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Abstract—With the increasing need for secure long-distance
communication, protecting sensitive information such as images
during transmission remains a significant challenge. This paper
proposes a new method for hiding encrypted images inside audio
files by integrating Cellular Automata (CA) and the Discrete
Fourier Transform (DFT). The primary aim is to enable secure
transmission of large encrypted images without altering the
audio’s perceptual quality. The scheme leverages the crypto-
graphic properties of CA to generate encrypted images, which are
then embedded into inaudible frequencies of audio using DFT.
Results show that this method successfully hides and recovers
images of considerable size, maintaining bit-level integrity of
the original images while preserving audio quality. However,
the scheme lacks resilience to signal processing attacks, such as
compression or filtering, the resulting size of the audio is also
bigger. Despite this limitations, the method provides a competitive
advantage in payload capacity and efficiency, making it suitable
for applications where the transmission of large, sensitive data is
necessary but not subject to aggressive signal attacks.

Keywords—Cellular automaton; Fourier Transform; cryptogra-
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I. INTRODUCTION

Nowadays with the development of information and com-
munication technologies, access to information has become
easier and establishing communication in a secure way has
become a necessary requirement [1]. As a result, people
can easily exchange information and distance is no longer a
barrier to communication. However, the safety and security of
long-distance communication remains an issue [2], because in
many cases, the Internet is being affected by hackers.

For that reason, attempts have been made to provide a
cyber security environment to protect the assets of institutions,
organizations, and individuals such as encryption systems,
watermarking, steganography, fingerprinting, hybrid systems
[3].

It is therefore essential to investigate more secure and
efficient methods for safeguarding sensitive data, such as
images, during transmission over open channels.

In the case of steganographic techniques, many were
proposals to provide secure data exchange through an open
communication channel. These approaches are mainly hosted
under three domains: In spatial domain techniques [4] [5], the
data is hidden, and replacement is directly applied to the pixels
of the image; Transform Domain Methods hide the messages
in significant areas of the cover image to produce more
efficient stego-images. It manipulates the image indirectly
by various transformation techniques; the most popular of
these techniques are: Discrete Cosine Transformation (DCT)
and Discrete Wavelet Transformation (DWT); and the third

domain considers hybrid domain techniques; which is a type
of steganography where spatial and transform domains may be
combined. The hybrid approaches also provide some security
and capacity enhancements but still are in their beginnings and
need more research. [6].

In other cases, Cellular Automata (CA) models have been
used for their good cryptographic properties that provide
security against attacks and better confusion and diffusion
properties [7]. CA models also give a secret key for the
encryption which cannot be predicted since it evolves into a
chaotic and complex system starting from an initial state [8].

So the question arises How can encryption methods be
integrated with a CA cellular automata to hide encrypted
images in audio files to improve transmission security? With
all that has been seen, it was asked, how can encryption
methods be integrated with a well-encryption system like CA
with steganography to improve the security of encrypted image
transmission?

For that reason, this paper proposes a novel method to
increase security in image transmission: A hybrid method to
encrypt high quality images using CA and hide them inside
audio files using the Discrete Fourier Transform (DFT) based
on the methods proposed by Alvarez et al. [9] and Hwai-Tsu
and Tung-Tsu [10] for improved security in hiding encrypted
images. This method could be of great use in industries that
require the protection of sensitive information, such as the
financial, military or healthcare sectors, where data integrity
and confidentiality are paramount.

The rest of the paper is organized as follows: The review of
previous works is presented in Section II, the proposed scheme
is described in Section III, where a description of fundamental
concepts is made and then the detailed description of each
step in encryption and decryption is presented, in Section IV
the results are shown along with their respective analysis, the
discussion is presented in Section V and it ends with the
conclusion in Section VI.

II. RELATED WORK

In recent years, significant efforts have been made to solve
the problem of information security in data transmission, such
as the work done by Alvarez et al. [9], who have proposed
a scheme based on the bidimensional reversible CA with
memory. These schemes are cryptographic procedures to share
a secret among a set of participants in such a way that
only some qualified subsets of these participants can recover
the secret. Also, the security of the scheme is studied and
it is proved that the protocol is ideal and perfect and also
resists the most important statistical attacks. To validate the
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protection of the original information, the number of changing
pixel rate (NPCR) and the unified averaged changed intensity
(UACI) randomness test were used, with scores of 99 and 33
respectively, which would indicate a high level of change in
the encrypted image compared to the original. This suggests
a robust encryption that is very sensitive to changes in the
original image; in other words, a minimal modification in
the original image will cause a noticeable difference in the
encrypted image, which is positive for the security of the
encryption.

Similarly, Hwai-Tsu and Tung-Tsu [10] have proposed
a study to introduce an innovative phase modulation (PM)
scheme based on the fast Fourier transform (FFT) that facil-
itates efficient and effective blind audio watermarking. The
results reflected the robustness of phase modulation against a
variety of common signal processing attacks, and comprehen-
sive and rigorous tests confirmed the PM’s robustness against
a variety of common signal processing attacks, including
resampling, requantization, and low pass filtering. But the
FFT–PM was less resistant to attacks that caused severe phase
perturbations.

Likewise, Eslami et al. [11] proposed a model using CA
and a double authentication mechanism to propose a new
threshold image sharing scheme with steganographic proper-
ties. That proposed scheme uses 2 bits in each pixel of cover
images for embedding data and so a better visual quality for
the produced stego images was achieved. Consequently, this
study got a Peak Signal-to-Noise Ratio (PSNR) value of 48,
showing that the difference between the original image and the
compressed or encrypted image is minimal and that the loss
of quality is practically imperceptible to the human eye.

Similarly, Hernández et al. [12] proposed a new graphic
symmetrical cryptosystem in order to encrypt a colored im-
age defined by pixels and by any number of colors. This
cryptosystem is based on a reversible bidimensional CA and
uses a pseudo-random bit generator where the session key is
the seed used to generate the pseudorandom bit sequence. In
consequence, the decrypted image is identical to the original,
i.e., no loss of resolution occurs.

On the other hand, Tanwar & Bisla [13] understood that
the goal of audio steganographic technique is to embed data in
audio cover files that must be robust and resistant to malicious
attacks. That paper presents various audio steganographic
methods like LSB, echo hiding, spread spectrum etc. Also,
merits and demerits of each method are described. Finally,
they showed that the low bit coding (LSB) method has a
low robustness, echo masking, and phase coding have a low
capacity for data embedding; in relation to the spectrum, it
has a higher robustness but is vulnerable with respect to the
modification of the time scale.

Abdirashid, Solak & Saku [14] argued that image steganog-
raphy techniques provide better data embedding capability.
So, they proposed secure data hiding algorithms based on
frequency domain in image steganography. The methods were
evaluated according to the criteria of imperceptibility, payload
capacity and robustness, where they obtained good results
of PSNR of 50 dB and Structural Similarity Index Measure
(SSIM), which represents a successful restoration for the same
image.

Also noteworthy is the comparison of different types of
encryption realized by Louis [15], which tests the DCT and
DFT encryption techniques in order to compare which of the
two is better where it is seen that even though the images are
embedded using bytes complete directly into the Fast Fourier
Transform (FFT) transformed dimension, the byte difference is
distributed somewhat evenly over the entire image, with small
differences of the pixel values. That method is thus harder to
detect than embedding methods that directly use the spatial
domain.

An interesting paper was realized by Najiya and Renjith
[16] who describe a method of compressing the image using
wavelet compression and converting it into a bit sequence in
order to embed it in the modified cover audio using a secret
key, then the audio is encoded with an error correction code to
improve its robustness of this technique. Where at the receiver
section, the original secret image is reconstructed successfully.
The PSNR value of the image in the system is 32.84. This
means that the difference between the original image and the
altered image is small.

The review of related works shows that many of these
methods focus on information protection using different tech-
niques in the spatial domain, transform domain and hybrid
domain, this encouraged further research and improvement in
this field.

III. PROPOSED METHOD

Fig. 1 shows the representation of the proposed method
hiding encrypted images by CA in audios based on DFT. And,
Fig. 2 shows the process to decrypt the information.

Fig. 1. Encryption of the proposed scheme.
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Fig. 2. Decryption of the proposed scheme.

A. Normalization of Images

This first stage is considered essential, because the oper-
ation of the CA depends on its environment, i.e. “neighbor-
hood”, based on the number of cells given by the number
of rows and columns, which is simply feasible for any case.
However, the proposal is to hide images by means of these
evolutions, that means that the space operated by the CA must
be the same in all cases of evolutions, by adding white pixels
around each image if necessary.

Therefore, from a set of RGB images of different sizes,
they are normalized by adding a padding of white pixels so
that they have the same dimensions, Fig. 3 shows an example,
not including the borders.

(a) (b) (c) (d)

Fig. 3. Normalized images.

B. Extraction of Inaudible Spectrum

Although the CA gives the necessary images to be able
to reverse the process, these images could have essentially
noise, which can generate suspicion, therefore, a higher stage
of encryption is proposed, which means hiding it inside an
audio.

The method supports the reading of different types of audio
in wav format (16− bit PCM, IEEE float), internally all
processing is done in 64− bit float format, so any conversion
from an audio with a smaller data format does not result in
any alteration of the original audio [17]. Audio recorded at

sampling rates greater than or equal to 44100Hz are used,
because this is the standard used in music CDs and provides
good frequency precision [18]. The output audio will be a
64− bit IEEE float .wav file.

On the other hand, of all the forms of audio steganography
that exist, the decision has been to use the algorithm called
“Fast Fourier Transform” or FFT, to hide data in the less
perceptible frequencies: from 0 to 20Hz and from 16kHz
[19].

Where, for each audio channel, it will be divided into M
segments of length L each one. Using the DFT, each segment
frequency is obtained using the Eq. 1.

X(m)(k) =

L−1∑
n=0

x(m)(n)e−i2πk n
L (1)

where m = {0 . . .M}
k = {0, . . . , 20, 16000, 16001, . . . L

2
}

* Illustrative quantity, take into account the frequency resolution.

However, the nature of the FFT algorithm will return N/2
samples from N = 2n, n ∈ R+ samples. Therefore it is
set that L = 65536 = 216 to ensure that a wide range of
frequencies is obtained. That results by the concept called
frequency resolution, which is shown in Eq. 2.

∆f =
fs
N

(2)

fs : Frequency sample rate

N : Number of samples

e.g : ∆f =
44100

65536
≈ 0.67

∆f =
44100

32768
≈ 1.34

∆f =
44100

16384
≈ 2.69

∴ More sample gets more resolution

Then the “frequency resolution” is used to put the en-
crypted data into an array, in this way it can approximate a 1:1
relationship between the indices of an array and frequencies it
want to access.

Additionally, a function is used to access a frequency by
indices of an array, which is shown in Eq. 3:

freqToIndex(freq) = ⌊freq
216

⌋, freq ≥ 0 (3)

C. Linear Memory Cellular Automata

CA is a computational model that simulates dynamic
systems and processes within a concrete space composed of
cells. These cells have different states that vary in relation to
time due to predefined rules. Each cell of a CA is composed of
a dynamic state in relation to its neighboring cells by means of
specific rules, which define the state configuration, simulating
the evolution of a system over multiple continuous time steps
[9].
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According to [9], the following elements define a CA:

• State It is the set S of possible values that a cell will
have. This paper makes use of RGB images leads to
a S = Z224 , it is the minimum value containing all
possible values of an RGB pixel.

• Local transition function Function that gives a new
state to the cell (i, j) from its neighborhood Vij , using
a number ω of 9 bits defined as a rule. It is defined
in the following way:

s
(t+1)
ij = F (V

(t)
ij , ..., V

(t−n)
ij )

• Neighborhood It is defined as the set of neighbors of a
cell. Therefore, in this paper the Moore neighborhood
is used.

Instead of working on a one-dimensional line, two-
dimensional CA are organized in a grid or matrix of cells,
where each cell can have a particular state, and offers a way
to model and understand complexity starting from simple local
rules. Their versatility and ability to represent a wide variety
of events make them a valuable tool [20].

The change of the evolutions depends on the states previous
to these since are based on the k − th order, and each of them
defines a new change of states of the CA based on the k
previous evolutions. For example, if k takes the value of 3,
then the new state in (t + 1), depends on the states of (t),
(t− 1) and (t− 2).

Now, the security of the evolutions to be performed in the
Linear Memory Cellular Automata (LMCA) depends on an
image composed of random pixels, indicating dimensions and
other characteristics, see Fig. 4. This will be considered as
configuration 0, C0 while the images to be encrypted will be
the images shown in Fig. 3: C1 C2 C3 C4 respectively. Based
on the fact that this has n = 4 initial images, along with an
initial configuration, the order of the cellular automaton would
be 5; which implies that the 5 previous ones will always be
used to generate the next one (times), and so on until the
number of evolutions [9][21].

Fig. 4. Configuration C0.

For each time it have, w is a random number. According
to the model of an LMCA, a random number l is neces-
sary, which determines the number of evolutions defined as
#evo = n+ l − 1, for the present investigation the value of l
will be equal to 10 (l = 10), the results of which are shown
in Fig. 5.

At the moment of making the evolutions, it can be observed
how images of what is apparently noise (shadows) are created,

Fig. 5. Evolutions with a value of l=10.

and according to [11], the correlation between shadows is
very small, which guarantees that it is not possible to extract
relevant information from the original images by having only
a fraction of the shadows. The LMCA has a set of times,
because it used is a k to k symmetric scheme, the keys for
the recovery will be composed by the same number of initial
configurations as it had. In the example, the last four noise
images would be presented together with the one preceding
them. The latter would serve as a public key, while the other
four are secret.

D. Stenography Process

It is widely acknowledged that the human auditory system
exhibits relatively low sensitivity to variations in phase [22].
For this reason, the key to imperceptible audio primarily in-
volves manipulating the FFT phase. Since each FFT coefficient
comprises a real and an imaginary component, this scheme
for numerical embedding involves the manipulation of the
ratio between the magnitudes of these two components. The
component with the largest magnitude was identified as the
baseline unit. Consequently, the extent of the other component
is modulated based on the intended numeric value, such as
a pixel value extracted from a color image. Now, the Eq. 4
is derived from the equation proposed by [10]. This equation
allows encrypting an entire RGB color.

if |Re{X(m)(k)}| ≥ |Im{X(m)(k)}|
X̂(m)(k) = Re{X(m)(k)}

+ i·sgn(Im{X(m)(k)}) · |Re{X(m)(k)}| · v(∆ + k)

224

else

X̂(m)(k) = sgn(Re{X(m)(k)}) · |Im{X(m)(k)}| · v(∆ + k)

224

+ i · Im{X(m)(k)}
(4)

where v(x) refers to the value of the ID array that contains the pixels of
an image.

∆ = m(L− 16020) storage capacity in a block m.

www.ijacsa.thesai.org 1136 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Once the values of each pixel of an image have been
positioned inside the inaudible frequencies of an audio, the
Inverse Fourier Transform (see Eq. 5) is operated to obtain
an audio that will be saved in a 64-bit .wav file in order to
safeguard the precision of the mathematical operations and the
values of this new audio.

x̂(m)(k) =
1

L

L−1∑
n=0

X̂(m)(n)ei2πk
n
L (5)

This whole process is shown in Algorithm 1.

Algorithm 1 Encryption
Require: D is a vector of data to encrypt
Require: A is a m× n matrix where

m =

{
1 if audio channel is mono
2 if audio channel is stereo

and n = Length of audio

Ensure: fft(. . . ) returns an array in CCs format
res← A m× n matrix with encrypted data
samples← 216

encrypted← 0 ▷ Progress
for all signal in A do

segment← 0
while segment ≤ |signal| and encrypted ̸= |D| do

out← fft(signal[segment:]) ▷ out is a vector of samples+1
2

D

out← out
samples

▷ Normalize

for i← 1 to |out| − 1 and encrypted ̸= |D| do
if i = freqToIndex(20.0) then ▷ See equation 3

i← freqToIndex(16000.0)
continue

end if
x← out[i]
if |real(x)| ≥ |imag(x)| then ▷ See equation 4

imag(x)← sgn(imag(x)) ∗ |real(x)| ∗ D[encrypted]

224
else

real(x)← sgn(real(x)) ∗ |imag(x)| ∗ D[encrypted]

224
end if
encrypted← encrypted+ 1

end for
out inv ← ifft(out)
copy out inv into res

end while
copy signal[segment:] to res[signal] ▷ Remainder

end for
return res

E. Shadow Recovery

Similar to the previous step, the recovery is based on
separating the audio stego into segments of 215 audio samples,
where in each one the FFT is applied to recuperate the values
of the frequencies where the data is saved.

X̃(m)(k) is define as the sequence of values obtained by
using the FFT in a block; the same variables defined in the
previous step are shown by Eq. 6.

v(∆ + k) = 224 · min{|Re{X̃(m)(k)}| , |Im{X̃(m)(k)}|}
max{|Re{X̃(m)(k)}| , |Im{X̃(m)(k)}|}

(6)

After getting the pixel array, they are saved for later use
in the CA.

Continuing, the images have been recovered from the audio
files and a process identical to the first evolution is developed
where the public key will be the configuration 0, and the
following shadows are added in the order they were generated,
by effecting the number of evolutions with the same value l,
the original images are obtained (with their respective padding.
See Fig. 6 and 7.

This whole process is shown in Algorithm 2.

Algorithm 2 Decryption
Require: A is a m× n matrix where

m =

{
1 if audio channel is mono
2 if audio channel is stereo

and n = Length of audio

Require: size: The desired size of the decrypted data
Ensure: fft(. . . ) returns an array in CCs format

res← Array of decrypted data
decrypted← 0 ▷ Progress
for all signal in A do

segment← 0
while segment+ 216 < |signal| and decrypted ̸= size do

out← fft(signal[segment:])
out← out/samples ▷ Normalize
for i← 1 to |out| − 1 do

if decrypted = size then
end if
if i = freqToIndex(20.0) + 1 then

i← freqToIndex(16000.0) continue
end if
x← out[i]

v ← ⌊min{|real(x)|,|imag(x)|}
max{|real(x)|,|imag(x)|} ∗ 2

24⌋ ▷ See Eq. 6
res.append(v) ▷ Store decrypted value
decrypted← decrypted+ 1

end for
end while

end for
return res

Fig. 6. Inverse evolution.
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Fig. 7. Images recovered.

IV. RESULTS

A. Random Noise NIST Test Results

To ensure that the secret images are indeed noise, the NIST
statistical test suite is used, it consists 15 different tests that
measure the randomness of a sequence of bits. For each test
a p-value is calculated, which varies from 0 to 1, where 0
indicates that the bits are non random and 1 perfect randomness
[23].

To test the first step of the scheme, a large im-
age(4000x3000 pixels) is used to generate the appropriate
noise images to hide. For this example, nine evolutions are
created; and then, for each images, a binary file composed
entirely of the pixel RGB bytes is made.

Each of the nine files passed to the NIST suite contain 288
million bits and are of size 36MB. The results in Table I give
them an average p-value of a little under 0.5, which shows
good randomness. There were only a couple of failed tests in
the earlier evolutions, however, it can be concluded that the
secret images to be hidden in an audio file will be very close
to random noise.

TABLE I. RESULTS OF RANDOMNESS TEST

Evolution Average p-value Passrate

1 0.467008 99.47%
2 0.495432 100.00%
3 0.481725 98.94%
4 0.471555 99.47%
5 0.478481 100.00%
6 0.502455 100.00%
7 0.457972 100.00%
8 0.474596 100.00%
9 0.499604 100.00%

B. Size and Capacity of Audio Files

Because the process of hiding images in audios using the
FFT internally uses 64 − bit floating numbers, it cannot save
the frequency values in audio formats such as 16− bit fixed-
point and 32 − bit floating-point without losing data in the
truncation process, which forces to save 64 − bit IEEE wav
audios. See Table II to view the comparison of the created
audios.

TABLE II. SIZE ANALYSIS OF CREATED AUDIOS

Audio1 Audio2 Song1 Song2

Duration 4s 7s 6:23 min 2:49 min
Orig Size 812.6 KiB 1.5 MB 64.5 MB 28.5 MB
64bit Size 3.2 MB 5.8 MB 257.9 MB 114.1 MB
Increase 293.798% 286.667% 299.845% 300.351%
Max Capacity (NxN) 256 330 2153 1434

It can be observed that the created audios are about four
times larger, but it allows them to save an RGB image of
considerable size, or in the case of smaller images, a set of
these.

C. Spectrograms

By performing a spectrogram analysis of both the original
audio (see Fig. 8) and the one containing their payload (see
Fig. 9), it can be observed how it proceeds according to the
proposed method, where only the less audible frequencies have
been covered by what amounts to noise.

Fig. 8. Spectrogram of original audio.

Fig. 9. Spectrogram of stego-audio.

In a second sample only a 128×128 pıxel image has been
inserted, it can be observed that only a section of the high
frequencies is modified, this due to the fragmentation of the
audio for the realization of the process, see Fig. 10 and 11.

Fig. 10. Spectrogram of second original audio.

Fig. 11. Spectrogram of second stego-audio.

D. Measuring Similarity to Original Audio

1) Dynamic Time Warping: As a way of measuring how
similar the payloaded audio is to the original one, the algorithm
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Dynamic Time Warping (DTW) has been used. DTW is a
really powerful tool with uses way beyond just measuring
differences in audio files, such as speech and sign language
recognition, computer vision, animation, data mining, music
and signal processing [24]. DTW compares two signals that
may or may not be of the same length to find an optimal
alignment with minimal cost, to do this a cost matrix is found,
by comparing every value of both signals, were the higher the
difference between values, the higher the cost. After obtaining
the matrix, the optimal warping path is the one with the lowest
accumulated cost from traversing from bottom left to top right
[25]. Because the signals to be compared are practically of the
same length, the alignment path will always be a straight line
from bottom to top.

To find a measurement related to the similarity of both
audio signals, two comparisons have been decided upon. The
first comparison uses DTW on the original audio and the
stego audio. The second comparison is performed between
the original signal and a noisy signal, which is generated by
adding almost imperceptible random noise to the original. This
approach provides a baseline for assessing how different the
stego signal is.

Fig. 12 and 13 show the cost matrix of both comparisons,
where orange tones show a greater cost. The shortest path
is always the direct one, as a better way of showing the
differences of the comparison, Fig. 14 and 15 shows a slice
of the cost matrices, but plotted as a 3d bar chart, the first
comparison presents lower values overall and by calculating
the distance cost of the optimal warping path. The values
obtained are 1528.1893 for the stego audio and 82826.3947
for the noisy signal. This indicates that the stego audio signal
is easier to adapt and correct, and thus very similar to the
original audio.

Fig. 12. DTW cost matrix of stego-audio comparison.

2) Error Testing: An evaluation will be made with the
Mean Square Error (MSE) and Signal-to-Noise Ratio (SNR)
coefficients to see the efficiency of the proposed method, by
the use of the Fourier transform to audio.

In the MSE, the error signal ei = xi − yi represents the
difference between the original and distorted signals [26],
which will be evaluated with respect to audio quality, after

Fig. 13. DTW cost matrix of noisy audio comparison.

Fig. 14. 3D bar chart of DTW cost matrix of stego-audio comparison.

Fig. 15. 3D bar chart of DTW cost matrix of noisy-audio comparison.

performing data hiding within the audio during the transform.
See Eq. 7.

MSE =

∑
(O − E)2

N
(7)
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On the other hand, SNR reflects the signal-to-noise relation
of an audio, usually written as S/N, is an estimate of the
robustness of the source signal in relation to the possible noise
(unwanted signal) [27], see Eq. 8

SNR = 10 ∗ log10(
O2

MSE
) (8)

After several comparisons of encrypted and decrypted
audios, The resulting values are shown in the Table III.

TABLE III. ANALYSIS OF ORIGINAL AND ENCRYPTED AUDIO

Sample Indices Original (O) Encrypted (E) (O2) (O - E)2

0 0 -0.0048 0.0048000 2.28 ×10−5

6500 0.2461 0.2510 0.060500 2.44 ×10−5

13000 0.0080 0.0113 0.0000634 1.13 ×10−5

19500 -0.1737 -0.1757 0.0302000 4.11 ×10−6

26000 0.1949 0.2014 0.0380000 4.26 ×10−5

32500 0.1617 0.1589 0.0261000 7.75 ×10−6

39000 0.0972 0.0927 0.0094300 2.09 ×10−5

45500 0.0008 -0.0098 0.0000007 1.12 ×10−4

52000 -0.2294 -0.2190 0.0526000 1.08 ×10−4

58500 0.0896 0.0811 0.0080300 7.30 ×10−5

65000 -0.0730 -0.0728 0.0053300 7.22 ×10−8

71500 0.1217 0.1218 0.0148000 2.02 ×10−8

78000 -0.1572 -0.1565 0.0247000 5.69 ×10−7

84500 -0.0857 -0.0888 0.0073400 9.72 ×10−6

91000 0.0306 0.0295 0.0009340 1.08 ×10−6

97500 -0.0554 -0.0560 0.0030700 3.33 ×10−7

104000 -0.0363 -0.0365 0.0013200 3.67 ×10−8

110500 -0.0547 -0.0512 0.0029900 1.23 ×10−5

117000 -0.0070 -0.0077 0.0000497 4.86 ×10−7

123500 0.0403 0.0422 0.0016300 3.59 ×10−6

130000 0.0410 0.0404 0.0016800 4.13 ×10−7

136500 -0.0800 -0.0824 0.0064100 5.68 ×10−6

143000 0.0247 0.0249 0.0006100 3.68 ×10−8

149500 0.0616 0.0613 0.0038000 8.06 ×10−8

156000 0.0523 0.0520 0.0027300 1.02 ×10−7

162500 -0.2395 -0.2397 0.0573000 3.63 ×10−8

169000 0.1144 0.1134 0.0131000 1.03 ×10−6

175500 0.0418 0.0435 0.0017500 2.90 ×10−6

182000 0.0649 0.0637 0.0042200 1.63 ×10−6

188500 0.0071 0.0074 0.0000501 8.14 ×10−8

195000 -0.0119 -0.0114 0.0001410 2.42 ×10−7

201500 0.0072 0.0072 0.0000523 4.9 ×10−14

208000 0.0054 0.0054 0.0000295 2.8 ×10−14

Total 0.37908 0.00047

The difference of the amplitude of the original audio minus
the encrypted audio is solved for each row of the table and the
result elevated to 2.

All the results in column 5 of Table III are summed, and
the value of the variable N is equal to the number of samples
that exist in the table, in this case 33. Therefore using the Eq.
7

MSE =

∑
(O − E)2

N

MSE =
0.00047

33
MSE = 0.0000142

This MSE result affirms that there is a minimum change
between the original audio and the encrypted audio because the
audio is close to 0, and as explained above, the closer the MSE
is to zero, the smaller the average difference will be; therefore,

the better the quality of the audio reproduction or processing,
so it is reaffirmed that the audio quality is maintained after
applying the FFT algorithm to the audio.

The summation of O2 is in column 4 of Table III, and the
value of the MSE is the result obtained previously, therefore
using the Eq. 8:

SNR = 10 ∗ log10(
0.37908

0.0000142
)

SNR = 10 ∗ log10(26695.77)
SNR = 10 ∗ 4.43
SNR = 44.26dB

This result of 44.26 dB, reaffirms that the quality of the signal
(sound) is preserved, after doing the Transform algorithm, so
it deduced that the sound emitted by the audio remains clear
and neat after encryption, and that any evident change between
the values of the original audio with the encrypted audio is not
perceptible or is minimally perceptible.

E. Recovered Images Similarity

By way of a more detailed analysis of the decrypted
images in order to ensure pixel equality, MSE and SSIM
measurements are used in the comparison of the original image
(with some padding) and the one resulting from the encryption
and decryption process. See the Table IV.

TABLE IV. IMAGES SIMILARITY MEASUREMENTS

MSE SSIM

Cat 0.00 1.00
Dog 0.00 1.00

Doom1 0.00 1.00
Doom2 0.00 1.00

MSE is used, because of its ample use and its simplicity
to compare two images [28], every single image recovered
by the scheme got a perfect score of 0, which indicates that
the squared sum of the errors always equal 0, therefore, every
single pixel value of both the recovered images and the original
ones are the same.

The use of SSIM helps to evaluate the similarity between
original and distorted images after applications in the evalua-
tion of image quality, image recovery, image encryption and
data hiding [29]. In effect, a value of 1 was obtained as result,
this is evidence that the images still maintain the exact same
image quality before and after encryption.

V. DISCUSSION

The use of Cellular Automata in the scheme ensures the
security of the sensitive images to be hidden. These images
are converted to effectively noise, any attacker that manages
to extract the data hidden in the very low and high frequencies
would find nothing but useless data.

In this study, an SNR of 44.26 has been obtained using
the DFT together with CA. This result is notably superior to
that obtained by another research on the embedding of color
images in audio signals using residual networks [10]. In that
work, the SNR ranged from 18.75 to 25.004, depending on the
embedding scheme and the range of FFT indices employed.
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An SNR of 44.26 indicates that the audio signal has
a significantly higher SNR than the watermarking schemes
employed in [10]. This suggests that the method using DFT
and CA can insert information into the audio signal with
less degradation of the perceived quality, which is crucial
in applications where maintaining the fidelity of the original
signal is a priority.

The presented scheme shows good payload capacity for
the resulting file sizes, a 4 seconds audio file is capable of
hiding an image of at most 256x256 dimensions, with a final
size of 3.2MB. When comparing it to the scheme proposed
by [10], a similar size audio file (4.23MB) of 24.15 seconds
of duration, is able to hide an image of 64x64 dimensions.
This shows a considerable increase in capacity per MB, albeit
with a very reduced resistance to signal processing attacks and
compression techniques because of the need to preserve every
bit of the secret CA images to be able to decrypt the original
images. Because of this, the proposed scheme should probably
be used on relatively small audio files, so that the increase in
size is not as dramatic and any action that affects the audio file
data, such as applying mp3 compression, should be considered
destructive to the encrypted information.

VI. CONCLUSION

Based on the challenge of secure and private information
sharing, a new encryption method using CA and Fourier
Transform based steganography has been proposed in this
research. This method demonstrates the ability to preserve
the full integrity of the encrypted images while maintaining
an extremely similar quality to the original audio, where the
hidden data is no different to noise, supported SNR, MSE and
a magnitudes lower optimal warping path length compared to
an audio containing an almost imperceptible noise.

Because of the combination of the produced audios file for-
mat and the range of frequencies that are embedded with data,
the proposed scheme has good payload capacity, albeit with
the limitation of the resulting file size and the vulnerability to
small changes in the audio file.

Therefore, as possible improvements for future work, dif-
ferent approaches could be explored, such as implementing
support for lower and higher color depth images at 24− bits,
optimizing the Fast Fourier Transform process to use less
precision, which would allow us to hide encrypted images in
smaller floating point audio formats such as 32 and 24 bits,
reducing the audio file size at the expense of data storage
capacity.
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