should fall within
the radiance cube delineated by C0 and C1, as depicted in
Fig. 3.

The requirement stated above for R(x) leads to an edge
restriction on st(x). Assuming the global atmospheric light At

is provided, the respective boundary constraint point R(x1) can
be calculated for each x (see Fig. 3). Consequently, utilizing
Eq. 6 and Eq. 7, a minimum value for st(x) can be established,
thereby setting the boundary constraint on st(x) as follows:

0 ≤ stb(x) ≤ st(x) ≤ 1 (8)

where stb(x) is the lower bound of st(x), given by

stb(x) = min

{
max

c∈{r,g,b}

(
Ac

t − Img(x)c

Ac
t − Cc

0

,
Ac

t − Img(x)c

Ac
t − Cc

1

)
, 1

}
(9)

here Img(x)c, At
c, Cc

0 and Cc
1 are the color channels of

Img(x), At, C0 and C1, respectively

The edge constraint imposed by st(x) provides a novel ge-
ometric viewpoint on the well-known dark channel prior [44].
Let’s assign C0 = 0 and suppose that the total atmospheric
light At is brighter than any pixel in the foggy image. This
enables us to compute stb(x) directly using Eq. 3, under the
assumption that the dark channel of R(x) at each pixel is zero.
In addition, by assuming that the transmission remains constant
inside a local image patch, the transmission for each patch
tËIJ(x) can be easily calculated using the method described
in [44]. This is achieved by applying maximum filtering on
stb(x) using Eq. 10.

s̃t(x) = max
y∈ωx

stb(y) (10)

here ωx is a local value being originated at x.

It is noteworthy that the edge restriction holds greater
significance. In general, the ideal global atmospheric light
is usually less bright than the brightest pixels in an image.
These pixels often come from prominent light sources in the
environment, like a brilliant sky or automobile headlights.
While the dark channel prior may not effectively capture these
bright pixels, the proposed edge restriction remains relevant.

Furthermore, it is of key importance that the commonly
utilized constant assumption regarding transmission within a
local image patch can be quite stringent. Consequently, the
patch-wise transmission, as proposed in [44], [52] based on this

assumption, is frequently undervalued. In this context, a more
precise patch-wise transmission method is introduced that
loosens the aforementioned assumption, thereby permitting
slight variations in transmissions within a local patch. Eq. 11
depicts the formation of new patch-wise transformation:

s̃t(x) = min
y∈ωx

max
z∈ωy

stb(z) (11)

The patch-wise transmission s̃t(x) can be efficiently cal-
culated by simply applying a morphological closing operation
on stb(x). Fig. 4 shows a comparison of the dehazing results
achieved by using patch-wise transmissions derived from both
the dark channel prior and the boundary constraint map. It
is clear that the transmission derived from the dark channel
prior is less effective in areas with bright sky. Furthermore,
the dehazing results display noticeable halo artifacts.

Fig. 4. Results of image dehazing by applying patch-wise transmission from
dark-channel and ERCO-Net (edge restriction). (a) The foggy image, (b)

output dehazed image by dark-channel, (c) dehazing result be edge
restriction.

A. Contextual Regularization based on L1-norm

Typically, pixels within a localized section of an image ex-
hibit comparable depth values. Leveraging this presumption, a
transmission method based on patch-wise constraints has been
formulated. Nevertheless, this contextual inference frequently
proves inadequate for image sections characterized by sudden
depth changes, resulting in pronounced halo artifacts in the
dehazing outcomes. This issue can be resolved by computing
a weighting function wt on the edge restrictions, given below
in Eq. 12.

wt(x, y)(st(y)− st(x)) ≈ 0 (12)

In the context of image processing, the relationship be-
tween adjacent pixels, denoted as x and y, is influenced by a
weighting function. This function acts as a sort of “switch”
determining the constraint between these pixels. Specifically,
when the weighting function, wt(x, y), equals zero, it effec-
tively nullifies the contextual constraint of st(x) between x
and y. The suitable value of wt(x, y) was determined to be
inversely proportional to the difference between the values of
x and y; i.e. the larger the distance between x and y, the lower
the weight value. Additionally, it was determined that depth
jumps primarily occur at the boundaries of images and within
localized areas (or patches), where pixels of similar colors are
likely to possess comparable depth values. This suggests that
color variation among neighboring pixels can be calculated
to create a weighting function. Two instances are provided to
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demonstrate the formulation of such weighting functions. One
approach entails computing the squared discrepancy between
the color vectors of adjacent pixels, as seen in Eq. 13.

wt(x, y) =
e−|Img(x)−Img(y)|2

2σ2
(13)

Here σ acts as tune-able parameter. Same calculation
is computed by considering (in Eq. 14) the difference in
luminance of the neighboring pixels.

wt(x, y) = ((|lum(x)− lum(y)|)α + ϵ)
−1 (14)

In this context, lum(x) refers to the logarithmic luminance
channel of the image Img(x). The exponent α ≥ 0 determines
the level of sensitivity to differences in luminance between
two pixels, while ϵ is a small constant (typically 0.0001) used
to prevent division by zero. The integration of the weighted
contexts throughout the entire image leads to the subsequent
contextual optimisation for st(x):∑

i∈I

∑
j∈ωi

wtij |sti − stj | (15)

Here I is the index set of image pixels, wtij is the discrete
versions of wt(x, y).

B. Estimation of Scene Transmission

In image dehazing, estimating the scene transmission is
a crucial step to recover the haze-free image from a hazy
input. The scene transmission, denoted by st(x), represents the
proportion of light that is transmitted through the atmospheric
medium at each pixel x in the image. A common model used
for estimating scene transmission is the dark channel prior
(DCP) proposed by [44].

The dark channel prior exploits the statistical property that
in most outdoor natural images, there exist some pixels with
very low intensity values in at least one color channel. This
property holds true even in hazy images.

The dark channel Jdark(x) of an image J is defined as:

Jdark(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

(Jc(y))) (16)

where Jc(y) represents the intensity of channel c at pixel
y, and Ω(x) is a local patch centered at pixel x.

The scene transmission t(x) can then be estimated using
the dark channel prior as:

t(x) = 1− ω · min
y∈Ω(x)

(Jdark(y)) (17)

where ω is a small positive constant used to control the
amount of haze removal.

By utilizing the dark channel prior to estimate the scene
transmission, the areas of the image impacted by haze can be
accurately detected and their intensity appropriately reduced
throughout the dehazing procedure.

V. RESULTS WITH DISCUSSION

Fig. 5 depicts the process of scene transformation estima-
tion of the image performed in different iterations, by applying
Eq. 16 and Eq.17.

Fig. 5. Results of applying scene transmission estimation on hazy image.
The results are shown in iteration followed by the final output.

The results are generated by adjusting the value of w to 0.5
in Eq. 17. The edge restriction is set to the C0 to (20, 10, 20)T

and C1 to (150, 150, 300)T in Eq. 9. These adjustments assist
in adjusting the haze map with in the view-able window.

The results demonstrate ERCO-Net ability to effectively
restore intricate details and vibrant color information within
hazy regions of images. It’s important to emphasize that the
estimated transmissions displayed in the three images on the
right side of the figure are not merely scaled versions of depth
maps. This is due to the non-uniform distribution of haze
across these images, particularly evident in image featuring
expansive clear sky areas. Essentially, the transmission func-
tion serves as a reflection of the haze density present within
the captured image, rather than simply representing depth.

A. Comparison with Other Approaches

For evaluation purposes, the ERCO-Net results were also
compared with some state-of-the-art models. These models
include dark channel prior (DCP) [44], Atmospheric Light
Estimation (ALT) [53], Image Fusion [54], and multiscale
retinex [55].

Fig. 6 depicts the comparison of our approach with the
algorithms aforementioned.

Fig. 6. Comparison with DCP, ALT, Image Fusion, and MSR approaches
using ERCO-Net on the NH-Haze2 dataset [56].
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Similarly, Fig. 7 shows the output of our algorithm in
comparison with other models.

Fig. 7. Comparison with DCP, ALT, Image Fusion, and MSR approaches
using ERCO-Net on the NH-Haze2 dataset [57].

For evaluation purposes, two metrics are employed: the
Structural Similarity Index (SSIM) and the Peak Signal-to-
Noise Ratio (PSNR). These metrics are frequently utilized in
image processing to evaluate the quality of images.

Table II presents the comparison of our approach with other
algorithms over NHHaze and NHHaze-2 datasets.

TABLE II. QUANTITATIVE COMPARISONS OVER NHHAZE AND
NHHAZE-2 DATASETS FOR DIFFERENT METHODS AND ERCO-NET

APPROACH

Methods NHHaze NHHaze2
PSNR SSIM PSNR SSIM

DCP 16.62 0.817 12.92 0.505
ALT 19.06 0.85 17.69 0.616

Image fusion 30.23 0.975 19.5 0.66
MSR 34.59 0.975 23.53 0.754

ERCO-Net 37.61 0.991 25.54 0.783

VI. CONCLUSION

In the field of single image dehazing, a significant chal-
lenge arises from the inherent ambiguity between image
color and depth. This ambiguity often leads to difficulty
in distinguishing between haze-affected and unaffected pix-
els, particularly when their coloration is similar. ERCO-Net
addresses this challenge by combining edge restriction and
contextual optimization, which improves image clarity and
preserves critical details. The method demonstrated reliable
dehazing performance with reduced computational complexity,
highlighting its potential for practical applications. Future work
will focus on further optimizing ERCO-Net for large-scale
datasets and addressing limitations in extreme haze conditions.
Additionally, improvements in edge detail retention and the
exploration of its applicability to other image restoration tasks
will be key areas of investigation.
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