
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

104 | P a g e

www.ijacsa.thesai.org

Migrating from Monolithic to Microservice

Architectures: A Systematic Literature Review

Hossam Hassan, Manal A. Abdel-Fattah, Wael Mohamed

Information Systems Department, Helwan University, Egypt

Abstract—Migration from monolithic software systems to

modern microservice architecture is a critical process for

enhancing software systems' scalability, maintainability, and

performance. This study conducted a systematic literature review

to explore the various methodologies, techniques, and algorithms

used in the migration of monolithic systems to modern

microservice architectures. Furthermore, this study underscored

the role of artificial intelligence in enhancing the efficiency and

effectiveness of the migration process by examining recent

literature to identify significant patterns, challenges, and optimal

solutions. In addition, it emphasizes the importance of migrating

monolithic systems into microservices by synthesizing various

research studies that enable greater flexibility, fault tolerance,

and independent scalability. The findings offer valuable insights

for both researchers and practitioners in the software industry.

In addition, it provides practical guidance on implementing AI-

driven methodologies in software architecture evolution. Finally,

we highlight future research directions in providing an

automation technique for the software architecture migration.

Keywords—Software migration; software evolution; monolithic

architecture; microservice architecture; systematic literature review

I. INTRODUCTION

Over the last decade, software architecture has significantly
changed. Software was initially monolithic, integrating all
components into a single unit. However, as software systems
grew more complex, limitations in scalability, flexibility, and
maintainability appeared. This encourages an investigation of
intermediary architectural patterns like micro-kernel
architecture and service-oriented architecture (SOA). Micro-
kernel architecture has a minimal core system with only the
most important functions while delegating additional
functionalities to modular, user-space components, whereas
SOA focuses on breaking software down into loosely coupled
services. These evolutions paved the way for a new
microservices architecture, which divides software into tiny,
autonomous, single-need components.

Most software businesses worldwide have adopted the
modern microservice architecture because of its significantly
increased scalability, maintainability, flexibility, and ease of
development [1], [2]. In addition, many software businesses,
like Amazon, Uber, Netflix, and Spotify, are adopting this
architectural approach, and the transition to microservices is
well underway [3]. Microservice architecture can be
represented by a collection of tiny services, each operating in
its own process and interacting using lightweight protocols like
HTTP (Hypertext Transfer Protocol), developed around
business needs and delivered independently [2], [4].

The microservices architecture solves many monolithic
system issues. Some of the major benefits of microservices
include scalability, which improves resource utilization and
peak performance, and flexibility, which allows development
teams to pick the best tools and technologies for each service,
resulting in more customized and efficient solutions, as well as
fault tolerance, which prevents system failures from affecting
all services, improving resilience and reliability [3].

During the migration to the microservice architecture, some
software warehouses that have monolith-based systems attempt
to decompose them into coherent microservice-based
implementations. The purpose of this decomposition is to
occasionally assist software architects in identifying
microservice candidates by analyzing the application's domain,
business needs, source code, and version-related information
[5], [6], [7].

Nevertheless, software vendors have been exerting efforts
to manually migrate from monolithic to microservice-oriented
application ecosystems. Scalability, component independence,
data management, service communications, deployment, and
monitoring are some of the efforts [1], [8]. This migration
process is subjective, requires human judgment, and is prone to
errors. Expert opinions are required for this process, as is
software engineers' proficiency in microservice extraction and
system quality preservation [9]. Besides, extracting
microservices is becoming a complex process because there is
no clear or straightforward method for defining the boundaries
of microservices. The first and most challenging stage in
breaking down a monolithic application involves identifying
microservice boundaries. Insufficient identification may lead to
more complex systems with lower quality [1].

To address this gap, there is an increasing interest in using
AI and ML algorithms to facilitate the migration process. AI-
driven methods, such as search-based techniques and clustering
algorithms, make it possible to automatically find microservice
components and improve the decomposition of systems.
However, the majority of the studies fail to identify relevant
and potential microservices, and they struggle to determine the
appropriate number of candidate microservices while also
ensuring their granularity and loose coupling [10].

This paper aims to conduct a comprehensive and systematic
literature review to analyze and identify the most important
methods and techniques used for facilitating the migration
process of software from monolithic systems to modern
microservices. The review also aims to compare the results in a
detailed manner through a systematic literature review (SLR),

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

105 | P a g e

www.ijacsa.thesai.org

which can serve as a foundation for developing effective
solutions.

This paper's subsequent sections follow this structure:
Section II encompasses the background and motivation, while
Section III presents the research methodology. Section IV
provides an overview of the current state of knowledge and
understanding regarding the process of software migration.
Section V presents the findings of this literature review.
Section VI covers the conclusion of this literature review and
offers suggestions for future work and improvements.

II. BACKGROUND

Monolithic and microservice architectures are two different
methodologies for designing and constructing software
systems. A variety of factors influence the choice between
them. Each architecture possesses its own advantages and
disadvantages, and the determination should be made
considering the particular requirements and limitations of the
project. In the following subsections, we will provide
additional information regarding the similarities, differences,
advantages, and disadvantages of the two architectural styles.

A. Monolithic Architecture

A single deployed unit is referred to as a monolith. A
monolithic system necessitates the simultaneous deployment of
all functionalities. Deploying all code as a unified process,
consolidating all code into a single process, characterizes a
monolithic architecture [2].

The modular monolith, a new version of the single-process
monolith, divides the single process into multiple distinct
modules developed separately; however, deployment requires
the combination of these modules. It might be an optimal
solution for several enterprises and software warehouses
because it defines module boundaries well, provides a
significant amount of parallel work, overcomes the
complexities associated with the distributed microservice
architecture, and adopts a simpler deployment topology [2],
[11]. Differences between monolithic and modular monolithic
software architectures can be shown in Fig. 1. Shopify is an
example of a company that uses this technique as a substitute
for microservice deconstruction, and it appears to be quite
effective for them.

Unfortunately, the monolith has recently become a symbol
of avoidance and is often associated with legacy systems.
However, it is actually a viable option based on the system's
requirements and specifications. Some of the advantages of
monolithic architecture are listed below [2], [12]:

1) Faster and rapid deployment topology: Avoids

numerous distributed system issues.

2) Workflows for developers are simpler to manage.

3) Simpler monitoring and troubleshooting: End-to-end

testing is simplified.

4) Code reuse is simple enough, without any duplication.

Nevertheless, an important issue with the modular monolith
architecture is that the database does not have the same degree
of decomposition as the code, making it difficult to separate the
monolith in the future [2].

Fig. 1. Demonstrating the distinctions between monolithic and modular

software architecture.

B. Microservice Architecture

Microservices are designed to be loosely coupled and
independently deployable, but they may still rely on different
coordination patterns to handle distributed transactions and
inter-service communication, which are designed based on a
specific business domain and potentially released separately. A
service is a module that has specific functionality and allows
other services to access it over networks. By combining these
modules, the software warehouses could create more intricate
and enterprise systems. Each microservice might represent a
specific aspect of the system. When combined, these
microservices form a complete enterprise system. In other
words, they are a kind of service-oriented architecture that has
a certain viewpoint on how service boundaries should be
defined with the ability to deploy independently. Fig. 2 showed
an example of a microservice architecture construction.

A single microservice appears as a black box. One or more
network endpoints, such as a SOAP or REST API, host
business functionality using appropriate protocols. Through
these networked endpoints, consumers—microservices or
programs—access this capability. The outer world conceals
implementation elements like service technology and data
storage. In most cases, microservice designs encapsulate their
own databases instead of using common databases.

Microservices conceal information within their components
and deliver minimal information through external interfaces.
The hidden microservice implementation can be freely updated
as long as the changes do not introduce incompatible
modifications to the network interfaces it exposes. Changes
made within a microservice boundary should not affect
upstream consumers, allowing for separate functionality
releases. Clear, consistent service boundaries that don't alter
with internal implementation lead to looser coupling and
greater cohesiveness. Some of the advantages of microservice
architecture are listed below:

1) Deployability independence: Allows for modification

and deployment without relying on other microservices.

2) Business domain-based model: Makes it easy to bring

out new functionality and recombine microservices to provide

consumers with new capabilities.

3) Owning their own state: Microservices must avoid

relying on shared databases. Instead, it needs to request data

from another microservice in order to access it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

106 | P a g e

www.ijacsa.thesai.org

Fig. 2. A microservice architecture for an online shopping system.

III. RESEARCH METHODOLOGY

To achieve our goal of automatically migrating software
architecture from monolithic to microservice, SLR was
employed to analyze the migration process. This investigation
encompassed the use of AI and other techniques to automate
the process. SLR was chosen in this study due to its advantages
over conventional literature reviews in terms of accuracy,
effectiveness, and organization. It aids in the identification of
our objectives, the assessment of their outcomes, and the
classification of them into categories. This SLR is comprised
of three primary steps, which are as follows [13], [14], and
[15]:

1) Planning and preparing the review.

2) Performing the review.

3) Reporting the review.

A. Phase 1: Review Planning

Starting with these steps, this phase covers the core of SLR:

1) Clearly state questions the study will address:

RQ1: Which AI methods are effective for automated
microservice architecture migration?

RQ2: What are the primary obstacles and impediments that
organizations face during the migration process, and how can
AI-driven solutions overcome these challenges?

RQ3: What are the criteria used to assess the effectiveness
and success of AI-driven migration strategies?

2) Choose appropriate research repositories: Within the

SLR, various online digital libraries were used, including but

not limited to IEEE Xplore, Google Scholar, Science Direct,

Springer, and MDPI.

3) Establishing research criteria: The search strings were

chosen based on the SLR keywords and the alternatives to

those keywords found in Software Architectural Evolution. As

can be seen in Table I, these search strings were divided into

two distinct categories.

4) Software Migration Process.

5) Monolithic to Microservice.

TABLE I. SEARCH STRINGS FOR THE SYSTEMATIC LITERATURE REVIEW

GROUP Search String

Software

Migration

(“Software Migration” OR “Software Architectural
Evolution” OR “Software Architecture Transformation” OR

“Software Evolution” OR "Software Architecture")

 AND

monolithic to

Microservice

(("Legacy", "Monolithic", "Monolithic system", "Single-

layer application", "Modular Monolithic"))
 AND

(("Microservices", "Microservices pattern", "Microservice

architecture", "Service-oriented architecture (SOA)")

6) Providing clear definitions of inclusion & exclusion:

The guidelines for the inclusion and exclusion criteria for this

SLR were established by Kitchenhem [13].

The following criteria for inclusion were listed:

IC1: A journal publication or conference presentation are
required for the research selection.

IC2: Studies should focus on software migration process,
especially the migration from monolithic to microservice.

IC3: AI, ML, and other algorithms or solutions for software
migration should be applied.

IC4: Studies published between 2018 and 2024.
Microservices were introduced earlier, but the latest studies
show the recent implementations, challenges, and innovations.

The following criteria for exclusion were listed:

EC1: Studies that failed to address the research questions.

EC2: Studies that ignored software migration process.

EC3: Studies that didn’t include microservices.

EC4: Publications published prior to 2018.

7) Establishing standards for measuring quality: This

phase was significant because we compared and checked the

quality of the selected studies to our objectives, research

questions, and goals.

B. Phase 2: Performing the Review:

1) Primary data selection: During this stage, filtration

methods were employed to apply search criteria and determine

inclusion and exclusion criteria. The process of selecting the

primary studies has started. The Tollgate approach was

implemented to enhance the effectiveness and efficiency of the

selection process in a systematic and organized manner [13].

2) Data extraction: The study selection was guided by

specific criteria, including research methodology, publication

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

107 | P a g e

www.ijacsa.thesai.org

year, kind of study, and any restrictions or limitations imposed

on the studies.

3) Data synthesis: The collected studies were assessed and

compared with our research questions and study objectives.

C. Phase 3: Reporting the Review:

During this phase, selected studies were verified and
compared against quality criteria. Fig. 3 shows the process of
SLR, indicating a well-organized collection of studies available
for discussion and investigation, with R representing the
number of research studies in each step.

Fig. 3. The SLR selection process.

IV. STATE-OF-THE-ART

This section examined the studies selected for analysis,
reviewing, and discussion.

Jin et al. [16] proposed a functionally-oriented microservice
extraction (FoME) method that uses clustering of execution
traces and classifies source code entities according to their
functionality. The authors evaluated their method against three
methods (LIMBO, WCA, and MEM) across four open-source
projects. Their findings showed that FoME produces
microservices with comparable cohesiveness to other methods
and achieves much looser coupling. However, their method
relies on high-quality test cases, with future efforts geared
toward full automation of the process.

Sellami et al. [1] proposed a method called MSExtractor,
which identifies microservices as multi-objective optimization
problems using an indicator-based evolutionary algorithm
(IBEA) while considering structural and semantic
dependencies in the source code. They conducted a benchmark
of seven software systems to assess the effectiveness of their
method. Their findings demonstrated that MSExtractor
outperformed other clustering algorithms like FoME and MEM
mentioned in [16], [17]. Nevertheless, their method was limited
to four web applications and lacked generalization. Future
work should consider non-functional evaluation metrics.

Velepucha et al. [18] concentrated on breaking down
microservice architectures. They compared different concepts,

compiled a list of microservice architecture patterns as shown
in Table II, and discussed the advantages and disadvantages of
microservices over monolithic architectures. Future work and
limitations include adapting micro-frontends, automatically
migrating the decomposition process, restricting the results to
an object-oriented approach, and further evaluating the
literature.

TABLE II. LIST OF PATTERNS USED IN MICROSERVICE DECOMPOSITION

PROCESS

Pattern / Description

Domain-Driven: Developing software systems focusing on business logic.

Service discovery: Addressing service interactions and communications.

Data-driven: Design systems around data behavior or structure. Data is key.

Backend for frontend: Developing services tailored to frontend clients.

Adapter microservice: Transforming microservices functionality data.

Strangler-application: Incrementally migrate to microservice.

Shared data microservice: Sharing and managing microservice data.

Aggregator microservice: Aggregate data from multiple microservices.

On the other hand, Kazanavičius et al. produced the
conceptual model, which aims to migrate a monolith database
into a multi-model polyglot persistence system [19]. They
assessed their proof of concepts using the ISO/IEC 25012:2008
standard's definition of quality attributes. Their findings
indicate that their proposed method can effectively transition
data storage from a monolithic to a microservice architecture.
Future direction includes the need to automate the solution and
the fact that their model's adoption depends on single app.

Nordli et al. [20] focused on monolithic solution vendors;
they struggle to convert monolithic products into multi-tenant
cloud-native SaaS solutions because many clients, especially
large enterprises, want customized products. The authors
presented a proof of concept that outlines a combined approach
for transforming monoliths into microservices-based,
customizable cloud-native SaaS. Their findings demonstrated
that a customization-driven migration approach can guide a
monolith towards becoming a SaaS. Their limitations included
the unavailability of datasets, the need for expert evaluation
and the use of real-world systems to generalize the results, and
the requirement for an automatic migration process.

Velepucha et al. [21] performed a SLR and provided a list
of challenges, and benefits that arise when carrying out the
migration process, as shown in Table III. Some limitations and
future work include the necessity to analyze the pros and cons
of each architecture, as well as automate the migration process.

TABLE III. CHALLENGES ENCOUNTERED THROUGHOUT THE SOFTWARE

MIGRATION

Problem/Challenges

Utilizing an appropriate tool during the

migration process.

Perform the entire microservices

migration without breaking it down.

Reorganizing stakeholders is required
when implementing microservices.

Challenges in identifying and
designing microservices.

Desiring to transition all monolithic
programs to microservices

Ensure the consistency when
transitioning across databases.

Attempting to integrate new technologies into a monolithic application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

108 | P a g e

www.ijacsa.thesai.org

Faustino et al. [11] performed a case study of transforming
systems to microservices using a modular monolithic
architecture. They discovered that a modular monolithic
architecture could simplify the migration process. Additionally,
it addresses issues related to performance optimization,
eventual consistency, and inter-microservice communication.
However, their method's limitation to a single migration case
study hinders its generalizability.

Blinowski et al. [12] compared the performance and
scalability of monolithic and microservice architecture by
implementing a reference web application with two different
technologies and architectural styles. Moreover, they selected
three distinct deployment scenarios. Their findings indicated
that monolithic architectures outperform microservices on a
single machine, with Java handling computation-intensive
tasks more efficiently than .NET. For non-computational
services on machines with limited power, Azure's vertical
scaling proves more cost-effective than horizontal scaling. In
future studies, the authors intend to enhance the complexity of
their benchmarking system, broaden its application across
cloud platforms, and incorporate more performance metrics.

Bastidas Fuertes et al. [22] used Transpiler in the software
architecture design model's back-end layer to automatically
transform business logic from one source code to several
equivalent versions. They tested the model for performance,
scalability, and reliability in various scenarios and compared it
with existing software design models to identify its pros and
cons. Their result showed that the proposed model seeks to
save costs, optimize the development process, and enhance the
effectiveness of multi-programming language platforms.
Nevertheless, the authors acknowledged the need for refining
the model's effectiveness for generalizing the result.

Mazzara et al. [8] presented a case study to illustrate the
advantages of transforming a monolithic into a microservice on
scalability. The case study focuses on the FX Core system,
which is critical for Danske Bank. They compared the two
architectures, and the results showed that microservices have
resulted in enhanced scalability and effectively resolved the
significant issues posed by the monolithic. However, their
findings lack insights, validation, and verification.
Furthermore, the case study utilizes agile methodologies,
which limits the generalizability of the results.

Assunção et al. [10] adopted an approach to redesigning
features into microservices by employing search-based
techniques to quantitatively assess potential redesign
possibilities for monolithic features as microservices based on
four criteria: coupling, cohesion, network overhead, and feature
modularization. To evaluate their findings, an interview with
eight monolithic system developers was conducted to get their
feedback. Their findings showed that their approach
demonstrates positive results and encourages more exploration.
To justify configurability, future directions include
generalizing results and suggesting specific criteria associated
with variability.

Teguh Prasandy et al. [23] presented a method of
modularizing application source code, databases, and cloud
servers to identify the necessary preparations needed to make a
successful transition to microservices. Their findings

demonstrated that migrating to microservices can present
challenges and affect stockholders, particularly system analysts
and developers. Moreover, it's crucial to isolate program blocks
during deployment and determine the upload time to prevent
any failures. They utilized the Postman tool to assess the REST
API as both a REST client and an application. Future research
will include assessing the capacity of cloud servers, and
evaluation is necessary to generalize the findings.

By calculating the metrics (latency, throughput, scalability,
CPU usage, memory usage, and network usage) needed to
compare the source and target applications, Fondazione et al.
[24] developed a method to determine if migrating to
microservices is beneficial. Their findings showed that
monolithic works well with small to medium systems, which
are typically defined by the project's overall size and
complexity. The substantially higher scalability ratio of the
microservice system supports the hypothesis that it performs
better than a monolithic design for systems with too many
concurrent users, especially when it comes to handling more
traffic. Additionally, researchers conducted benchmarking
experiments to evaluate their results. Future work includes
testing on a real-life system, utilizing an alternative
programming language, and ensuring security.

Abgaz et al. [25] conducted a SLR by examining 35
studies. Their results showed that the process of breaking down
a monolith into microservices is still in its early stages, and
there is a lack of techniques for integrating static, dynamic, and
evolutionary data. The lack of adequate tool support is also
apparent. The author conducted their SLR using Barbara
Kitchenham's principles as a guide, as we illustrated in Section
III. The authors suggested focusing on microservice
deployment and standardizing analysis measurements.

Tapia et al. [26] assessed the performance and correlation
of monolithic and microservices applications. They stress-
tested their results using the same characteristics and hardware
specifications. Furthermore, a mathematical model using the
non-parametric regression method verified their studies'
findings. Their results showed that monolithic and
microservice can serve various technological situations.
However, microservices improve hardware resource efficiency,
cost savings, and productivity. Future directions include
enhancing information security and combating cyberattacks.
Moreover, automation tools for migration are required.

Kuryazov et al. [27] proposed a conceptual model for
solving the issue of migrating from a monolithic architecture to
microservices, especially the decomposition steps. Their
conceptual model is still in its early stages and needs more
evaluation and testing in a real industry. They need to develop
a method for evaluating software using cohesion and coupling
measurements, which will simplify the analysis of monolithic
systems and estimate the migration effort. Additionally, they
should create a tool that facilitates the extraction of software
metadata and business logic.

Auer et al. [28] presented a decision support framework for
software companies seeking to transition to microservices.
Their framework is based on an examination of a set of
characteristics and metrics, which they collected and reviewed
through interviews with experts. Their findings provided data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

109 | P a g e

www.ijacsa.thesai.org

and measurements that companies could use to assess
microservices adoption. Future work includes validating the
framework, identifying automatically applicable measures that
can easily reduce decision subjectivity, and adding cloud-
native technologies and micro-frontend architecture.

Daoud et al. [7] used a business process to identify needs,
data, and semantics to capture dependencies between these
processes, as well as a collaborative clustering technique to
recommend microservices. Results showed that the approach
outperformed similar ones for microservices identification and
highlighted the importance of business processes. Future
directions are as follows: generating new activity relationships
utilizing powerful machine learning, including NLP, and
evaluating various activity dependence models for
microservice identification. The identification of microservices
may be impacted by security concerns, which could be an
intriguing development.

Hasan et al. [29] presented a collection of software
architecture metrics, including coupling, complexity, cohesion,
and size, to assess the maintainability of microservice
architectural designs. Results showed that the suggested
metrics criteria are more applicable for implementation in
industrial settings. On the other hand, case studies from the
real-world industrial sector need to be analyzed and applied to
the suggested metrics to assess their efficacy. Furthermore, a
tool-based methodology must be developed for evaluating the
architectural quality of potential microservices.

Oumoussa et al. [30] performed a systematic literature
review that highlighted critical areas requiring more attention,
such as enhanced automated identification tools and
standardized evaluation standards. Their findings showed that
many techniques exist for identifying microservices; however,
they often focus on particular challenges and abandon others.
In addition, there is a dearth of studies that concentrate on a
solution to address the migration problem.

Abdellatif et al. [31] conducted a comprehensive analysis
of 41 studies. Their research aimed to identify the various
inputs, processes, outputs, and usability of service
identification methodologies in order to modernize monolithic
software. Their findings demonstrate that the categorization
aligns with the experiences of industry professionals and
provides valuable assistance to practitioners in real-world
industrial settings. Future directions include proposing an
approach for identifying services based on their types, which
enhances the potential for reusing them across several levels:
application, enterprise, and business, besides generalizing their
results.

Li et al. [32] proposed a technique to identify microservices
by utilizing the unified model language (UML), which is
derived from the source code. Then, the classes and sequence
diagrams were analyzed, using them as input for clustering
techniques to identify potential microservices. In addition,
experiments were conducted to evaluate the proposed model
and compare it to recent methods. Their findings revealed that
the proposed model outperformed existing models. However,
their results are not generalizable because their proposed model
disregards microservice distributions and quality criteria.

The primary focus of Gomes Barbosa et al. [33] was to
identify potential microservices from database procedures,
specifically targeting monolithic applications developed in the
1980s and 1990s that utilized database procedures. Their proof-
of-concept contributed to identifying duplicated code,
improving system maintainability. For future directions, the
author recommended using machine learning algorithms to
fully automate the process and blackbox/whitebox testing
methods to verify and validate the extracted microservices.

Al-Debagy et al. [34] decomposed monolithic into
microservices architecture using a neural network model
(code2vec). Their findings showed better results compared to
other algorithms. Besides, authors validate their results by
using quality measuring such as message level (CHM) and
cohesion at domain level (CHD). Future directions may include
further development and testing of the proposed model with
other programming languages, as well as training.

Jin et al. [35] proposed the Functionality-oriented Service
Candidate Identification (FoSCI) method, which uses a search-
based functional atom grouping technique to identify service
candidates from a monolithic system's execution traces. The
authors assessed their method with an 8-metric service
evaluation suite to analyze functionality, modularity, and
evolvability. Additionally, the authors evaluated FoSCI against
other methods (LIMBO, WCA, and MEM) to evaluate the
impact of execution trace coverage on performance. Their
results indicate that FoSCI outperforms the compared methods.
However, their method prioritizes functionality over other
quality attributes such as performance, security, and reliability,
which could potentially benefit from future expansion.

Desai et al. [36] introduced a Graph Neural Network
method for refactoring monolithic systems, termed COGCN
(Clustering and Outlier-Aware Graph Convolution Net). This
COGCN combines node representation, outlier detection, and
clustering into a cohesive framework. To judge the quality of
the clusters, four structural and desired metrics: modularity,
structural modularity, non-extreme distribution (NED), and
interface number (IFN) were used. Their results showed that
COGCN works better than other methods like GCN,
Node2Vector, and DeepWalk by improving the quality of
clusters and finding outliers. Future work will include
automatically determining microservice numbers and
addressing procedural programming languages.

Kalia et al. [37] developed an approach called
Mono2Micro. It used well-defined business use cases, spatio-
temporal decomposition, and run-time call relations to
functionally separate application classes. This method works
better than other methods in well-defined metrics that are
specific to the domain, such as FoSCI, MEM, CoGCN, and
Bunch [17], [35], [36], [38] . Their tool was evaluated by using
multiple criteria to verify its efficiency. Future directions focus
on elaborating on the quality criteria, providing further
assistance to develop effective use cases for practitioners, and
generalizing the findings by supporting different programming
languages.

Francisco et al. [39] performed a review of 20 papers
addressing the migration process to microservices. Their
results indicated that the majority of solutions rely on design

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

110 | P a g e

www.ijacsa.thesai.org

aspects, system dependency graphs, and clustering algorithms.
Moreover, the majority of the studies depend on graphs and
categorize them into microservices; 70% focus on web-based
systems, mostly using Java as the main programming language.
However, their study faces constraints due to its reliance on a
single search engine and individual researcher bias.
Furthermore, it advocates for a wider range of migration
methodologies and database migration investigations.

Justas et al. [40] concentrated on the obstacles and
approaches for migrating software to microservices by
reviewing and analyzing different migration techniques;
however, they didn't mention any particular evaluation metrics
used to assess their review. Their results emphasized that the
migration process is complex and expensive, with no one-size-
fits-all solution. Future research includes a focus on developing
standardized migration techniques to address the various issues
posed by legacy systems.

Ren et al. [41] integrated static and dynamic analysis to
examine the characteristics of monolithic systems. They
employed function clustering to facilitate migration and
hierarchical clustering to identify microservice candidates.
They tested their method by comparing performance across
four benchmark applications and validating the migration
algorithm with 12 industrial and open-source applications.
Their findings showed that their proposed method effectively
migrates monolithic applications to microservices with high
accuracy and low performance cost. However, the incomplete
static analysis due to missing function invocations and user
interactions may still limit the completeness of the migration.

Fritzsch et al. [42] conducted a qualitative study using
semi-structured interviews in the context of migration to
microservices. The authors conducted 16 comprehensive
interviews with specialists from 10 software companies across
14 migration cases. Their finding indicated that the biggest
motivations for migration were maintainability and scalability.
Furthermore, many organizations choose a complete rebuild
instead of a codebase breakdown. Principal problems included
identifying the appropriate service cut and developing
proficiency in emerging technologies. However, the sample
procedure, which focuses only on 14 instances and individuals
located in Germany, constrains their research and affects its
generalizability.

Kalske et al. [43] performed a literature review focusing on
architectural migration and associated challenges. Their
findings indicate that organizations use microservices to
mitigate complexity, enhance scalability, and resolve code
ownership challenges. Nonetheless, restructuring and
decoupling the tightly coupled monolith remain a significant
challenge. However, their review lacks credibility and
verification of their results, and there were no guidelines for
conducting the review. Their future directions include
understanding how various organizational structures influence
the effectiveness of microservice adoption.

Vainio et al. [44] combined a case study and literature
review to extract functionality from a monolithic system, then
used microservices to demonstrate realistic real-world benefits
and challenges for the migration process. Their findings
showed significant advantages in scalability, maintainability,

and the ability to use several programming languages for
different services. Furthermore, the independent deployment of
microservices improved system stability and performance.
However, their case study did not thoroughly examine the
architectural complexity and security implications of managing
several microservices in extensive systems, indicating a need
for additional research on these topics.

Eski et al. [45] employed a graph-based clustering
methodology utilizing both static and evolutionary code
coupling to derive microservices from monolithic applications.
They evaluated their method by assessing two projects, which
revealed an 89% success rate; however, certain services
necessitated manual sub-clustering owing to their size. They
planned to continue their research by adding weighted graph
edges to their method, automating sub-clustering thresholds,
and testing it on more projects using different algorithms.

Su et al. [46] conducted a systematic literature review by
examining 32 studies to obtain insights into how software
companies migrated from microservices back to monolithic
architectures. Their study identified cost, complexity,
scalability, performance, and organizational factors as the
primary reasons for reverting. Future directions entail
investigating the phenomenon across various industries and
conducting empirical assessments to generalize the results.

Bandara et al. [47] developed a toolkit that utilized a
fitness iterative function to identify microservices within
monolithic systems. Their toolkit employed service quality
metrics, including functionality, composability, self-
containment, and usage. They compared the tool to manual
microservice identification. Their results showed that their tool
produced microservices like manual identification. Future
directions include support for more programming languages
and architectural patterns, machine learning models, and
context knowledge to improve microservice extraction.

 Michael Ayas et al. [48] examined the migration to
microservices through interviews with 19 individuals from 16
organizations. Their results showed that the migration process
is iterative and takes place on two levels: architectural and
system-level. Moreover, they categorize key activities into four
phases: designing architecture, altering the system, setting up
supporting artifacts, and implementing technical artifacts. The
study acknowledges the researchers' bias and the sample's
representativeness. Future directions include examining more
migration paths and validating results across organizations.

Taibi et al. [49] introduced a process-mining framework to
aid in the decomposition of monolithic systems. Their
framework identifies business processes based on log traces,
clusters similar processes, and uses metrics to evaluate
decomposition quality. A software architect validated their
framework by comparing their results to a manual
decomposition. Their framework revealed decomposition
alternatives and software issues that manual analysis missed in
an industrial case study. Future directions include automating
the process, validating the methodology, and integrating
patterns for microservices connectivity.

Silva et al. [50] conducted two case studies. These studies
identified migration steps and challenges from legacy to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

111 | P a g e

www.ijacsa.thesai.org

microservices. Their findings revealed four main issues:
1) identifying functionalities in large modules; 2) defining
optimal microservice boundaries; 3) choosing features to
convert into microservices; and 4) analyzing candidate
microservice granularity and cohesion. Future steps include
refining and supporting practical guidelines for migrating to
microservice architectures, as well as surveying industry
practitioners to learn more about migration challenges.

Kholy et al. [51] introduced the managing database for
microservices architecture (MDMA) framework. Their
framework indicates that MDMA significantly reduces
execution time and data transfer size compared to a centralized
approach and exhibits superior performance as the volume of
requests increases. Furthermore, it improved flexibility and
resilience, reducing the impact of service failures and
facilitating data transfer during service deployment.
Subsequent research may entail evaluating the framework in
different real-world environments and broadening its
applicability to various microservice architectures.

Antunes et al. [52] investigated the migration of a real-
world application to a micro-frontend architecture. Results
showed that micro-frontends enhance flexibility, team
scalability, and incremental migration. Nonetheless, they
observed increased complexity in the management of
dependencies, environments, debugging, and testing. Future
studies should investigate other projects and implementation
methodologies, with a focus on simplifying dependency
management and integration testing.

Maria et al. [53] investigated the migration towards micro-
frontends. Their study demonstrates how to successfully re-
implement a single-page application (SPA) using micro-
frontends architecture by adopting Webpack to bundle modules
and Cypress for testing. Their findings indicated improvements
in team collaboration, independent deployment, and
performance. Further studies include managing dependencies,
enhancing integration, and evaluating performance.

Fritzsch et al. [54] used SLR to classify 10 existing
approaches based on decomposition techniques. Their findings
identified a lack of universally applicable approaches with
adequate tool support. Future research will combine static code
analysis with runtime data, create decomposition quality
metrics, and automate the migration process.

Lauretis [55] presented a strategy for migrating to
microservice. The author highlighted potential benefits such as
improved scalability, maintainability, and evolvability for
companies. Their strategy consists of five steps, including
function analysis, business identification, business analysis,
assigning functionalities, and creating microservices. However,
their strategy is still in its early stages. Future directions
include automating migration process and testing the strategy
on real systems to gather performance and statistical data.

Nunes et al. [56] used transactional contexts to propose a
microservices migration strategy. They used static code

analysis to identify domain entities and applied a clustering
algorithm to group them. Comparison with expert
decompositions yields promising results. Future work will
enhance the method and broaden the results, while limiting its
applicability to specific frameworks and tools.

Santos et al. [57] proposed a complexity metric to measure
the transition to microservices based on four similarity
measures that examine entity decomposition. These measures
focus on read and write sets, access sequences, and the cost of
relaxing transactional consistency. Their metric was evaluated
using three monolithic systems. Their complexity metric
successfully identified the most complex decompositions.
Future directions include using a combination of dynamic and
static data, as well as further experimentation with a wider
variety of systems.

Ma et al. [58] proposed Microservices Identification using
Analysis for Database Access (MIADA) to account for the
importance of "Database Per Service" in microservices design.
Their approach facilitates clustering service endpoints for
microservice identification. Two service-oriented software
projects (PlanApproval and CoCoME) evaluated their results,
demonstrating that MIADA can successfully recommend
service endpoint clusters for microservice. Future directions
include generating results and enhancing MIADA.

Ghofrani et al. [59] categorized migration challenges into
inertia, anxiety, and context from 17 semi-structured expert
interviews. The most significant barrier was migration anxiety,
followed by inertia and context. Furthermore, they provided
suggestions to overcome these obstacles. Future directions
include evaluating their solutions and creating quality metrics.

Ghofrani et al. [60] conducted a survey of industry experts
to identify challenges in microservices architecture. They
identified critical challenges, including lack of notations,
methods, and frameworks for microservices design, as well as
insufficient tools for selecting third-party artifacts. In addition,
they prioritized security, response time, and performance over
resilience and fault tolerance. Future work includes expanding
the scope and suggesting solutions for these gaps.

Razzaq et al. [61] provided a systematic mapping study on
the migration towards microservices. Their review emphasized
key benefits such as: including independent deployment,
scalability, and lightweight mechanisms after migration.
Besides, identifies migration challenges and success factors
that help guide migration strategies. Future directions include,
identify effective solutions for these areas, providing more in-
depth research for microservice in emerging technologies.

V. RESULTS

As shown in Fig. 4, this SLR analyzed 50 studies published
between 2018 and 2024 that focused on the migration process
from monolithic to microservice. Furthermore, Table IV
provides an overview of the findings from this literature
research, covering the following topics:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

112 | P a g e

www.ijacsa.thesai.org

Fig. 4. Classification of studies examined in this SLR.

A. AI Algorithms and other Techniques:

Few authors emphasized providing proofs of concepts to
support their ideas and provide insights for the migration
process. Some studies conducted real-world industry case
studies, attempting to assess and track the differences in
performance, effort, scalability, and maintainability between
monolithic and microservice architectures and drawing
comparisons between them. Researchers are conducting
extensive research on AI and other algorithmic techniques,
including the indicator-based evolutionary algorithm (IBEA),
neural networks, search-based algorithms, clustering
algorithms, coupling, and cohesion. Additionally, some studies
use SLR to improve their understanding of the microservice
architecture. Fig. 5 presents the study distribution,
demonstrating the use of AI and other clustering techniques in
18 studies, SLR in 13 studies, proof of concepts in 8 studies,
and case studies in the remaining studies.

Fig. 5. Distribution of studies based on methodology.

B. Evaluation Techniques:

Major studies were evaluated and validated using a variety
of techniques, including empirical assessment using a software
system benchmark, the ISO/IEC 25012:2008 standard's
definition of quality attributes, performance, scalability, and
reliability comparisons, and architecture design comparisons.
Other studies utilized cohesion at the domain level (CHD),
conducted interviews with software industry experts, and
utilized Postman tools for evaluation and testing. Fig. 6
presents the evaluation category.

Fig. 6. Categorization of evaluations methods examined in this SLR.

C. Limitation and Future Work

Most studies in the software migration field, particularly
those focusing on microservices, lack validation and
verification of their models for real-world software systems,
leading to a deficiency in generalizing the results of these
studies. This gap emphasizes the need for further empirical
research and actual implementations to test migration models
in varied, real-world scenarios to ensure their robustness and
reliability for wider use. The following is a list of future
directions and areas for analysis and investigation:

1) Consider non-functional criteria.

2) Perspectives of software architects and developers.

3) Automated tools are needed for manual decomposition.

4) Generalizing results by testing on real-world industry.

5) The impact of cloud servers on the migration process is

significant. Hyperscale's such as Azure, AWS, and GCP offer

unique features like scalability options, flexible resource

allocation, and Devops tools.

6) Adopt micro-frontend alongside microservices.

The subsequent discussion and answers correspond to the
research questions outlined in Section III:

RQ1: There is a significant shortage of research on AI and
ML methods in the software migration to microservices
domain. Few studies are employing algorithms like the
indicator-based evolutionary algorithm (IBEA), search-based
techniques, and clustering algorithms. Other studies rely on
comparisons and expert inputs to assess software quality
criteria. The remaining studies offer proof-of-concepts but do
not provide a comprehensive solution. A comprehensive
solution would involve an automated method or algorithm that
utilizes AI to simplify the transition from monolithic to
microservice processes while maintaining performance,
scalability, and availability. Additionally, real-world industry
software systems must evaluate the solutions.

RQ2: The most significant challenges and obstacles in this
domain arise from how software warehouses and architects

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

113 | P a g e

www.ijacsa.thesai.org

break down the logic and databases of software systems into
dozens of interconnected microservices, which complicates the
assurance of effective communication, data consistency, and
the preservation of the system's overall integrity. Furthermore,
it's crucial to consider the manner in which these services will
interact and coordinate with each other. In addition,
microservice architecture must meet non-functional criteria like
performance, scalability, security, and reliability. As suggested
in [7], AI can assist by using powerful ML techniques such as
NLP to analyze the code, documentation, and system
requirements, as well as complex clustering techniques to
decompose the system logics into multiple services. To address
non-functional criteria, it may be beneficial to monitor and
utilize technologies, such as cloud computing and DevOps
methodologies.

RQ3: The evaluation of software migration from
monolithic to microservices is mostly based on comparing the
two architectures and soliciting experts’ opinions and
recommendations. Despite this, AI models and other
algorithms need to be rigorously evaluated and tested in the
real industry to gather feedback from organizations and end
users, enabling us to monitor performance and obtain relevant
insights.

VI. CONCLUSION

This study conducted a systematic literature review to
explore the key challenges, obstacles, and improvements in the
software industry, specifically the migration from monolithic
to microservice architecture. While there is growing interest in
developing AI and other algorithmic techniques to facilitate
this migration process, the field remains in its early stages,
lacking comprehensive, end-to-end solutions that address the

full complexity of the process. Most existing studies focus on
theoretical frameworks, proof-of-concepts, and expert
judgments rather than verifying and validating these
approaches through real-world implementation.

Table IV provides a summary of this literature review,
which includes a list of studies, each describing the methods
used, the evaluation technologies, the results, their limitations,
and future work. Section V addresses detailed answers to the
three research questions. Both would assist software
developers and other authors by providing the foundation for a
comprehensive solution for addressing migration challenges.

The results of this literature study highlight a significant
gap in the creation of effective migration tools and the
validation of these solutions within the software industry. This
emphasizes the need for future research to focus on the
development, evaluation, and validation of automated tools in
real-world environments. Furthermore, the migration process
must emphasize non-functional requirements such as
performance, scalability, reliability, and security. Integrating
DevOps methodologies with cloud computing concepts is
essential for optimizing the advantages of microservice
architectures.

By identifying these gaps, this review emphasizes the
importance of addressing both the theoretical and practical
dimensions of the migration process, providing a roadmap for
future research aimed at enhancing the efficiency,
effectiveness, and scalability of software migrations. Resolving
these challenges will ultimately enhance the industry's ability
to migrate from monolithic systems to modern microservice-
based architectures.

TABLE IV. A CONCISE SUMMARY OF THE RESEARCH FINDINGS FROM THE LITERATURE

R Techniques used Results Limitations and future work

[1] IBEA
Empirical testing showed the proposed approach is more

effective.
Considering non-functional and software evaluation using.

[19] Proof-of- concept
Migrate monolithic data storage to microservice can be

applied.
Automation is needed, and the results are not generalizable.

[18] Literature Review
Patterns for microservices. Microservices vs. monolithic

pros/cons.
There is a need for evaluation, automatic decomposition.

[20] Combined approaches
Customization-driven migration can guide monoliths into

SaaS.
Generalizing results and automating the migration process.

[21] Literature Review
List of challenges and benefits that arise in the migration

process.
Analyze architectures pros and cons and automate migration.

[11] Case Study
Modular monoliths aid migration, consistency, and

communication.
Generalize and apply results to other case studies.

[12] Case Study
Monolithic outperforms microservices, Java is better at

computation.
Increase system complexity and deploy to various clouds.

[22] Case Study Their model optimizes development processes. Generalizing the result required model improvement.

[8] Case Study
Microservices improved scalability and solved the monolithic
issues.

Expanding proof of concepts to generalize the results.

[10]
Search-based

techniques

Promising strategy could be applied to other monolithic

systems.
The model needs to be configurable and generalized.

[23] Case Study
The migration affects stakeholders. Upload time affects
deployment.

Cloud servers' application support and generalize the findings.

[24] Case Study
Monolithic suits small-medium apps, but microservices are

scalable.
Real-world testing. Ensuring security among microservices.

[25] Literature Review
Microservices migration in its early stages, with few methods
exists.

Consider deployment and microservice identification metrics.

[26] Case Study
Microservices boost hardware efficiency, productivity, and

cost.
Develop migration tools is needed and secure microservices.

[27] Proof-of- concept
The conceptual model solve system breakdown migration
steps.

Software business logic extraction tool need.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

114 | P a g e

www.ijacsa.thesai.org

[28] Decision framework
A complete microservices adoption measuring set for

enterprises.
Validating framework and adding cloud-native technologies.

[7] Clustering techniques Microservices work better and stress business processes. Using AI to identify microservices and security concerns.

[29] Coupling and cohesion The suggested metrics criteria are better for industrial use.
Evaluates microservice assessment using real-world case

studies.

[30] Literature Review Emphasize automated identification and evaluation standards.
Studies focused on specific challenges and lack migration
tools.

[31] Literature Review
The study shows that categorization helps industrial

professionals.
Grouping services by type may help generalize results.

[32] Clustering techniques Results showed the proposed model outperformed others. Generalizing the results.

[33] Proof-of- concept The model found duplication and improved maintainability. Automation using ML and black/white box for validation.

[34] Neural network The proposed algorithm performed better than others.
Testing the model in other languages and training on source

codes.

[37] Clustering techniques Mono2Micro outperforms other methods.
Elaborate on the quality criteria and develop effective use
cases.

[35]
Search-based

techniques

FoSCI is better in service quality, functionality, and

modularity.
Performance, security, and reliability are ignored.

[36] Clustering techniques COGCN improves cluster quality and outlier identification. Determining microservice numbers and procedural languages.

[16] Clustering techniques FoME provides cohesive microservices with looser coupling.
Ensure the use of high-quality test cases and automate the
process.

[39] Literature Review Most research used design, dependency graphs, and clustering. Biased results and more migration methods are advocated.

[40] Literature Review
Migration is complicated and expensive, with no single

solution.
Standard migration methods to address legacy system issues.

[41] Clustering techniques
Their microservice migration method was accurate with low

cost.
Generalizing the results by adopting user interactions.

[42] Qualitative study Maintenance and scalability encouraged migration. Generalizability is limited by the 14-person German sample.

[43] Literature Review
For simplicity, scalability, and ownership, firms use
microservices.

Their results lack credibility and verification.

[44] Case Study
Microservices are scalable, maintainable, stable, and

multilingual.
Security and architectural complexity need more research.

[45] Clustering techniques
Their method revealed 89% success rate of extracted
microservice.

Testing on different clustering algorithms to enhance the
model.

[46] Literature Review
Cost, complexity, and organization drive monolithic

Reverting.

Examining the phenomenon across industries and

generalizing.

[47] Toolkit Toolkit produced microservices like manual identification. Supporting more languages, patterns, ML models, and context.

[48] Qualitative study
Migration occurs on two levels: architectural and system-
level.

Researcher bias and sample representativeness affect findings.

[49] Process-mining
Framework outperforms manual analysis in industrial case

studies.

Automating the process, validating, and integrating more

patterns.

[50] Case Study
Module’s size, boundaries, features, and cohesion are

challenges.
Survey industry specialists and refine microservice migration.

[51] MDMA framework MDMA improve runtime, data transfer, flexibility. Testing the framework in real-world and expanding its use.

[52] Case Study
Micro-frontends improve migration, scalability, and
flexibility.

Dependencies, debugging, and testing require further research.

[53] Case Study SPA enhances deployment, collaboration, and performance.
Managing dependencies, enhancing integration and

performance.

[54] Literature Review Lack of universally approaches with adequate tool support.
Automate migration with static code analysis and runtime
data.

[55] Proof-of- concept Improved Company scalability, maintainability, and evolution. Automating migration process and testing on real systems.

[56] Clustering techniques
Comparison with expert decompositions yields promising

results.
Improve the method and generalize the results.

[57] Clustering techniques
Their metric successfully identified the complex
decompositions.

Using dynamic and static data, along with further
investigation.

[58] Clustering techniques
MIADA can successfully recommend service endpoint

clusters.

Future directions include generating results and enhancing

MIADA.

[59] Qualitative study
Anxiety, inertia, and context were the most barriers in
migration.

Evaluating their proposed solutions and creating quality
metrics.

[60] Literature Review
Microservices design notations and method were critical

challenges.
Expanding the scope and suggesting solutions for these gaps.

[61] Literature Review
Emphasized independent deployment, scalability, and
lightweight.

Provide research in emerging technologies to find solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

115 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] K. Sellami, A. Ouni, M. A. Saied, S. Bouktif, and M. W. Mkaouer,
“Improving microservices extraction using evolutionary search,” Inf
Softw Technol, vol. 151, Nov. 2022, doi: 10.1016/j.infsof.2022.106996.

[2] S. Newman, “Building Microservices SECOND EDITION Designing
Fine-Grained Systems.”

[3] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, “Smells and
Refactorings for Microservices Security: A Multivocal Literature
Review,” Apr. 2021, [Online]. Available:
http://arxiv.org/abs/2104.13303

[4] M. G. de Almeida and E. D. Canedo, “Authentication and Authorization
in Microservices Architecture: A Systematic Literature Review,”
Applied Sciences (Switzerland), vol. 12, no. 6, Mar. 2022, doi:
10.3390/app12063023.

[5] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, “Towards
Automated Microservices Extraction Using Muti-objective Evolutionary
Search,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Springer, 2019, pp. 58–63. doi: 10.1007/978-3-030-
33702-5_5.

[6] S. Li et al., “A dataflow-driven approach to identifying microservices
from monolithic applications,” Journal of Systems and Software, vol.
157, Nov. 2019, doi: 10.1016/j.jss.2019.07.008.

[7] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar, and A.
El Fazziki, “A multi-model based microservices identification
approach,” Journal of Systems Architecture, vol. 118, Sep. 2021, doi:
10.1016/j.sysarc.2021.102200.

[8] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and
S. Dustdar, “Microservices: Migration of a Mission Critical System,”
IEEE Trans Serv Comput, vol. 14, no. 5, pp. 1464–1477, 2021, doi:
10.1109/TSC.2018.2889087.

[9] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating Towards
Microservice Architectures: An Industrial Survey,” in Proceedings -
2018 IEEE 15th International Conference on Software Architecture,
ICSA 2018, Institute of Electrical and Electronics Engineers Inc., Jul.
2018, pp. 29–38. doi: 10.1109/ICSA.2018.00012.

[10] W. K. G. Assunção et al., “A Multi-Criteria Strategy for Redesigning
Legacy Features as Microservices: An Industrial Case Study,” in
Proceedings - 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2021, Institute of
Electrical and Electronics Engineers Inc., Mar. 2021, pp. 377–387. doi:
10.1109/SANER50967.2021.00042.

[11] D. Faustino, N. Gonçalves, M. Portela, and A. Rito Silva, “Stepwise
migration of a monolith to a microservice architecture: Performance and
migration effort evaluation,” Performance Evaluation, vol. 164, May
2024, doi: 10.1016/j.peva.2024.102411.

[12] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs.
Microservice Architecture: A Performance and Scalability Evaluation,”
IEEE Access, vol. 10, pp. 20357–20374, 2022, doi:
10.1109/ACCESS.2022.3152803.

[13] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering - A
systematic literature review,” Jan. 2009. doi:
10.1016/j.infsof.2008.09.009.

[14] Y. Xiao and M. Watson, “Guidance on Conducting a Systematic
Literature Review,” Mar. 01, 2019, SAGE Publications Inc. doi:
10.1177/0739456X17723971.

[15] Z. Bai and T. Wasson, “Conducting Systematic Literature Reviews in
Information Systems: An Analysis of Guidelines,” 2019. [Online].
Available: https://www.researchgate.net/publication/340686721

[16] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, “Functionality-Oriented
Microservice Extraction Based on Execution Trace Clustering,” in
Proceedings - 2018 IEEE International Conference on Web Services,
ICWS 2018 - Part of the 2018 IEEE World Congress on Services,
Institute of Electrical and Electronics Engineers Inc., Sep. 2018, pp.
211–218. doi: 10.1109/ICWS.2018.00034.

[17] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from
Monolithic Software Architectures,” in Proceedings - 2017 IEEE 24th

International Conference on Web Services, ICWS 2017, Institute of
Electrical and Electronics Engineers Inc., Sep. 2017, pp. 524–531. doi:
10.1109/ICWS.2017.61.

[18] V. Velepucha and P. Flores, “A Survey on Microservices Architecture:
Principles, Patterns and Migration Challenges,” IEEE Access, vol. 11,
pp. 88339–88358, 2023, doi: 10.1109/ACCESS.2023.3305687.

[19] J. Kazanavičius, D. Mažeika, and D. Kalibatienė, “An Approach to
Migrate a Monolith Database into Multi‐Model Polyglot Persistence
Based on Microservice Architecture: A Case Study for Mainframe
Database,” Applied Sciences (Switzerland), vol. 12, no. 12, Jun. 2022,
doi: 10.3390/app12126189.

[20] E. T. Nordli, S. G. Haugeland, P. H. Nguyen, H. Song, and F. Chauvel,
“Migrating monoliths to cloud-native microservices for customizable
SaaS,” Inf Softw Technol, vol. 160, Aug. 2023, doi:
10.1016/j.infsof.2023.107230.

[21] V. Velepucha and P. Flores, “Monoliths to microservices-Migration
Problems and Challenges: A SMS,” in Proceedings - 2021 2nd
International Conference on Information Systems and Software
Technologies, ICI2ST 2021, Institute of Electrical and Electronics
Engineers Inc., Mar. 2021, pp. 135–142. doi:
10.1109/ICI2ST51859.2021.00027.

[22] A. Bastidas Fuertes, M. Pérez, and J. Meza, “Transpiler-Based
Architecture Design Model for Back-End Layers in Software
Development,” Applied Sciences (Switzerland), vol. 13, no. 20, Oct.
2023, doi: 10.3390/app132011371.

[23] Teguh Prasandy, Titan, Dina Fitria Murad, and Taufik Darwis,
“Migrating Application from Monolith to Microservices,” in 2020
International Conference on Information Management and Technology
(ICIMTech), Bandung, Indonesia: IEEE, 2020, pp. 726–731. doi:
10.1109/ICIMTech50083.2020.9211252.

[24] A. B. Fondazione et al., “Migration from Monolith to Microservices :
Benchmarking a Case Study”, doi: 10.13140/RG.2.2.27715.14883.

[25] Y. Abgaz et al., “Decomposition of Monolith Applications Into
Microservices Architectures: A Systematic Review,” IEEE Transactions
on Software Engineering, vol. 49, no. 8, pp. 4213–4242, Aug. 2023, doi:
10.1109/TSE.2023.3287297.

[26] F. Tapia, M. ángel Mora, W. Fuertes, H. Aules, E. Flores, and T.
Toulkeridis, “From monolithic systems to microservices: A comparative
study of performance,” Applied Sciences (Switzerland), vol. 10, no. 17,
Sep. 2020, doi: 10.3390/app10175797.

[27] D. Kuryazov, D. Jabborov, and B. Khujamuratov, “Towards
Decomposing Monolithic Applications into Microservices,” in 14th
IEEE International Conference on Application of Information and
Communication Technologies, AICT 2020 - Proceedings, Institute of
Electrical and Electronics Engineers Inc., Oct. 2020. doi:
10.1109/AICT50176.2020.9368571.

[28] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From monolithic
systems to Microservices: An assessment framework,” Inf Softw
Technol, vol. 137, Sep. 2021, doi: 10.1016/j.infsof.2021.106600.

[29] M. H. Hasan, M. Hafeez Osman, N. I. Admodisastro, and S.
Muhammad, “From Monolith to Microservice: Measuring Architecture
Maintainability,” 2023. [Online]. Available: www.ijacsa.thesai.org

[30] I. Oumoussa and R. Saidi, “Evolution of Microservices Identification in
Monolith Decomposition: A Systematic Review,” IEEE Access, vol. 12,
pp. 23389–23405, 2024, doi: 10.1109/ACCESS.2024.3365079.

[31] M. Abdellatif et al., “A taxonomy of service identification approaches
for legacy software systems modernization,” Journal of Systems and
Software, vol. 173, Mar. 2021, doi: 10.1016/j.jss.2020.110868.

[32] J. Li, H. Xu, X. Xu, and Z. Wang, “A Novel Method for Identifying
Microservices by Considering Quality Expectations and Deployment
Constraints,” https://doi.org/10.1142/S021819402250019X, vol. 32, no.
3, pp. 417–437, Apr. 2022, doi: 10.1142/S021819402250019X.

[33] M. H. Gomes Barbosa and P. H. M. Maia, “Towards Identifying
Microservice Candidates from Business Rules Implemented in Stored
Procedures,” in Proceedings - 2020 IEEE International Conference on
Software Architecture Companion, ICSA-C 2020, Institute of Electrical
and Electronics Engineers Inc., Mar. 2020, pp. 41–48. doi:
10.1109/ICSA-C50368.2020.00015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

116 | P a g e

www.ijacsa.thesai.org

[34] O. Al-Debagy and P. Martinek, “A Microservice Decomposition Method
Through Using Distributed Representation Of Source Code,” Scalable
Computing, vol. 22, no. 1, pp. 39–52, 2021, doi:
10.12694:/scpe.v22i1.1836.

[35] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
Candidate Identification from Monolithic Systems Based on Execution
Traces,” IEEE Transactions on Software Engineering, vol. 47, no. 5, pp.
987–1007, May 2021, doi: 10.1109/TSE.2019.2910531.

[36] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, “Graph Neural
Network to Dilute Outliers for Refactoring Monolith Application,” Feb.
2021, [Online]. Available: http://arxiv.org/abs/2102.03827

[37] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee,
“Mono2Micro: A practical and effective tool for decomposing
monolithic Java applications to microservices,” in ESEC/FSE 2021 -
Proceedings of the 29th ACM Joint Meeting European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, Association for Computing Machinery, Inc, Aug.
2021, pp. 1214–1224. doi: 10.1145/3468264.3473915.

[38] B. S. Mitchell and S. Mancoridis, “On the Automatic Modularization of
Software Systems Using the Bunch Tool.”

[39] P. Francisco, M. Gastón, and A. Hernán, Migrating from monolithic
architecture to microservices: A Rapid Review. IEEE, 2019. doi:
10.1109/SCCC49216.2019.8966423.

[40] K. Justas and M. Dalius, “Migrating Legacy Software to Microservices
Architecture,” Institute of Electrical and Electronics Engineers, 2019, p.
32. doi: 10.1109/eStream.2019.8732170.

[41] Z. Ren et al., “Migrating web applications from monolithic structure to
microservices architecture,” in ACM International Conference
Proceeding Series, Association for Computing Machinery, Sep. 2018.
doi: 10.1145/3275219.3275230.

[42] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
Migration in Industry: Intentions, Strategies, and Challenges,” in
Proceedings - 2019 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2019, Institute of Electrical and
Electronics Engineers Inc., Sep. 2019, pp. 481–490. doi:
10.1109/ICSME.2019.00081.

[43] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges When Moving
from Monolith to Microservice Architecture,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag,
2018, pp. 32–47. doi: 10.1007/978-3-319-74433-9_3.

[44] M. Vainio and T. Antti-Pekka, “The benefits and challenges in migrating
from a monolithic architecture into microservice architecture,” 2021.
[Online]. Available: http://www.cs.helsinki.fi/

[45] S. Eski and F. Buzluca, “An automatic extraction approach - Transition
to microservices architecture from monolithic application,” in ACM
International Conference Proceeding Series, Association for Computing
Machinery, 2018. doi: 10.1145/3234152.3234195.

[46] R. Su, X. Li, and D. Taibi, “From Microservice to Monolith: A
Multivocal Literature Review †,” Apr. 01, 2024, Multidisciplinary
Digital Publishing Institute (MDPI). doi: 10.3390/electronics13081452.

[47] C. Bandara and I. Perera, “Transforming monolithic systems to
microservices - An analysis toolkit for legacy code evaluation,” in 20th
International Conference on Advances in ICT for Emerging Regions,
ICTer 2020 - Proceedings, Institute of Electrical and Electronics
Engineers Inc., Nov. 2020, pp. 95–100. doi:
10.1109/ICTer51097.2020.9325443.

[48] H. Michael Ayas, P. Leitner, and R. Hebig, “The Migration Journey
Towards Microservices,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Springer Science and Business Media
Deutschland GmbH, 2021, pp. 20–35. doi: 10.1007/978-3-030-91452-
3_2.

[49] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining,” in CLOSER 2019
- Proceedings of the 9th International Conference on Cloud Computing
and Services Science, SciTePress, 2019, pp. 153–164. doi:
10.5220/0007755901530164.

[50] H. H. O. S. Da Silva, G. F. De Carneiro, and M. P. Monteiro, “Towards
a roadmap for the migration of legacy software systems to a
microservice based architecture,” in CLOSER 2019 - Proceedings of the
9th International Conference on Cloud Computing and Services Science,
SciTePress, 2019, pp. 37–47. doi: 10.5220/0007618400370047.

[51] M. El Kholy and A. El Fatatry, “Framework for Interaction between
Databases and Microservice Architecture,” IT Prof, vol. 21, no. 5, pp.
57–63, Sep. 2019, doi: 10.1109/MITP.2018.2889268.

[52] F. Antunes, M. J. Dias De Lima, M. Antônio, P. Araújo, D. Taibi, and
M. Kalinowski, “Investigating Benefits and Limitations of Migrating to
a Micro-Frontends Architecture,” 2024.

[53] A. Maria and C. Fulvio, “Exploring Software Architectural Transitions:
From Monolithic Applications to Microfrontends enhanced by Webpack
library and Cypress Testing,” Jul. 2024.

[54] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From Monolith
to Microservices: A Classification of Refactoring Approaches,” 2018.
doi: arXiv:1807.10059.

[55] L. De Lauretis, “From monolithic architecture to microservices
architecture,” in Proceedings - 2019 IEEE 30th International Symposium
Software Reliability Engineering Workshops, ISSREW 2019, Institute
of Electrical and Electronics Engineers Inc., Oct. 2019, pp. 93–96. doi:
10.1109/ISSREW.2019.00050.

[56] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a
microservices architecture: An approach based on transactional
contexts,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2019. doi: 10.1007/978-3-030-29983-5_3.

[57] N. Santos and A. Rito Silva, “A complexity metric for microservices
architecture migration,” in Proceedings - IEEE 17th International
Conference on Software Architecture, ICSA 2020, Institute of Electrical
and Electronics Engineers Inc., Mar. 2020, pp. 169–178. doi:
10.1109/ICSA47634.2020.00024.

[58] S. P. Ma, T. W. Lu, and C. C. Li, “Migrating Monoliths to
Microservices based on the Analysis of Database Access Requests,” in
Proceedings - 16th IEEE International Conference on Service-Oriented
System Engineering, SOSE 2022, Institute of Electrical and Electronics
Engineers Inc., 2022, pp. 11–18. doi: 10.1109/SOSE55356.2022.00008.

[59] J. Ghofrani and A. Bozorgmehr, “Migration to Microservices: Barriers
and Solutions,” 2019, pp. 269–281. doi: 10.1007/978-3-030-32475-
9_20.

[60] J. Ghofrani and D. Lübke, “Challenges of Microservices Architecture: A
Survey on the State of the Practice,” 2018. [Online]. Available:
http://ceur-ws.org/Vol-2072

[61] A. Razzaq and S. A. K. Ghayyur, “A systematic mapping study: The
new age of software architecture from monolithic to microservice
architecture—awareness and challenges,” Mar. 01, 2023, John Wiley
and Sons Inc. doi: 10.1002/cae.22586.

