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Abstract—Scalability poses a significant challenge in
blockchain networks, particularly in optimizing the propaga-
tion time of new blocks. This paper introduces an approach,
termed “DBPF” - Dynamic Block Propagation Framework for
Blockchain Networks, aimed at addressing this challenge. The
approach focuses on optimizing neighbor selection during block
propagation to mitigate redundancy and enhance network effi-
ciency. By employing informed neighbor selection and leveraging
the Brotli lossless compression algorithm to reduce block size,
the objective is to optimize network bandwidth and minimize
transmission time. The DBPF framework calculates the Minimum
Spanning Tree (MST) to ensure efficient communication paths
between nodes, while the Brotli compression algorithm reduces
the block size to optimize network bandwidth. The core objective
of DBPF is to streamline the propagation process by selecting
optimal neighbors and eliminating unnecessary data redundancy.
Through experimentation and simulation of the block propaga-
tion process using(DBPF), we demonstrate a significant reduction
in the propagation time of new blocks compared to traditional
methods. Comparisons against approaches such as selecting
neighbors with the least Round-Trip Time RTT, random neighbor
selection, and the DONS approach reveal a notable decrease in
propagation time up to more than ( 45%) compared to them
based on network type and number of nodes. The effectiveness of
(DBPF) in boosting blockchain network efficiency and decreasing
propagation time is emphasized by the experimental findings.
Additionally, various compression algorithms such as zstandard
and zlib were tested during the research. Nevertheless, the
results suggest that Brotli produced the most positive outcomes.
Through the integration of optimized neighbor selection and
effective data compression, DBPF presents a hopeful resolution
to the scalability issues confronting blockchain networks. These
results showcase the capability of (DBPF) to notably enhance
network performance, leading the path toward smoother and
more efficient blockchain operations
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I. INTRODUCTION

Blockchain (BC) technology has revolutionized the way
data and financial transactions are shared among network
participants BC was initially introduced in 2008, credited
to Satoshi Nakamoto [1]. At its core, a blockchain is a
decentralized and distributed ledger that securely records
transactions across a network of nodes. The value added by
blockchain technology lies in its ability to provide trans-
parency, immutability, and trust. By eliminating the need
for intermediaries and central authorities, blockchain enables
peer-to-peer transactions and data sharing, fostering a new
era of decentralized applications and services [2], [3]. This
improves its reliability and efficiency compared to traditional

data storage systems. The networks within (BC) can securely
manage information and protect it from tampering, even in the
presence of some malicious nodes, These features are highly
valuable and find applications not only in cryptocurrencies but
also across a wide range of fields [4]. Therefore, (BC) has
many applications in emerging fields such as the internet of
things [5], [6], 5G [7] [8], [9], and artificial intelligence, [10],
[11].

However, despite its numerous advantages, blockchain
faces scalability challenges that hinder its widespread adoption
[12]. One of the key scalability issues is the low through-
put of blockchain networks, primarily caused by the high
propagation time required to disseminate new blocks to all
nodes in the network. This delay in block propagation can
lead to inconsistencies in the blockchain, impacting transaction
finality and network performance. It is evident that Bitcoin’s
transaction processing capability is limited, allowing for only
seven Transactions Per Second (TPS). This stands in stark
contrast to widely adopted mainstream payment platforms
like PayPal, which achieves a transfer rate of 500 TPS, and
Visa, surpassing 4000 TPS [13]. Similarly, Ethereum, another
prominent cryptocurrency, can handle approximately 15 TPS.
Clearly, both Bitcoin and Ethereum are inadequate when it
comes to meeting the demands of large-scale trading scenarios.

The high propagation time in blockchain networks can
be attributed to several factors. Firstly, traditional methods
used for path selection and neighbor discovery in blockchain
networks often result in suboptimal routing paths, leading to
longer propagation times and message redundancy. Random
Neighbor Selection (RNS) is one such method that may con-
tribute to inefficient block dissemination by selecting neighbors
without considering the network topology or optimal paths,
where shared data propagates through random paths [14], lead-
ing to an inefficient data propagation scheme. This inefficiency
arises from the probability of redundancy in the exchanged
messages between network nodes. This redundancy arises from
cycling in randomly chosen data paths, leading to longer
delivery times and reduced consistency. Despite this, most
blockchain (BC) systems support Random Neighbor Selection
(RNS). Several methods have been proposed to enhance the
Neighbor Selection (NS) process locally, addressing the issue
of dynamicity. For example, Bi et al. [15] introduced an
NS protocol based on network latency, where nodes measure
the Round Trip Time (RTT) to their neighboring nodes and
prioritize those with the lowest RTT for the NS process.
However, none of these methods has presented an optimal NS
strategy.

Additionally, the size of blocks and network bandwidth
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limitations also play a significant role in increasing propagation
time. As block sizes grow, the time required to propagate
blocks across the network increases proportionally [16]. More-
over, some blockchain protocols overlook the optimization of
network bandwidth usage, further exacerbating propagation
delays.

In response to these challenges, this paper proposes a novel
solution to enhance blockchain scalability by addressing the in-
efficiencies in neighbor selection and block size management.
Our approach focuses on optimizing neighbor selection for
each node in the network (ONS) by calculating the Minimum
Spanning Tree (MST) to establish efficient communication
paths. Furthermore, we aim to optimize network bandwidth
by reducing block size and improving propagation speed by
implementing the (Brotli compression) method, a lossless data
compression technique that minimizes redundant data within
blocks and transactions. By combining optimized neighbor
selection and block size reduction through compression, our
proposed solution (DBPF) seeks to mitigate the propagation
time challenges in blockchain networks, ultimately enhancing
network scalability and performance.

The contributions of this paper are summarized as follows:

1) The Dynamic Block Propagation Framework (DBPF)
addresses blockchain scalability by optimizing neigh-
bor selection through a Minimum Spanning Tree
(MST), reducing redundant data propagation, and
improving communication efficiency between nodes.

2) DBPF incorporates Brotli lossless compression to
reduce the size of the propagated blocks, improving
network bandwidth usage and speeding up block
dissemination.

3) By leveraging MST-based Optimal Neighbor Selec-
tion, DBPF selects neighbors that enable faster and
more efficient block propagation, reducing the overall
time needed to disseminate blocks across the network.

4) The framework significantly reduces the total prop-
agation time for data exchanged between nodes, en-
suring faster and more efficient block distribution.

5) DBPF combines optimized neighbor selection with
effective data compression, providing a scalable and
efficient solution for large blockchain systems to
increase the throughput of the network.

The remaining sections of this paper are structured as
follows: Section II analyzes relevant literature, Section III
provides the proposed system model for DBPF, Section IV
provides a detailed explanation of the proposed DBPF, Section
V presents the evaluation of DBPF, and finally, Section VI
summarizes the most significant findings and conclusions.

II. RELATED WORK

This section presents several modern network layer scal-
ability solutions, which primarily aim to enhance either the
gossip algorithm or reduce block data size. Research studies
targeting improvements in the gossip algorithm focus on reduc-
ing duplicate data and increasing block propagation speed [17].
These proposed solutions aim to minimize duplication caused
by the gossip protocol decrease block propagation time through
enhanced gossip mechanisms and reduce the size of the block

to accelerate block propagation through network bandwidth.
Below are some recent works that represent such solutions.

The authors of “PiChu: Accelerating Block Broadcasting
in Blockchain Networks with Pipelining and Chunking” [18]
introduce an innovative method to enhance the efficiency and
scalability of blockchain networks. PiChu leverages pipelin-
ing and chunking techniques to expedite block propagation,
significantly reducing the time required to broadcast blocks
across the network. The approach involves verifying the block
header before dividing the block into smaller segments, which
are then processed and forwarded in parallel. This continu-
ous data flow minimizes delays associated with waiting for
entire blocks to be verified. The chunking process splits
each block into smaller, self-contained chunks that include
complete transactions, allowing for incremental verification
and faster dissemination. PiChu is particularly effective in
scenarios with high transaction volumes and large block
sizes, making blockchain networks more robust and scalable.
However, PiChu’s effectiveness is influenced by the network
topology and the connectivity between nodes. The requirement
for modifications to existing consensus protocols may also
limit its immediate applicability in some blockchain systems.
Additionally, the benefits of pipelining and chunking may vary
depending on the specific characteristics of the network, and
The need for nodes to verify and forward chunks can introduce
additional processing overhead.

Baniata and Anaqreh [19] introduced the Dynamic Op-
timized Neighbor Selection Algorithm (DONS) to enhance
P2P network management within blockchain networks. In this
approach, a leader peer is selected to manage the network and
construct its topology using neighbor lists from regular peers.
The leader uses a Minimum Spanning Tree (MST) to identify
optimal neighbors, thereby minimizing propagation delay and
enhancing transaction throughput. However, when the leader
changes, the network topology must be reconstructed, necessi-
tating the collection of neighbor lists anew. As the number
of peers increases, the time required to compute the MST
also increases, leading to inefficient bandwidth utilization.
Furthermore, the unavailability of the leader poses risks of
topology loss and incurs overheads associated with leader
reselection.

Zhang et al. [20] investigate the dynamics of block prop-
agation in blockchain-based vehicular networks (VANETs)
and the impact of node mobility on blockchain consensus
mechanisms. The authors propose an analytical model to derive
a closed-form expression for single-block propagation time
and analyze multi-block competitive propagation to address
blockchain forking issues. The model accounts for the dy-
namic connectivity of moving nodes, introducing opportunistic
communication to blockchain consensus. Their findings reveal
that higher mobility and more moving vehicles expedite block
propagation, thereby reducing consensus time. The study also
shows that distinct propagation capabilities of moving nodes
help mitigate blockchain forking. However, the model has
limitations, such as its reliance on closed-form expressions and
the assumption of a single-chain structure. The approach may
face limitations in scenarios with highly dynamic topologies
and varying node densities, which could affect its overall
performance.

The paper “FastChain: Scaling Blockchain System with
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Informed Neighbor Selection” by Ke Wang and Hyong S. Kim
[21] introduces the FastChain protocol to enhance blockchain
scalability by optimizing block propagation times. FastChain
operates by leveraging nodes with higher bandwidth capacity
to distribute blocks throughout the network. Nodes with limited
bandwidth prioritize connections with high-bandwidth nodes
and disconnect from those with bandwidth below a specific
threshold. This mechanism comprises two essential stages:
the bandwidth monitoring phase and the neighbor update
phase. During the bandwidth monitoring phase, each node
maintains a table containing the recent bandwidth information
of its neighboring nodes. In the neighbor update phase, nodes
periodically update their connections, disconnecting from those
with low bandwidth. This informed neighbor selection policy
significantly reduces block propagation time, thereby increas-
ing the effective block rate and improving throughput by 20%
to 40%. Despite its advantages, the FastChain protocol intro-
duces additional processing overhead due to the continuous
monitoring and updating of neighbor connections. Moreover,
reliance on high-bandwidth nodes could lead to centralization
risks within the network.

The authors in [22], [23] proposed a score-based neighbor
selection protocol for constructing a blockchain network. This
protocol assigns higher scores to peers with lower propagation
delays compared to those with higher propagation delays.
Subsequently, peers with the highest scores are chosen as
neighbors. Each miner node evaluates its neighboring nodes
based on the time difference between when the block was
created and when it was received by the recipient node. After
successfully receiving ten blocks, a node updates its list of
neighbors. During this update, the node randomly selects new
neighbors, including only those with high scores. Neighbor
nodes that exhibit faster block transfer rates compared to
others are assigned higher scores, indicating superior network
communication capabilities. Thus, miners prefer these high-
scoring neighbors. This method leads to excessive dependence
on the nodes that have the shortest total propagation time,
which can reduce node performance.

Wang introduces the Txilm protocol in [24] to tackle the
challenge of large data transmissions in blockchain networks.
This is achieved through the application of lossy block com-
pression alongside salted short hashing. The protocol operates
by pre-sorting transactions based on their identifiers (TXIDs)
or other criteria and hashing them using a short hash function
combined with a cryptographic salt. This process significantly
reduces the data size, resulting in substantial bandwidth sav-
ings. The compressed transaction list is broadcast instead of
the original transactions, achieving up to 100x bandwidth
efficiency. In cases of hash collisions, a second-stage resolution
involving Merkle tree recomputation ensures data integrity.
While the protocol effectively reduces data transmission sizes
and enhances network scalability, it introduces additional com-
putational overhead for collision resolution and depends on the
consistent ordering of transactions and mempool size across
nodes.

III. THE PROPOSED SYSTEM MODEL

To address the scalability and efficiency challenges in
blockchain networks, we propose the Dynamic Block Prop-
agation Framework (DBPF). This framework integrates MST-

based optimal neighbor selection with Brotli compression for
block data, aiming to minimize propagation time and enhance
network throughput.

Let G = (V,E) represent the blockchain network, where
V is the set of nodes and E is the set of edges. Each edge
(i, j) ∈ E is associated with a weight wij , indicating the
latency or communication cost between nodes i and j. The
MST T = (V,ET ) is a subset of E that spans all nodes V
with the minimum total edge weight. The MST is computed
using Kruskal’s algorithm, formulated as:

min
∑

(i,j)∈ET

wij

The MST provides the optimal neighbor selection (ONSi)
for each node i.

Let B denote the block containing T transactions. The
block size is given by:

∥B∥ =
T∑

i=1

∥ti∥

Applying Brotli compression reduces the block size to
C(B), with the compression ratio R = ∥B∥

C(B) . The propagation
time Pt for a block B is determined by the compressed block
size C(B) and the network bandwidth W :

Pt =
C(B)

W

For the entire network, the total propagation delay ∆t
considering the MST is given by:

∆t =
∑

(i,j)∈ET

C(B)

Wij

where Wij is the bandwidth between nodes i and j.

The overall objective of DBPF is to minimize the total
propagation time by integrating MST-based optimal neighbor
selection and Brotli compression:

min
T,C(B)

∆t = min
T,C(B)

∑
(i,j)∈ET

C(B)

Wij

This model demonstrates how DBPF optimizes both the
network topology and data propagation processes, thereby
enhancing blockchain network efficiency and scalability.

IV. THE PROPOSED EFFICIENT DYNAMIC BLOCK
PROPAGATION FRAMEWORK (DBPF)

This section introduces the explanation and design of an Ef-
ficient Dynamic Block Propagation Framework for Blockchain
Networks (DBPF), which incorporates a combination of an
efficient algorithm in neighbor selection by obtaining optimal
neighbor for each node in the network by constructing a
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minimum spanning tree (MST) and block size management
by using Brotli compression algorithm to optimize network
bandwidth. The primary objective of the DBPF protocol
is to reduce message propagation time, optimize network
bandwidth utilization, elevate overall network performance by
leveraging compression techniques on block messages, and
optimize blockchain network construction to be a solution for
blockchain scalability problems.

To provide a clear understanding of the proposed solution,
a diagram in Fig. 1 is presented. This diagram highlights the
main components and mechanisms of the solution (DBPF),
focusing on optimized neighbor selection and block size re-
duction through compression.

A. Phase-1: Leader Selection

In the context of the “DBPF”, the leader Selection process
adopts a random selection approach to designate a node as
the leader within the blockchain network. This phase en-
compasses two primary tasks: Network leader selection and
leader announcement. The DBPF requires a global view of
the BC network. All nodes in BC have equal privileges in the
public and permissionless BC network. However, the proposed
DBPF selects one of these nodes to be the leader node (LN)
to perform MST calculations for all other nodes. LN have
advantages compared to other nodes in the same (BC) network,
allowing it a global view or metadata information of the entire
network. Additionally, LN collects information from the other
nodes within the same network and uses it to generate the
MST for the entire Network. Thus, each node in the network
can select its optimal neighbors (ON) from the generated MST
to exchange new blocks or transactions.

1) Step 1: Random selection: The DBPF protocol in-
corporates a random selection process for choosing a LN,
which offers several notable advantages. Firstly, this approach
ensures fairness by giving every node an equal opportunity to
be selected as a leader, thereby eliminating potential biases.
Secondly, the random selection method promotes unbiased
network operations and decentralization, as it prevents the
influence of network hierarchies or power dynamics in the
leader selection process. This aligns with the core concept of
decentralization within the BC ecosystem. Thirdly, in dynamic
networks where nodes frequently join or leave, the ability to
swiftly transition leadership is crucial. Random selection facil-
itates rapid leadership transitions without the delays associated
with traditional election processes. If a LN departs or becomes
less effective, a new leader can be randomly chosen, ensuring
minimal disruption to network operations. This adaptability
is paramount for maintaining the seamless functioning of the
network in the face of changing circumstances.

In addition to the previously mentioned advantages, the
random selection process in the DBPF protocol also enhances
the security of the network. By randomly selecting a leader,
the protocol introduces an element of unpredictability in the
leadership position. Potential attackers or malicious actors are
unable to predict or target specific nodes that might have
elevated privileges as leaders. This randomness adds an extra
layer of security to the network, as it prevents adversaries
from exploiting any inherent vulnerabilities associated with
predictable leader selection methods.

2) Step 2: Assessment of the Randomly Selected Leader:
After a node is randomly selected as a potential leader, it
undergoes a critical evaluation process to confirm its suitability.
This assessment is vital to ensure that the node meets key
criteria necessary for effective leadership. If the selected node
meets these criteria, it is confirmed as the leader. If it does not,
the random selection process is repeated. This step is designed
to minimize the likelihood of choosing an unsuitable node,
particularly aiming to avoid light nodes in favor of full nodes
for leadership roles.

The first essential criterion is computational strength. The
prospective leader node must possess substantial computational
power to handle the responsibilities associated with leadership.
This includes processing large volumes of data, making rapid
and accurate decisions, and managing complex algorithms
essential for optimizing the network. High computational ca-
pacity ensures that the node can perform its tasks efficiently
without bottlenecks. Robust connectivity is another crucial
requirement for the leader node. The selected leader must
exhibit strong connectivity within the network. This robust
connectivity is vital for ensuring efficient communication be-
tween the leader and other nodes, facilitating the swift and
reliable dissemination of directives and information. Well-
connected nodes enhance the overall responsiveness and co-
ordination within the network. Finally, stability and reliability
are essential characteristics of a leader node. The node must
demonstrate a history of stable and reliable operation. High
uptime and consistent availability are crucial, as they indicate
the node’s capability to maintain its leadership role without
causing disruptions. A stable leader node ensures continuity
and reliability in the network’s functioning. To minimize the
frequency of reselection, there is a preference for choosing
from full nodes rather than light nodes. Full nodes, typically
being more robust in terms of resources and connectivity, are
more likely to meet the leadership criteria on the first selection.
This approach streamlines the selection process, making it
more efficient and reducing the time and resources spent in
finding a suitable leader.

3) Step 3: Leadership Redetermination: In cases where the
initially selected node does not meet the required criteria, the
protocol stipulates a reselection. This process is promptly ini-
tiated to ensure that network leadership is established without
undue delay.

Finally, The leader announcement proposed by the DBPF
framework can be described as follows: Following the leader
selection process, the DBPF notifies all nodes in the network
about the new leader by sending announcement messages
to all of them. Additionally, it informs the new leader of
their responsibility for creating the MST for the network and
broadcasting it to all nodes within the BC network. this phase
algorithm is presented in Algorithm 1.
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DBPF protocol

Leader selection phase

select a random verified leader

leader announcement

computing MST phase

1. construct network topology

2. calculate MST

3. Broadcast MST

obtain DNS from MST phase

obtain optimal neighbors
for each node

optimum network bandwidth by Brotli
compression

Apply Brotli compression
algorithm on the new block

Step 0:
minor obtain a valid
hash for new block

Start propagation
new block

:Performed by the leader :Performed by the miner

Fig. 1. The main steps involved in the proposed DBPF framework.

Algorithm 1 Leader Selection in DBPF Protocol

Require: Blockchain Network N
Ensure: Selected Leader Node L

1: Begin
2: RandomlySelectNode:
3: n← select a node randomly from N
4: if ¬ isFullNode(n) then
5: goto step 2 (RandomlySelectNode)
6: end if
7: AssessCandidate:
8: if hasComputationalStrength(n) ∧

hasRobustConnectivity(n) ∧ isStableAndReliable(n)
then

9: L← n
10: else
11: goto step 2 (RandomlySelectNode)
12: end if
13: End

B. Phase-2: Calculate and Dissemination of the Minimum
Spanning Tree (MST)

In DBPF protocol, the subsequent phase following the
random selection of the leader (L) involves a critical process
that lays the foundation for network optimization. Upon phase
1, Each node and miner within the network acknowledges and
recognizes the appointed leader (L). Consequently, Phase-2 is
triggered and is performed by the leader (L) to compute MST
for BC network (G) by using Kruskal’s Algorithm as follows:

1) Step-1: Collection of Local information (LIs): L com-
mences the process by collecting Local information (LIs) from
all participating nodes (n) in the network (G). LIs consist of
anonymized data regarding the network’s topology, crucial for
understanding the current network structure without compro-
mising the privacy of individual nodes.

2) Step-2: Constructing Network Topology(NT): L employs
the (LIs) stored locally to formulate an anonymized represen-
tation of the global network topology NT, Presented as an
Adjacency List [25]. The Adjacency List is a fundamental
data structure used to represent graph structures efficiently,
particularly suitable for sparse graphs like BC networks,

where the number of edges is significantly less than the
number of possible edges. In the context of the Dynamic
Block Propagation Framework (DBPF), the Adjacency Listis
employed to construct the network topology (NT) based on the
Local Information (LIs) collected from all participating nodes
in the blockchain network. An Adjacency List represents a
weighted graph G = (V,E) where V is the set of vertices
(nodes) and E is the set of weighted edges (connections with
associated weights between nodes). Each vertex in the graph
maintains a list of its adjacent vertices along with the weights
of the connecting edges. This list captures all nodes directly
connected to it by an edge and the corresponding weights, thus
providing a compact and efficient way to store and manipulate
the network topology.

Formally, for a weighted graph G with vertices V =
{v1, v2, . . . , vn} and weighted edges E, the Adjacency List
is an array of lists, where the i-th element of the array
corresponds to vertex vi and contains a list of pairs (vj , wij)
such that there exists a weighted edge (vi, vj) ∈ E with weight
wij .

Example:

Consider a blockchain network with five nodes:
A,B,C,D, and E. The weighted connections
(edges) between these nodes are as follows:
A − B(2), A − C(3), B − D(4), C − D(1), D − E(5).
The Adjacency List representation of this weighted network
would be:

• A : {(B, 2), (C, 3)}
• B : {(A, 2), (D, 4)}
• C : {(A, 3), (D, 1)}
• D : {(B, 4), (C, 1), (E, 5)}
• E : {(D, 5)}

This structure efficiently represents the network, allowing
for quick look-up and traversal of adjacent nodes along with
the weights of the connecting edges. Fig. 2 illustrates this
weighted blockchain network graph.

The Adjacency List offers several advantages in the context
of the DBPF. It provides an efficient way to store and access
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Fig. 2. Example of a weighted blockchain network graph.

the network structure, which is crucial for large blockchain net-
works with potentially thousands of nodes. As the blockchain
network grows, the Adjacency List can handle the increasing
number of nodes and edges without significant performance
degradation, demonstrating its scalability. Furthermore, the list
can be easily updated as new nodes join or leave the network
which makes DBPF dynamic, ensuring that the representation
remains accurate and up-to-date, highlighting its flexibility.

3) Step-3: Computation of the (MST) Using Kruskal’s Al-
gorithm:: Following the previous step where the leader node
(L) utilized Local Information (LIs) to construct the network
topology (NT), the next phase in the Dynamic Block Propa-
gation Framework (DBPF) involves computing the (MST) for
the blockchain network (G) using Kruskal’s algorithm [26] as
shown in Algorithm 2. Let G = (V,E) be the graph where V
is the set of vertices and E is the set of edges with weights
w : E → R. The goal is to find a subset T ⊆ E that forms
a tree covering all vertices V with the minimum total edge
weight:

min
∑
e∈T

w(e)

subject to T forming a connected acyclic subgraph of G.

Kruskal’s algorithm sorts the edges E in non-decreasing
order by weight and iteratively adds the shortest edge to T ,
provided it does not form a cycle, using the union-find data
structure to manage disjoint sets. This structured approach
ensures the MST is computed efficiently, forming a key
component of our DBPF for optimizing blockchain network
performance. The primary goal is to minimize the total edge
weight while preserving network connectivity and avoiding
cycles. Kruskal’s algorithm processes each edge independently,
which is advantageous when the number of edges |E| is much
smaller than the number of possible edges

(
V (V−1)

2

)
. This

reduces the overall computational burden. The computed MST
serves as the backbone for block propagation, significantly
reducing propagation time and enhancing overall network
efficiency. The time complexity of Kruskal’s algorithm is
O(E logE + E log V ), making it efficient for the large-scale
and sparse nature of blockchain networks.

Algorithm 2 Compute MST using Kruskal’s Algorithm

1: Input: Network topology NT = (V,E)
2: Output: Minimum Spanning Tree (MST)
3: procedure COMPUTE MST(NT)
4: Convert NT to a dictionary of dictionaries
5: Initialize T ← ∅ ▷ Initialize the set for MST edges
6: Create a union-find data structure for V
7: Extract nodes and edges from NT
8: Sort the edges E in non-decreasing order of their

weights w(e)
9: for each edge e = (u, v, w) in sorted E do

10: if FIND(parent, u) ̸= FIND(parent, v) then
11: T ← T ∪ {e} ▷ Add edge to MST
12: UNION(parent, rank, u, v)
13: end if
14: end for
15: return T ▷ The set of edges in the MST
16: end procedure

Example

Consider a blockchain network with five nodes:
A,B,C,D,E. The weighted connections (edges) between
these nodes are as follows: A− B(2), A− C(3), B −D(4),
C −D(1), D − E(5), as shown in Fig. 3.

Edge Weight
(A,B) 2
(A,C) 3
(B,D) 4
(C,D) 1
(D,E) 5

The steps to compute the MST are as follows:

1) Initialization: Nodes: {A, B, C, D, E}; Edges: {(A,
B, 2), (A, C, 3), (B, D, 4), (C, D, 1), (D, E, 5)}

2) Sorting: Sorted Edges: {(C, D, 1), (A, B, 2), (A, C,
3), (B, D, 4), (D, E, 5)}

3) Edge Selection:
• Add (C, D, 1): No cycle
• Add (A, B, 2): No cycle
• Add (A, C, 3): No cycle
• Skip (B, D, 4): Forms a cycle
• Add (D, E, 5): No cycle

4) Result: MST: {(C, D, 1), (A, B, 2), (A, C, 3), (D, E,
5)} as shown in Fig. 4.

4) Step-4: Optimal Neighbor Selection (ONS):: Following
the computation of the Minimum Spanning Tree (MST) by
the leader node (L) in the previous step, the subsequent
step involves disseminating the MST to all nodes within the
blockchain network. This step aims to enable each node to
derive its Optimal Neighbor Selection (ONS) from the received
MST. Upon receiving the MST, each node runs Algorithm 3
to identify its optimal neighbors. This algorithm examines the
MST and selects the most efficient connections based on the
weights of the edges. These optimal neighbors are then used
by the nodes to efficiently transmit new blocks or transactions
across the blockchain network.
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Fig. 3. Example of a weighted blockchain network graph.
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Fig. 4. Minimum spanning tree for the blockchain network.

This process ensures that data sharing is optimized, lever-
aging the MST to enhance overall network efficiency and
performance. By utilizing the MST, the nodes can avoid re-
dundant connections and minimize latency, which is crucial for
maintaining the speed and reliability of blockchain operations.
The MST-based ONS provides each node with a clear, efficient
pathway for data transmission, contributing to the overall
scalability and robustness of the blockchain network.

Algorithm 3 Find Optimal Neighbor Selection (ONS)

Require: MST G = (V,E), node identifier node id
Ensure: Optimal Neighbor Selection (ONS)

1: ONS← {} ▷ Initialize the set for ONS
2: for each u ∈ G do
3: if u == node id then
4: for each neighbor vj ∈ G[u] do
5: ONS[vj ]← G[u][vj ][

′weight′]
6: end for
7: break
8: end if
9: end for

10: return ONS

C. Phase-3: Optimize Network Bandwidth by Brotli Compres-
sion

In this phase of the Dynamic Block Propagation Frame-
work (DBPF), the focus shifts to optimizing network band-
width and enhancing block propagation speed through the
use of the Brotli lossless compression Algorithm [27]. This
phase operates in parallel with the leader node’s computation
of the Minimum Spanning Tree (MST), enabling each node
to transmit the compressed block efficiently to its Optimal
Neighbors (ON). By doing so, the DBPF aims to reduce the
propagation time of newly mined blocks across the network
and increase the throughput of the public blockchain which
contributes to solving the scalability problem.

The primary objective of compressing the block is to reduce
its size (∥B∥), thereby minimizing the transmission time (Pt)
across the network and optimizing the utilization of network
bandwidth (W ). This reduction in size aids in the faster
propagation of the block to all nodes, addressing scalability
issues and enhancing network efficiency.

We selected the Brotli compression algorithm for several
reasons. Brotli, developed by Google, offers a high compres-
sion ratio and rapid decompression speed, making it partic-
ularly well-suited for The nature of blockchain data, which
includes repetitive elements such as transaction inputs, outputs,
and digital signatures, benefits greatly from Brotli’s efficient
compression techniques. A blockchain block is composed of
two main parts: the header and the body. The header includes
critical information necessary for the block’s integrity and
validation, such as the previous block hash, Merkle root,
timestamp, difficulty target, and nonce. The body contains
the transaction data, including inputs, outputs, and digital
signatures. The block header’s attributes are crucial for the val-
idation cycle and maintaining the blockchain’s integrity; thus,
they are not compressed. Compressing these attributes would
complicate validation and introduce security risks. Therefore,
only the transaction data in the block body is compressed,
preserving the essential information in the block header for
seamless and secure validation. This compression process
involves identifying redundant or less critical data within the
block, applying the Brotli algorithm to reduce the block size,
and then propagating the compressed block to neighboring
nodes

The compression process involves several key steps. Ini-
tially, the miner identifies redundant or less critical data within
the block, such as transaction inputs, outputs, digital signa-
tures, and intermediate branches of the Merkle tree. Although
the Merkle root must remain uncompressed for validation
purposes, other components are suitable for compression. Let
B represent a block containing T transactions, with the block
size ∥B∥ given by:

∥B∥ =
T∑

i=1

∥ti∥

Applying the Brotli compression algorithm, the block size
is reduced to C(B):

C(B) = Brotli(∥B∥)
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The compression ratio R is defined as:

R =
∥B∥
C(B)

This ratio reflects the effectiveness of the compression
while ensuring that critical elements required for block val-
idation, remain intact. Compressed transaction data is decom-
pressed by nodes upon receipt, ensuring the block’s integrity
and validity are preserved.

When a miner successfully mines a new block B, it is
compressed using the Brotli algorithm. This step occurs con-
currently with the MST computation by the leader node. The
miner then propagates the compressed block C(B) through
the optimized network to its neighboring nodes (N ) which is
calculated in phase 2. Each neighboring node decompresses
C(B) upon receipt to validate and add the block to its local
blockchain. The propagation time (Pt) as a function of the
compressed block size and network bandwidth is given by:

Pt =
C(B)

W

By minimizing C(B) through Brotli compression, the
propagation time (Pt) is optimized, leading to enhanced net-
work efficiency. Considering the network as a graph G =
(V,E), where V represents nodes and E represents communi-
cation links, the objective is to minimize the total propagation
delay (∆t) across the network. This delay is influenced by the
sum of individual propagation delays between nodes:

∆t =
∑
i,j∈E

C(B)

Wij

Here, Wij represents the bandwidth between nodes i and
j. By effectively compressing block data, DBPF optimizes
the total propagation delay, improving the overall efficiency
and scalability of the blockchain network.

By combining these two phases—optimized neighbor
selection and enhanced network bandwidth—into a single
framework called the Dynamic Block Propagation Frame-
work (DBPF), we can significantly increase the throughput
of blockchain networks. The DBPF leverages an MST-based
optimal neighbor selection to establish efficient communication
paths, alongside Brotli compression to reduce block sizes and
transmission times. This dual approach not only minimizes
propagation time but also enhances overall network efficiency.
As we will demonstrate in the next evaluation section, DBPF
outperforms many other methods in terms of scalability and
performance in public blockchain networks.

V. EXPERIMENTS AND RESULTS

This section provides a comprehensive overview of the
experiments and assessments carried out to evaluate the Dy-
namic Block Propagation Framework (DBPF). It includes a
discussion of the network datasets utilized, the performance
metrics employed, and the detailed experiments executed. The

network data was generated through a simulator that creates
random network topologies using the Barabási-Albert(BA)
model [28]. This model is well-suited for simulating real-world
networks such as the Internet, social networks, and the World
Wide Web.

To validate our analysis in real-world scenarios, we var-
ied the network size and the average number of neighbors
per miner. The simulation involves generating a random
blockchain network where a miner node is randomly chosen as
the source node for a data block. This source node disseminates
the block to its neighboring nodes, which in turn propagate it
to their neighbors, creating a cascading dissemination effect.
The simulation ends once the block has reached all nodes in
the network.

The experiments were run on a DELL PC equipped with
an Intel(R) Core(TM) i5-10210U CPU (8 cores, 2.11 GHz),
8 GB DDR4-SDRAM, and a 500 GB SSD, running Windows
10 OS. We evaluated the experimental results using the Total
Propagation Time (TP) metric in microseconds (µs), which
measures the time it takes for a block sent from a randomly
selected miner node to reach all nodes in the network.

Our experiments aim to demonstrate that the DBPF solu-
tion significantly enhances network performance by reducing
the propagation time of new blocks, thereby improving the
scalability and efficiency of blockchain networks.

The experiments are categorized as follows:

Experiment 1:

This experiment compares the performance of DBPF in
terms of Total Propagation Time (TP) and the number of
exchanged blocks (NB), against other algorithms such as
Dynamic Optimized Neighbor Selection (DONS), Round-Trip
Time (RTT), and Random Neighbor Selection (RNS). DONS
is designed to optimize the propagation delay by selecting
the most efficient paths based on delay metrics. RTT selects
neighbors based on the minimum round-trip time, aiming to
reduce latency in block propagation. RNS, on the other hand,
randomly selects neighbors without considering network topol-
ogy or path efficiency.The experiments were conducted using
a network simulator based on the Barabási-Albert (BA) model
to generate random network topologies. Two configurations
were tested: networks with an average of 7 neighbors per node
and networks with an average of 15 neighbors per node. The
network bandwidth was assumed to be 10,000 bits per second.
In each experiment, a randomly selected miner propagated a
new block, and the propagation time and number of exchanged
blocks were recorded.

The results demonstrate that DBPF significantly outper-
forms DONS, RTT, and RNS in both configurations. For
networks with seven neighbors per node, DBPF achieved a
total propagation time of 105.89 ms for 50 nodes, compared to
268.89 ms for DONS, 2124.58 ms for RTT, and 7489.9 ms for
RNS. This trend continued as the network size increased to 100
and 450 nodes, with DBPF maintaining the lowest propagation
times. Similarly, for networks with 15 neighbors per node,
DBPF’s propagation time remained consistently lower than the
other algorithms. For example, with 450 nodes, DBPF achieved
156.95 ms compared to 840.50 ms for DONS, 19918.79 ms
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TABLE I. PERFORMANCE OF DBPF AGAINST DONS, RTT, AND RNS

Nodes Avg. Neighbors Total Propagation Time (ms)
DBPF DONS RTT RNS

50 7 105.89 268.89 2124.58 7489.9
100 7 263.37 721.72 5790.9 21089.09
450 7 326.42 1089.54 34805.4 162987.06
50 15 109.97 301.84 2152.55 14527.94

100 15 94.97 361.81 3271.19 21095.96
450 15 156.95 840.50 19918.79 125417.10

for RTT, and 125417.10 ms for RNS. The minimal increase
in propagation time with DBPF highlights its efficiency and
scalability. Additionally, DBPF maintained the lowest number
of exchanged blocks as there is no any redundant block sent
within the propagation process, indicating superior bandwidth
utilization and network performance.

Based on the results in Table I, the insights derived from the
experimental results underscore the superior performance of
the Dynamic Block Propagation Framework (DBPF) in terms
of propagation time and bandwidth efficiency compared to
DONS, RTT, and RNS. As the number of nodes increased
from 50 to 450, the propagation time for DBPF showed a
minimal increase, highlighting its scalability and efficiency.
For instance, DBPF’s propagation time increased by only
220.53 ms (from 105.89 ms to 326.42 ms) for networks
with seven neighbors per node, whereas RTT’s time surged
by 32680.82 ms (from 2124.58 ms to 34805.4 ms), and
RNS’s time skyrocketed by 155497.16 ms (from 7489.9 ms to
162987.06 ms). This demonstrates DBPF’s superior scalability
and efficiency in larger networks.

Compared to DONS, DBPF also showed significant im-
provements. For networks with seven neighbors per node,
DBPF reduced the propagation time by 60.61% for 50 nodes,
63.52% for 100 nodes, and 70.05% for 450 nodes. Similar
trends were observed for networks with 15 neighbors per node.
This significant reduction in propagation time showcases the
effectiveness of DBPF in optimizing network performance and
achieving fast propagation of new blocks to all nodes.

The performance of the proposed DBPF algorithm was
compared with DONS, RTT, and RNS algorithms across
two experimental setups. The total propagation time for each
algorithm as the number of nodes increases is shown in Fig.
5.

In Experiment 1 (Fig. 5a), with an average of seven
neighbors per node, DBPF significantly outperforms the other
algorithms. For instance, with 450 nodes, DBPF achieves a
propagation time of 326.42 ms, whereas DONS, RTT, and
RNS require 1089.54 ms, 34805.4 ms, and 162987.06 ms,
respectively.

In Experiment 2 (Fig. 5b), with an average of 15 neighbors
per node, DBPF again demonstrates superior performance.
With 450 nodes, DBPF has a propagation time of 156.95 ms,
compared to DONS at 840.50 ms, RTT at 19918.79 ms, and
RNS at 125417.10 ms.

Experiment 2:

This experiment aims to demonstrate the robustness and
efficiency of the Dynamic Block Propagation Framework

(DBPF) under varying network bandwidth conditions, simulat-
ing realistic blockchain network scenarios under the Barabási-
Albert (BA) model. Unlike previous experiments with con-
stant bandwidth, this experiment introduces random bandwidth
variations between nodes to assess DBPF’s performance in
more dynamic environments. The network configurations for
this experiment include two cycles: Cycle 1 with an average
number of neighbors per node set to 8 and Cycle 2 with an
average number of neighbors per node set to 15. For each
cycle, three different network sizes are tested: 30, 70, and 180
nodes. For each configuration, a random network topology is
generated, and random bandwidth values are assigned to each
pair of nodes to mimic real-world conditions where network
bandwidth can vary. The total propagation time (PT) and the
number of exchanged blocks (NB) are measured for DBPF,
DONS, RTT, and RNS algorithms. The primary objective is
to verify DBPF’s efficiency in environments with fluctuating
bandwidth and to compare its performance against other well-
known algorithms (DONS, RTT, RNS). By simulating realistic
network conditions, we aim to highlight DBPF’s adaptability
and robustness in maintaining low propagation times and
efficient block propagation, even when network bandwidth
varies significantly. The results from these experiments are
presented in Table II.

The results of the second experiment, conducted under
varied bandwidth conditions, provide a comprehensive eval-
uation of the performance of the Dynamic Block Propagation
Framework (DBPF) compared to DONS, RTT, and RNS. The
experiments were conducted on two different average neighbor
settings (8 and 15) with randomly generated bandwidth values
to simulate realistic network conditions. The bandwidth values
for the first set of experiments ranged from 1000 to 10000 Bps,
while the second set ranged from 5000 to 100000 Bps.

The experiments clearly demonstrate the impact of band-
width variability on propagation time across different algo-
rithms. In scenarios with lower average neighbors (8), DBPF
consistently outperformed other methods. For instance, with
70 nodes, DBPF achieved a propagation time of 140.46 ms
compared to DONS (647.99 ms), RTT (5406.97 ms), and RNS
(16553.99 ms). This indicates that DBPF is highly efficient in
utilizing available bandwidth, leading to reduced propagation
times.

In scenarios with higher average neighbors (15), DBPF
continued to show superior performance. With 30 nodes,
DBPF recorded a propagation time of 93.91 ms, significantly
lower than DONS (154.92 ms), RTT (1121.16 ms), and RNS
(4998.62 ms). This trend persisted with 70 nodes and 180
nodes, where DBPF consistently demonstrated lower propa-
gation times, highlighting its robustness in handling varying
network conditions and higher node densities.
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Fig. 5. Comparison of total propagation time for different algorithms in two experimental setups

TABLE II. PERFORMANCE OF DBPF, DONS, RTT, AND RNS UNDER VARIED BANDWIDTH CONDITIONS (BA MODEL)

Model Nodes Avg. Neighbors Total Propagation Time (ms)
DBPF DONS RTT RNS

BA 30 8 160.26 630.43 1609.75 10345.17
BA 70 8 140.46 647.99 5406.97 16553.99
BA 180 8 219.80 865.98 18618.33 63783.90
BA 30 15 93.91 154.92 1121.16 4998.62
BA 70 15 111.12 167.33 2084.82 10820.95
BA 180 15 130.91 217.12 5694.26 44358.25

To quantitatively assess the performance improvement of
DBPF, we calculate the percentage reduction in propagation
time compared to DONS. For instance, with 180 nodes and
8 average neighbors, DBPF achieved a propagation time of
219.80 ms, while DONS recorded 865.98 ms. The percentage
improvement is calculated as follows:

Percentage Improvement =
(

DONS Time − DBPF Time
DONS Time

)
× 100

Percentage Improvement =
(

865.98 − 219.80

865.98

)
× 100 ≈ 74.61%

Similarly, with 30 nodes and 15 average neighbors, DBPF
showed a 39.38% improvement over DONS. These substan-
tial improvements demonstrate the efficiency of DBPF in
minimizing propagation time, and enhancing overall network
performance.

Let TDBPF and TDONS represent the propagation times of
DBPF and DONS, respectively. The percentage improvement
Pimprovement can be expressed as:

Pimprovement =

(
TDONS − TDBPF

TDONS

)
× 100

The experiments also showed significant differences in the
number of exchanged blocks (NB) across different methods.
For instance, DBPF required no redundant block exchanges

compared to RTT and RNS, reflecting its efficiency in reducing
network load and overhead
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Fig. 6. Comparison of propagation time between DBPF and DONS.

These results underscore the effectiveness of DBPF in
optimizing network performance, even under varying and
challenging bandwidth conditions. The framework’s ability to
reduce propagation time significantly while maintaining low
overhead highlights its potential for enhancing the scalability
and efficiency of blockchain networks. As shown in Fig. 6,
the DBPF algorithm consistently outperforms DONS across
various network sizes and bandwidth conditions.
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Experiment 3:

In this experiment, we investigate the efficiency of the
Dynamic Block Propagation Framework (DBPF) implemented
with different compression algorithms, specifically focusing on
Brotli compression. The goal is to evaluate the performance
of DBPF using Brotli in comparison with other widely-used
compression techniques, zlib [29] and zstandard [30], under
identical network conditions and the same block size. The
Barabási-Albert (BA) model is employed to simulate realistic
network environments.

The experiment consists of two cycles. In the first cycle, the
number of nodes is set to 100 and 280, with an average number
of neighbors per node fixed at 18. The bandwidth is kept
constant at 10,000 bps to maintain a controlled environment.
In the second cycle, the number of nodes is increased to 280
and 450, with the same average number of neighbors per node,
but the bandwidth is randomly generated within the range of
1,000 to 10,000 bps to simulate dynamic network conditions.

The primary objective is to compare the performance of
DBPF using Brotli, zlib, and zstandard compression algo-
rithms. Zlib, a widely used compression library, provides a
good balance between speed and compression ratio and is
often utilized for data storage and transmission. Zstandard,
developed by Facebook, offers high compression efficiency and
fast decompression speeds, making it ideal for large-scale data
compression tasks.

Metrics used to evaluate performance include total prop-
agation time (ms). The hypothesis is that Brotli compression
will outperform zlib and zstandard in reducing propagation
time and optimizing network efficiency, demonstrating the
robustness and scalability of the DBPF framework. The results
from this experiment aim to provide a comprehensive analysis
of the most efficient compression technique for enhancing
blockchain network performance.

As it is shown in Table III, the results of this exper-
iment highlight the effectiveness of the DBPF framework,
particularly when using the Brotli compression algorithm. The
propagation times for DBPF-Brotli were consistently lower
than those for DONS and the other compression algorithms
across all tested configurations. For instance, with 100 nodes
and a fixed bandwidth of 10,000 bps, DBPF-Brotli achieved
a propagation time of 105.65 ms, significantly outperforming
DONS, which recorded 496.73 ms. Even when compared
with other compression algorithms, DBPF-Brotli maintained
its superiority, with DBPF-Zlib at 107.32 ms and DBPF-
Zstandard at 216.80 ms. As the number of nodes increased to
280, DBPF-Brotli continued to show excellent performance,
recording a propagation time of 91.45 ms, while DONS
and DBPF-Zstandard recorded 627.63 ms and 297.06 ms,
respectively. This trend was also observed when the bandwidth
was randomly generated within the range of 1,000 to 10,000
bps. With 280 nodes, DBPF-Brotli achieved a propagation
time of 163.32 ms, compared to DONS at 1496.8 ms, DBPF-
Zlib at 171.27 ms, and DBPF-Zstandard at 189.71 ms. When
examining the performance with 450 nodes under random
bandwidth conditions, DBPF-Brotli again demonstrated su-
perior performance with a propagation time of 99.65 ms.
In contrast, DONS recorded 842.38 ms, DBPF-Zlib recorded
101.23 ms, and DBPF-Zstandard recorded 105.75 ms.

VI. CONCLUSION

The Dynamic Block Propagation Framework (DBPF) intro-
duced in this study addresses key challenges in blockchain net-
works, such as limited transaction throughput, large blockchain
sizes, scalability issues, and consensus protocol limitations.
By integrating optimal neighbor selection (ONS) and ad-
vanced data compression techniques, specifically utilizing the
Minimum Spanning Tree (MST) computation for efficient
communication paths and the Brotli compression algorithm for
data reduction, DBPF significantly enhances the performance
of blockchain networks. Extensive experiments conducted us-
ing the Barabási-Albert (BA) model under various network
conditions demonstrated the superiority of DBPF over existing
methods. The outcomes of the presented research demonstrated
a notable enhancement in block propagation across networks
of diverse sizes, outperforming current state-of-the-art ap-
proaches. In networks with 180 nodes and 8 average neighbors,
DBPF achieved up to a 74.61% improvement in propagation
time compared to DONS. Further, DBPF outperformed RTT
and RNS by 88.20% and 99.65%, respectively, under the same
conditions. These results highlight the effectiveness of DBPF
in reducing propagation time and enhancing overall network
throughput. Additional experiments under varied bandwidth
conditions confirmed the robustness and adaptability of DBPF.
The framework maintained superior performance with both
fixed and randomly generated bandwidths, demonstrating its
flexibility in real-world scenarios. Evaluations with different
compression algorithms, including Brotli, zlib, and zstandard,
further underscored the efficiency of DBPF. Notably, DBPF
using Brotli consistently outperformed other methods, validat-
ing the benefits of combining optimal neighbor selection with
advanced compression techniques.

In summary, the DBPF framework offers a scalable and
efficient solution for blockchain networks, significantly reduc-
ing block propagation time and increasing network throughput.
These findings underscore the potential of DBPF to address in-
herent scalability challenges in blockchain technology, paving
the way for more robust and efficient blockchain operations.

While the current study demonstrates the effectiveness of
DBPF, several areas for future research can further enhance
the framework’s capabilities. Firstly, exploring the integration
of DBPF with emerging consensus algorithms such as Proof
of Stake (PoS) or Delegated Proof of Stake (DPoS) could
provide insights into optimizing blockchain performance under
different consensus mechanisms. future work could focus on
implementing adaptive compression techniques that dynami-
cally select the most suitable algorithm based on real-time
network conditions and data characteristics.
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