
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

A Secure Scheme to Counter the Man in the Middle
Attacks in SDN Networks-Based Domain Name

System

Frank Manuel Vuide Pangop1, Miguel Landry Foko Sindjoung2, Mthulisi Velempini3
IUT-FV of Bandjoun, University of Dschang, Bandjoun, Cameroon1

Department of Computer Science, University of Limpopo, Mankweng, South Africa2,3

Abstract—Internet and computer networks are vulnerable to
cyber-attacks which compromise the services they provide to
facilitate the management of data and users. The domain name
system (DNS) is the Internet service that translates domain
names and computer IP addresses and IPs to domain names.
DNS is sometimes a victim of attacks that are difficult to
detect and prevent because they are not only very stealthy but
also conceal its proper functioning. Among the attacks that
DNS is subject to, there are man-in-the-middle (MITM) attacks.
Traditional networks that centralize all network functions in a
single device complicate the detection and protection of systems
against these attacks challenging. Software-defined networking
(SDN) is a technology that is widely used to address many
traditional network problems such as security and network
architectures. Therefore, in this paper, we propose a scheme
designed to detect and block man-in-the-middle attacks based
on a newly defined architecture. The effectiveness of our secured
solution is evaluated in an SDN architecture where an Address
Resolution Protocol spoofing MITM attack is generated for the
evaluation purpose. The results of our simulations show that we
can effectively detect the attack and the performance evaluation
of our approach shows that the proposed solution is effective in
terms of security, implementation cost and resource consumption.
We then recommend the use of our proposed solution to address
the MITM attacks in SDN networks-based Domain Name System.

Keywords—Cyber security; domain name system; man in the
middle attack; software defined networking

I. INTRODUCTION

Cybersecurity protects computer systems from malicious
attacks. Cybersecurity [1] is the set of measures and practices
which protect computer systems, networks, data and users
against attacks, intrusions and online threats. Interestingly,
human error counts for 50-80 % of network outages [2] due
to misconfigurations made by administrators when configuring
a network. These attacks also affect the domain name system
(DNS).

The DNS is a hierarchical, distributed system for associat-
ing domain names with IP addresses. DNS is also vulnerable to
attacks [3]. New forms of attacks that are stealthy and sophis-
ticated [4] are difficult to address in traditional networks. The
use of new technologies, such as software-defined networking
(SDN) is a new networking paradigm that facilitates network
management and administration by providing an interface to

This work is based on the research supported by the National Research
Foundation of South Africa (Grant Numbers: 141918).

control network infrastructure such as switches which can be
employed to address the security problem.

DNS servers are victims of several attacks because of their
role and visibility on the Internet. Some of the common attacks
are amplification and DoS attacks, botnets and attacks using
DNS, DNS Zone transfer attacks, and DNS manipulation.
DNS manipulation compromises DNS resolvers responsible
for manipulating DNS responses [5]. In recent years, several
researchers have focused on finding ways to counter DNS
manipulation that uses active measurements to profile open
resolvers. In this paper, we focus on DNS manipulation, more
precisely on the man-in-the-middle (MITM) attack.

The MITM attack is an interference where an attacker
eavesdrops, intercepts, or manipulates communication between
two or more parties to steal information. In DNS, the attacker
manipulates DNS servers or cache to redirect users to fraud-
ulent sites to steal information or download the malware [6].
The attacker using a MITM attack intercepts communication
on the communication channel and pretends to be a receiver to
the sender and the sender to a receiver. This can be possible
following two scenarios: firstly, communication between the
two entities is not secure, in other words, the start of the
communication is not preceded by an authentication; secondly,
the two parties communicate over an insecure communication
channel, such as public Wi-Fi or an unencrypted network. So,
an attacker can intercept and manipulate the messages.

It is, therefore, necessary to find effective mechanisms to
prevent and detect MITM attacks in DNS to ensure the security
and confidentiality of users’ communications. This involves
implementing protection mechanisms such as encryption of
communications, mutual authentication, Intrusion Detection
System/Intrusion Prevention System (IDS/IPS), and the use
of protocols such as Secure Socket Layer/Transport Layer
Security (SSL/TLS). In this article, we propose a solution to
detect and block MITM attacks on DNS servers based on a
new SDN architecture.

The rest of this paper is organized as follows: in Section
II, we present the related work. We then present our proposed
scheme to address the MITM attacks in SDN networks-based
DNS in Section III. Thereafter, we present the simulation
results and analysis in Section IV. Finally, we conclude the
paper in Section V.

www.ijacsa.thesai.org 1195 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

II. STATE OF THE ART

In the literature, many solutions have been proposed to
counter security attacks in SDN architecture. In this section,
we review some of the related works.

In study [7], Sungmin et al., proposed a new security
extension named Topoguard to the existing OpenFlow con-
trollers to provide automatic and real-time detection of network
topology poisoning attacks in an SDN architecture. Their
solution is premised on the poisoned network visibility and the
upper-layer OpenFlow controller, services/applications may be
misled, leading to hijacking, denial of service or MITM at-
tacks. Topoguard is based on SDN/OpenFlow topology service
security analysis for vulnerability identification. Sungmin et al.
have proposed a network topology poisoning attack to exploit
the vulnerabilities their solution has identified. Moreover, they
investigated the defence space and proposed an automatic
mitigation approach against network poisoning attacks and a
prototype defence system.

In study [8], Cheng et al. investigated the potential threats
that the OpenFlow control channel may face from the MITM
attacks. They proposed an attack model in an IoT-Fog archi-
tecture and they also demonstrated the consequences of these
attacks. Based on the previous demonstration, Cheng et al. [8]
proposed a lightweight countermeasure based on Bloom filters.
Anass et al. [9] proposed a Context-Based Node Acceptance
(CBNA) framework to mitigate the MITM threats based on
the authentication of new nodes using OpenFlow switches in
a software-defined network. The CNBA framework takes place
when new nodes attempt to connect to the controller for the
first time and make a decision based on the response time of
nodes.

Sahri et al. [10] proposed a collaborative SDN authentica-
tion (CAuth) which blocks the spoofed packet while authenti-
cating the legitimate packet when establishing communications
between a client and the DNS server within an SDN architec-
ture. Their solution allows authentication of the two entities
wishing to communicate with each other (client and DNS).
The authentication is made between the client controller and
the DNS server controller. When the DNS server controller
receives the query packet, it sends an authentication packet
to the clients that initiate the communication; when the DNS
server controller receives an authentication from the client, it
replies with the DNS reply to the client. During this exchange,
the switch flow table is updated from a match check with
the incoming packet to detect the attacking packets. This
method can discriminate legitimate packets from attacking
ones. Moreover. it can block the attacks before they reach the
DNS server, but it consumes a lot of bandwidth. Main focus
in this paper will be on the MITM attacks

III. THE PROPOSED SCHEME TO ADDRESS THE MITM
ATTACKS IN DNS BASED ON SDNS

In this section, we present our contribution to counter the
MITM attacks in DNS based on SDN networks. We present a
SDN architecture (Section III-A) within which our proposed
secure MITM attacks algorithm (Section III-B) is executed.

Fig. 1. The proposed architecture.

A. The Proposed Architecture

The proposed architecture is organised into two main
layers: the infrastructure layer and the control layer. These
two layers are linked by a communication interface which
promotes interaction between them. The proposed architecture
is shown in Fig. 1 and includes some modules at each layer.
The communication interface acts as a bridge between the
infrastructure and the control layers. Its main role is to ensure
data transfer from one layer to another. The roles of each layer
are discussed below:

1) The infrastructure layer: The infrastructure layer is
responsible for collecting and transmitting data to the post
traffic layer in the network for analysis. The data collection
is done according to the rules defined by the control layer.
Importantly, this layer has the various network equipment that
are DNS server and hosts as shown in Fig. 1. The following
modules are incorporated in the infrastructure layer:

• The communication module: It is used to establish
communication rules between the DNS server of the
infrastructure layer and the controller in the control
layer through the communication interface. The col-
lected data is transmitted to the control layer, other-
wise, no verification will be made at that layer for
attack detection.

• The element insertion module: It is responsible for
filtering the data stream collected from the parameters
defined by the controller. If these parameters are not
defined, then all the network data flow is sent to the
control layer, resulting in the increase of the work-
load in the controller and consequently, the analysis
of some incoming data may be ignored, causing a
security risk in the network.

2) The control layer: This layer is responsible for overall
network monitoring. In other words, it allows the management
and control of the flow of data transmitted in the network.
This layer works through the controller. The controller fulfils
or applies all the functions of the control layer and serves as a

www.ijacsa.thesai.org 1196 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

bridge between the applications and the infrastructure layer.
Our proposed algorithm (Algorithm 1) which mitigates the
MITM attacks is executed in this control layer.

B. The Proposed Algorithm

To detect the MITM attacks in DNS based on SDN net-
work, we propose Algorithm 1 named MITM attack detection
(MitAL). MitAL works as follows: Firstly, the rules for DNS-
controller communication are established. After the traffic is
generated, the transmitted packets are captured and sent to the
controller for analysis. If the packet is of ARP type then an
attack is detected. If the MAC address of the packet is not
the expected one or there is no corresponding MAC address
in the MAC-IP table, it is classified as malicious. The MAC
address received with the incoming packet is considered as
MAC address of a malicious node. Therefore, a notification
is sent to all the DNS servers of the network to block all
communications from the host with the detected malicious
MAC address. Moreover, if the packet is of IP type then
an attack is detected if the IP address is valid and the three
following conditions are satisfied:

1) The IP address of the node is external to the logical
network

2) The response time is greater than the defined thresh-
old value, and

3) The received IP address is not the expected one.

In the previous scenario, a notification is sent to all the DNS
servers of the network to block all the communications from
the host with the detected malicious IP address.

Algorithm 1: MitAL:MITM attack detection
Input: Thr: Threshold in milliseconds, ip to mac = ():

MAC-IP address table;
1 Capture packets after generating network traffic;
2 Retrieve information (types) about each incoming

packet;
3 For each packet P Do
4 If ARP packet Then
5 Extract (src mac, src ip) of packet;
6 If ip to mac[P.src ip] != P.src mac Then
7 Block all the communications from the host

with MAC address src mac

8 Else
9 If IP packet Then

10 Extract (src ip, dst ip) of packet;
11 If src ip is valid Then
12 time← Calculate response time();
13 mask← Check if is external (src ip) to

network;
14 source← Check if src ip !=

expected(src ip);
15 If (time ≥ Thr) and mask and source Then
16 Block all the communications from

the host with ip address src ip

To evaluate the effectiveness of our scheme, we perform
some simulations where we compare our algorithm to those
presented by authors in studies [9] and [10]. The generated
results are presented in Section IV.

IV. SIMULATIONS AND ANALYSIS

This section presents the results of our simulations. These
simulations were performed using Mininet* as a network
emulator because it creates a network of virtual hosts, switches,
controllers and links, and therefore it can be used to build
SDN. As a network security tool for analysing, penetration
testing and protocol analysis, we have used Ettercap†. Ettercap
is a comprehensive suite of tools that allows users to sniff,
intercept, and manipulate network traffic in real time. It was
used in our simulations to generate the MITM attacks. Wire-
shark‡ was also used to capture and analyse network traffic
in real time. It can support a range of protocols and various
capture interfaces. Table I summarizes the details of the used
simulation environment and Fig. 2 shows testbed environment.

TABLE I. SIMULATION ENVIRONMENT

Tool Version
OS Ubuntu 22.04 LTS

Python 3.10
Mininet 2.3.0
Ettercap 0.8.3.1

Wireshark 3.6.2
Ryu controller 4.34

Fig. 2. Testbed environment.

We have used the Mininet generator to create SDN network
topology on Ubuntu 22.04 LTS installed on a laptop with
an intel core i3 processor, RAM - 4GB, Hard disk - 30GB.
We used the Ryu controller for network management and
monitoring (We justify the choice of the controller in Section
IV-A). The SDN network set-up includes a Ryu controller,
one open vSwitches (s1) acting as DNS server, and six end-
hosts (h1-h6). The non-malicious hosts are h3 and h4, and
the malicious host is h1. To generate normal traffic between
non-malicious hosts, we used iperf3 and ping command and
we generated an attack (ARP spoofing - MITM attack) traffic
using Ettercap. The use of Wireshark assisted us in retrieving
more details or information about the attack.

*http://mininet.org
†https://www.ettercap-project.org
‡https://www.wireshark.org

www.ijacsa.thesai.org 1197 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

A. Choosing the Suitable Controller for our Simulations

To choose the suitable controller to be used in our sim-
ulations, We evaluated three existing controllers designed for
mininet environments: Ryu, Pox and Floodlight. The evalua-
tion was inspired by the work presented in study [11]. The
parameters used for comparison are presented in Table II.

The evaluation was done by generating traffic and varying
the number of switches from 5 to 100 in order to obtain ac-
curate results. During this time, data related to bandwidth and
latency were collected and the resulting graphs are presented in
Fig. 3(a) and Fig. 3(b). The evaluated controllers are Ryu, Pox
and Floodlight. In Fig. 3(a), we observed that overall, the Pox
controller consumes more bandwidth compared to the Ryu and
Floodlight controllers, especially when the number of switches
is less than 64. At the same time, the Ryu controller consumes
more bandwidth than Floodlight. However, in Fig. 3(b), we
observed that the latency is overall the best when using the Ryu
controller compared to the Pox (medium) and Floodlight (Bad)
controllers. In conclusion, among the evaluated controllers,
Ryu is moderate in bandwidth consumption and the best for
latency. For this reason, it was selected and used in our
simulations.

B. Attack Detection using Flow Table

After traffic is generated by an attacker, the protocol stores
any information about each incoming packet according to
different fields defined in the flux table. By inspecting this
table and the contained information, we were able to detect the
presence of a MITM attacker in the communication between
the two non-malicious hosts as illustrated in Fig. 4. It shows the
contents of the flow table before and after attack generation.
Before the attack, normal traffic between the non-malicious
hosts is observed without interference in their communications.
After the attack is launched, the attacker initiates, intercepts
and manipulates the communication between the legitimate
hosts by impersonating one of the two entities according to the
sent packet. The highlighted green and red areas respectively
represent the non-malicious and the attacking hosts.

C. Capturing Network Traffic using Wireshark

We used wireshark for overall network capture and analysis
to detect the attack and to have more details and information
about the attack. Fig. 5 illustrates a wireshark capture of all
traffic generated in the network. We can observe normal com-
munication between network hosts using the ICMP protocol.
An example of attack traffic is observed by the area highlighted
in red where we note a host which initiates communication be-
tween the two non-malicious nodes to intercept and manipulate
the traffic. We also observe that the protocol used is modified
in ARP since in the ARP spoofing attack, the size and the
information on the packets are modified.

Fig 6(a) and 6(b) illustrate the content of a request and a
response sent from the attacking host; when communicating
with a non-malicious host. They show the request and reply
content from the attacker. Each of these messages contains a
header and a body specific to it. The header allows to see some
information about the message in transit. That is, the detection
of an attacking host is effective, both in packet transmission
and reception.

D. Performance Based on Bandwidth and Latency

Bandwidth is used to determine a network’s ability to
transfer information/packets over a defined period. Generally
expressed in Mbits/sec (can also be expressed in Kbits/s or
Gbits/sec), in our work, we expressed it in Gbits/sec. Latency
in a network is the time it takes for an entire data packet
to be sent from one point to another. It is measured in
milliseconds (ms) and can be influenced by various factors
such as the distance between the two points, the quality of the
connection, and the number of hops between the points. To
compare our algorithm according to bandwidth and latency
in the network, we simulated an exchange of packets and
collected the associated data to represent it in graphs illustrated
in Fig. 7(a) and 7(b).

Fig. 7(a) depicts the comparative bandwidth results of
our algorithm (MitAL) and the work of Anass et al.[9]
(CBNA). The results show that: for five (5) switches the
CBNA consumes less bandwidth than MitAL, however, for
n = [10, 20, 32, 64, 100] where n is the number of switches,
MitAL consumes less bandwidth than CBNA. From this com-
parison, we can conclude that our algorithm minimises the
bandwidth consumption.

Fig. 7(b) shows the latency between our algorithm (MitAL)
and the work of CBNA framework of Anass Sebbar et al.
[9]. The graph obtained from the collected data illustrates that
for n = [5, 10, 32, 100] where n is the number of switches,
the latency occurred by MitAL is better than that of CBNA.
This comparison show that our algorithm minimises the latency
since in most of the considered points our algorithm achieved
better performances.

E. Traffic without Protection vs. Traffic with MitAL

Fig. 8 shows the comparison between the network traffic
without protection and the traffic with our proposed solution
(MitAL). We can observe and conclude that when the net-
work is not protected and the attack is generated, the packet
transmission time is high which means that the latency is
high. Unlike with our algorithm and the associated security
protocols, we observe that this time is considerably reduced.
This shows the effectiveness of our protocol.

F. Detection Rate by Number of Generated Attacks

To evaluate the performance of our algorithm, we used the
attack detection rate parameter. This rate is determined from
the number of generated attacks, and it shows the performance
in terms of detection when the MITM attack generated from
different sources. It is computed using evaluation metrics
such as throughput, available bandwidth when the attack is
generated, and analysis of network communications to deter-
mine healthy packets from the number of packets exchanged,
attacked and lost (percentage).

We have compared MitAL to the solution by Anass et
al. (CBNA) [9] and that of Sahri et al. (CAuth) [10]. The
comparison graph is provided in Fig. 9. When analysing that
figure, we can conclude that our solution outperforms CBNA
and CAuth when the number of generated attacks increases
until it reaches 60. From that point, the detection rate is still
better for MitAL compared to CAuth, but less than that of
CBNA, which is quite satisfactory.

www.ijacsa.thesai.org 1198 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

(a) A comparative test based on bandwidth (b) A comparative test based on latency

Fig. 3. A comparative study between controllers that may be considered.

Fig. 4. Communication handling by attacker.

Fig. 5. Packets capture in wireshark.

(a) Capturing request body from attacker (b) Capturing reply body from attacker

Fig. 6. Data captured from attacker.

www.ijacsa.thesai.org 1199 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

TABLE II. PARAMETERS USED FOR TESTING

Parameters Bandwidth Latency
Topology type Linear (n switches, n hosts) Linear (n switches, n hosts)

IP address range for hosts 10.0.0.1-10.0.0.n 10.0.0.1-10.0.0.n
Traffic generating tool iperf3 ping
Graph generating tool gnuplot gnuplot

TABLE III. COMPARATIVE STUDY BETWEEN SOME EXISTING PROTOCOLS

Protocol Type of attacks Security mesure Security protocols Detection rate
Sahri et al. [10]
(CAuth)

IP Spoofing Authentication TLS 75%

Anass et al. [9]
(CBNA)

MITM Latency TLS 82%

Our protocol (Mi-
tAL)

MITM Authentication, Latency,
Cryptographic Keys

TLS, SSL 86%

(a) Evaluation based on bandwidth (b) Evaluation based on latency

Fig. 7. Performance evaluation of our algorithm.

Fig. 8. Traffic comparison.

G. Discussion

In the previous sections, we presented results that we gen-
erated through simulations. The results show that the detection
of malicious nodes is efficient. Secondly, the results provide
detailed information about the attacks (the MAC addresses,
the protocol used, and the data contained in the packets).
Once an attack is detected, the protocol displays information
about the attacking node and builds a flow rule to block its
communication in the network by blocking its connection port
as shown in Fig. 10.

Fig. 9. Detection rate by number of attacks generated.

Fig. 10. System response to block attacker.

As presented in Table III, our proposed MitAL protocol for
DNS servers in an SDN architecture aims to address MITM
attacks like CBNA [9] unlike CAuth [10] that address the
IP Spoofing attacks. The secure methods used by MitAl are
authentication, latency and cryptographics keys while CBNA

www.ijacsa.thesai.org 1200 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

only uses latency and CAuth uses authentication. Furthermore,
CAuth and CBNA are based on TLS as a security protocol
while MitAl uses both TLS and SSL. Finally, it should be
noted that MitAL has a detection rate of 86%, which is higher
than the 82% of CBNA and the 75% of CAuth protocols.

V. CONCLUSION

The DNS is the victim of many kinds of attacks that are
difficult to detect and prevent. Among these attacks, are MITM
attacks. MITM attacks cause several problems in real-life
networks such as tampering, integrity violation and exposure
or divulging of confidential or user data. In this paper, we
proposed a scheme which is based on SDN architecture.
The scheme detects and blocks the MITM attacks on DNS
servers. We first presented our designed SDN architecture
then we proposed an algorithm that is implemented by the
SDN controller to guarantee the security of communications
between different trusted hosts of the network, and finally,
we presented the simulations results we generated through
simulations. The results show that our secure algorithm is
effective and efficient in detecting MITM attacks. A compar-
ison with other existing algorithms shows that our proposed
solution is superior. We therefore recommend our proposed
algorithm (MitAL) as a suitable candidate for use to mitigate
the effects of MITM attacks on the DNS server. Despite our
results being satisfactory, we believe that the use of Machine
Learning techniques can significantly improve the efficiency
of our solution. This aspect will be explored in detail in future

REFERENCES

[1] N. R. Gade and U. Reddy, “A study of cyber security challenges and
its emerging trends on latest technologies,” 02 2014.

[2] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: defending sdns from
malicious administrators,” 08 2014.

[3] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in SDN: A
comprehensive survey,” Journal of Network and Computer Applications,
vol. 159, p. 102595, 2020.

[4] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, “Realtime ddos
defense using cots sdn switches via adaptive correlation analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 7, pp.
1838–1853, 2018.

[5] M. Kuhrer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz, “Going
wild: Large-scale classification of open dns resolvers,” in Proceedings
of the 2015 Internet Measurement Conference, ser. IMC’15. New
York, NY, USA: Association for Computing Machinery, 2015, pp.
355–368. [Online]. Available: https://doi.org/10.1145/2815675.2815683

[6] A. Khormali, J. Park, H. Alasmary, A. Anwar, M. Saad, and D. Mo-
haisen, “Domain name system security and privacy: A contemporary
survey,” Computer Networks, vol. 185, p. 107699, 2021.

[7] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures,” in Ndss,
vol. 15, 01 2015, pp. 8–11.

[8] C. Li, Z. Qin, E. Novak, and Q. Li, “Securing sdn infrastructure of
iot fog networks from mitm attacks,” IEEE Internet of Things Journal,
vol. 4, no. 5, pp. 1156–1164, 2017.

[9] A. Sebbar, K. Zkik, M. Boulmalf, and M. D. E.-C. El Kettani, “New
context-based node acceptance cbna framework for mitm detection in
sdn architecture,” Procedia Computer Science, vol. 160, pp. 825–830,
2019.

[10] N. Sahri and K. Okamura, “Protecting dns services from ip spoofing:
Sdn collaborative authentication approach,” in Proceedings of the 11th
International Conference on Future Internet Technologies, ser. CFI ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
83–89.

[11] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Sdn controllers:
A comparative study,” in 2016 18th mediterranean electrotechnical
conference (MELECON). IEEE, 2016, pp. 1–6.

www.ijacsa.thesai.org 1201 | P a g e


