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Abstract—Cyberattacks are intentional attacks on computer 

systems, networks, and devices. Malware, phishing, drive-by 

downloads, and injection are popular cyberattacks that can harm 

individuals, businesses, and organizations. Most of these attacks 

trick internet users by using malicious links or webpages. 

Malicious webpages can be used to distribute malware, steal 

personal information, conduct phishing attacks, or perform other 

malicious activities. Detecting such malicious websites is a tedious 

task for internet users. Therefore, locating such a website in 

cyberspace requires an automated detection tool. Currently, 

machine learning techniques are being used to detect such 

malicious websites. The majority of recent studies derive a 

limited number of features from webpages (both benign and 

malicious) and use machine learning (ML) algorithms to detect 

fraudulent webpages. However, these constrained capabilities 

might not use the full potential of the dataset. This study 

addresses this issue by identifying malicious websites using both 

the URL and webpage content features. To maximize detection 

accuracy, both ngrams and vectorization methods in natural 

language processing are adopted with minimum feature-set.  To 

exploit the full potential of the dataset, the proposed approach 

derives the 22 common linguistic features of the URL and 

generates ngrams from the domain name of the URL. The textual 

content of the webpages was also used. The research employs 

seven machine learning algorithms with three vectorization 

methods. The outcome reveals that the proposed method 

outperformed the results of previous studies. 

Keywords—Machine learning; N-gram; linguistic features; 

natural language processing (NLP); malicious webpage 

I. INTRODUCTION 

A malicious webpage is a website intentionally crafted to 
harm users or their devices, often orchestrated by hackers and 
cybercriminals utilizing various techniques to exploit 
vulnerabilities. These webpages pose significant threats, 
serving as conduits for malware distribution, personal 
information theft, phishing attacks, and other malicious 
activities. Cybercriminals employ common techniques like 
phishing, where deceptive URLs (Uniform Resource Locators) 

or webpages mimic legitimate sites to trick users into divulging 
login credentials or personal data, facilitating identity theft or 
financial fraud. Another tactic involves drive-by downloads, 
concealing malicious code within a webpage to exploit 
vulnerabilities in users' browsers or operating systems, and 
installing malware without their knowledge. Malvertising 
utilizes legitimate online advertising networks to redirect users 
to malicious pages, aiming to infect their computers with 
malware. Cryptojacking involves hijacking a user's computer 
processing power to mine cryptocurrency for attackers. Once 
users access a malicious webpage, they risk downloading 
malware, suffering personal information theft, or falling victim 
to various attacks. The consequences extend to severe impacts 
on individuals, businesses, and organizations, encompassing 
data theft, financial losses, reputational damage, and even 
physical harm. 

The cost of cyber-attacks continues to rise and is a 
significant concern for organizations across all industries. 
According to IBM's 2024 Cost of a Data Breach Report, the 
global average cost of a breach has increased by 10% since 
2023, reaching $4.88 million [1]. Global cybercrime 
expenditures are anticipated to increase from $3 trillion in 2015 
to $10.5 trillion annually by 2025, according to Cybersecurity 
Ventures research [2]. Phishing attacks, which targeted 1339 
brands, accounted for 36% of US data breaches in 2023. It 
became the second-most expensive source of compromised 
credentials with 5 million unique phishing sites, signaling a 
significant change in the dynamics of breaches across 
industries [3]. The financial impact of a cyber-attack depends 
on factors such as its severity, organizational size, and the 
compromised data. To mitigate these impacts, proactive 
measures like implementing robust security systems and 
conducting employee training programs are essential. While 
conventional security systems often rely on stored lists of 
URLs to block harmful links, recent attacks exploit 
vulnerabilities using short URLs and algorithmically generated 
ones, evading traditional security measures. Consequently, the 
necessity for an automated system employing machine learning 
techniques becomes increasingly critical to detect and prevent 
these evolving cyber threats effectively. Timely detection plays 
a pivotal role in ensuring a proactive defense against cyber 
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threats, effectively safeguarding users and their devices from 
various malicious activities. 

Machine learning-based detection relies on feature 
engineering. The researcher identifies and uses six types of 
features for the detection of malicious webpages such as: 

 Linguistic analysis of URL [3][4]: URL consists of 
several parts such as protocol, domain name, path, 
query-string, etc. Using these parts for the detection 
process such as a number of subdomains in the URLs, 
protocol used in the URL length of the path, etc.  

 Information obtained Domain Name System (DNS) 
[3][5][6]: DNS is a critical component of the internet 
infrastructure, and it plays an important role in the 
functioning of URLs. To generate features, researchers 
obtain information from the DNS server such as server 
location, registration and expiry date of the website, etc. 

 Structural information of webpage [7]: The structural 
information of a webpage refers to the underlying 
organization of the webpage's content, including its 
layout, formatting, and elements of the page. For 
malicious website detection, the researcher analyzes 
HTML tags, DOM objects, CSS, and JavaScript 
elements, and other web page components. 

 Linguistic analysis of webpage contents [8]: This is the 
written content of the webpage, including headings, 
paragraphs, and other text elements. The linguistic 
analysis involves character and word-level analysis to 
find harmful websites, such as finding probable 
keywords, tokens, and keyword weight, etc. 

 Website Reputation [9]: Website reputation or ranking 
refers to the perceived level of trustworthiness, 
authority, and relevance of a particular website, as 
assessed by search engines, users, and other entities. 
Websites with a high reputation or ranking are generally 
viewed as more credible and valuable and may receive 
more traffic and engagement as a result. Ranking of the 
website globally and locally is considered as a feature 
for malicious webpage detection. 

 Visual Similarity of the Webpage [10]: Visual similarity 
of a webpage can be a useful tool in malicious webpage 
detection. Malicious actors may attempt to create 
webpages that are visually similar to legitimate sites to 
trick users into providing sensitive information or 
installing malware. One approach to detecting visual 
similarity in webpages is to use computer vision 
techniques such as image processing, feature extraction, 
and machine learning. These techniques can be used to 
identify and compare visual elements of webpages, such 
as logos, fonts, and layouts. 

Among all these features, researchers preferably use the 
linguistic analysis of URLs because it doesn't involve any 
risks. Web page content, on the other hand, gets less attention 
due to its risky nature. However, in comparison, webpage 
contents are a rich source of malicious webpage detection. The 
majority of recent studies derive a limited number of features 
from the URL and use machine learning algorithms (ML) to 

detect fraudulent webpages. However, these constrained 
capabilities might not use the URL's full potential. This study 
addresses this issue by identifying malicious websites using 
both the URL and webpage content features. To maximize 
detection accuracy with a minimum hybrid feature set, the 
proposed approach uses both URL and webpage contents.  To 
exploit the full potential of the dataset, the proposed approach 
derives the 22 common linguistic features of the URL and 
generates ngrams from the domain name of the URL. 
Moreover, it extracts text from the webpage's paragraph tags. 
In the experiment, three distinct vectorization techniques 
(Count vectorizer, TFIDF, and Hashing vectorizer) are used to 
convert text into real numbered 2-D vectors. Lastly, the 
vectorized features and linguistic features are integrated to 
generate the experimental dataset. The incorporation of 
vectorized contents with URL linguistic features (hybrid 
approach) eliminates the necessity for generating and selecting 
a limited number of features. This ensures the full exploitation 
of the dataset's potential. The research employs seven machine 
learning algorithms. The outcome reveals that the proposed 
method outperformed the results of previous studies. 

Contribution of the paper: 

 Both URL and Webpage contents are utilized to 
generate features. 

 Two different feature sets are generated using URLs of 
the webpages namely linguistic features and character-
level ngrams of the URL 

 Textual contents are extracted from the paragraph tags 
of the webpages. 

 Three different NLP methods (Count vectorizer, 
TFIDF, and Hashing vectorizer) are used to vectorize 
the textual contents such as ngrams of the URL and 
textual contents from the webpages. 

 NLP methods are used for feature generation instead of 
manual feature extraction. 

 A balanced dataset (malicious and benign) is used for 
the experiments. 

 Seven machine learning algorithms are evaluated for 
better detection accuracy. 

 Achieve higher accuracy and f1-score with minimum 
feature set. 

The structure of this paper is organized as follows. 
Section I outlines the significance of the problem and an 
overview of the solution strategy. Existing research is 
presented in Section II.  The NLP techniques and machine 
learning classifiers are presented in Section III. Section IV 
presents the proposed method, and Section V reports the 
experimental results. Section VI provides a conclusion of the 
paper. 

II. RELATED WORKS 

Malicious webpage detection is a critical component of 
web security, as it can help to protect users from a variety of 
online threats, such as malware, phishing, and other types of 
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malicious activity. Extensive research has been conducted in 
this area. Table I summarizes recent research studies in this 
field. Saleem et al. [7] introduced a technique for classifying 
malicious webpages by analyzing their content through 
machine learning and deep learning approaches. The presented 
method exclusively uses of tags, events, keywords, scripts in 
the website for classification. The study utilizes the Kaggle 
dataset. From the dataset, over 206 features are retrieved. The 
selectKbest approach selects the highest-scoring features for 
the experiment. Scores in selectKbest are based on chi-square 
tests. Support vector machine (SVM), random forest (RF), and 
convolutional neural network (CNN) are used to test the 
system. The results demonstrate that random forest and support 
vector machine obtains the accuracy of 93% and 88% 
respectively. Saleem et al. [11] suggested a simple technique 
for detecting malicious URLs. The authors note that traditional 
approaches to malicious URL detection, which rely on 
blacklists and reputation-based systems, are not effective 
against new or previously unseen threats. To address this, the 
authors propose a new approach that uses a set of lexical 
features, including the length of the URL, the presence of 
certain characters, and the number of subdomains, to train a 
machine learning model to detect malicious URLs. The authors 
evaluate their method using a UNB dataset containing over 
68851 URLs, including both malicious (33473) and benign 
(35378) URLs. From the dataset, 27 lexical features were 
taken, and 20 of those features were used in the experiment. 
The study's findings indicate that the suggested method 
achieves high accuracy in detecting malicious URLs, with 99% 
accuracy for random forest (RF) and 98% accuracy for k-
nearest neighbor (k-NN) algorithms, respectively. Malak et al. 
[12] evaluate different feature sets for detecting malicious 
URLs using machine learning and deep learning models. The 
authors note that existing approaches to malicious URL 
detection often rely on a single feature set, which may limit 
their effectiveness. To address this, the authors evaluate three 
different feature sets: lexical, network-based, and content-
based. Many feature selection procedures, including correlation 
analysis, ANOVA, and chi-square, were utilized to select 
features from the dataset. Naive Bayes (NB) was shown to be 
the most appropriate method for identifying malicious URLs in 
the used dataset, with an accuracy of 96%. Kamel [13] 
proposes a new approach for detecting and analyzing phishing 
attacks on social networks, specifically on Twitter. The authors 
note that phishing attacks on social networks are a growing 
problem, and traditional approaches to detecting them, such as 
manual analysis or keyword-based filtering, are not effective. 
To address this, the authors proposed a new approach by using 
machine learning algorithms to identify phishing attacks on 
Twitter. The approach involves analyzing the content of tweets 
and using machine learning to classify them as either phishing 
or non-phishing. For this experiment, a UCI phishing, 
Phishtank, and MillerSmiles datasets were utilized, and 
roughly 25 features were retrieved from the URL, webpage, 
and DNS server. For the studies, LR, SVM and RF were 
applied, yielding 90.28%, 93.43%, and 95.51% accuracy, 

respectively. Lakshmanarao et. al [14] proposes a web 
application for detecting malicious URLs using natural 
language processing (NLP) and machine learning techniques. 
This method makes use of a count, a TFIDF, and a hashing 
vectorizer. The outcome demonstrates that hashing vectorizer 
and random forest obtained 97.5% accuracy. Machine and deep 
learning help detect email-delivered malicious URLs, 
according to Joshi et al [15]. To classify URLs, the proposed 
method relied on their lexical features. The experiment 
employed a dataset from openphish, alexa, and fire eye. The 
proposed method used 23 distinct lexical characteristics to 
distinguish between malicious and benign URLs. Combining 
the lexical features with 1000 trigram-based features yielded 
1023-long numerical vectors to represent the URLs. To 
identify the most important traits, correlation and scatter 
matrices were used. The results show that 92% accuracy is 
achieved by the random forest method. Hong et al. [16] employ 
lexical analysis and feature quantification to identify 
potentially dangerous domain names. The method comprises of 
two stages for accurate and successful detection. A domain 
name is compared in the first step to a blacklist of harmful 
domain links. The degree to which the domain name 
modifications closely resemble the blacklist determines 
whether it is malicious or possibly malicious. In the second 
step, a suspected malicious domain name is assessed using the 
reputation value of an N-gram model. Using the N-gram 
approach, a collection of whitelist/blacklist substrings is 
extracted from the top 100,000 regular Alexa domain names. 
The frequency of substrings on whitelists and blacklists 
determines their weights. Lastly, the authenticity of the 
possibly dangerous domain name is determined by its 
reputation value. The outcome shows that the accuracy rate for 
the proposed method, LA-FQ, is 94.16%. Josh et al. [17] used 
random forest to detect algorithmically generated domains. For 
testing, the dataset comprised regular and algorithmically 
generated domain names from several malware families. 
Masked N-grams and other domain name data were extracted.  
Results show that masked N-grams provide improved 
performance and detection accuracy compared to state-of-the-
art methods. To detect harmful web links using NLP, Saleem et 
al. [18] suggested an ensemble classifier. The author observed 
that feature generation needs effort and topic expertise. 
Sometimes the generated features don't maximize the data set. 
Hence, the suggested method generates a feature set from the 
URL using the NLP method and classifies using an ensemble 
classifier. Two datasets (D1 and D2) were used in the 
experiment. D1 and D2 had 91.4% and 99.1% accuracy, 
respectively. The phishing URL detection method used by 
Ozgur et al. [19] is based on machine learning and a natural 
language processing (NLP) feature set. URLs were broken up 
and features were taken from them. For the experiment, seven 
different machine learning algorithms were used. The author 
states that the proposed method is language-independent and 
uses a large dataset. The outcome demonstrates that random 
forest with NLP features has an accuracy of 97.98%. 
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TABLE I.  SUMMARY OF THE EXISTING WORK 

Author Dataset/Data Source Features Accuracy Issues 

Saleem et al. [7] Kaggle dataset Web content-based features SVM: 88%, RF: 93% 
URL-based features and webpage 

textual contents were ignored. 

Saleem et al. [11] UNB Dataset Lexical features of URL RF:99%, KNN:98% 
Limited number of features. Web 

content features were ignored 

Malak et.al [12] Singh & Kumar Dataset 
Lexical, network-based, and 

content-based features 
NB:96% 

Limited features. The full potential 

of the dataset was not used. 

Kamel et.al [13] 
UCI phishing, Phishtank, 

MillerSmiles datasets 

Lexical, content based and DNS 

server features  

LR: 90.28%, SVM: 

93.43%, RF: 95.51% 

Limited features. The full potential 

of the dataset was not used. 

Lakshmanarao 

et.al[14] 
Kaggle dataset NLP -Vectorizer Methods 

Hashing vectorizer 

with RF: 97.5% 

Potentials of web contents were 

not utilized.   

Joshi et.al [15] Openphish, Alexa, Fire eye 
Lexical Features & N-Gram 
Method 

RF:92% 
Web content features were 
ignored. 

Hong et al. [16] 

Alexa, Anquan organization, 

Malwaredomains.com, 
Malicious domain list, Zeus 

Tracker, Conficker, Torping, 

Symmni, PhishTank 

N-gram Method LA-FQ:94.16% 
Web content & Lexical URL 

features were ignored. 

Josh et.al [17] Alexa, Bader repo extended N-Gram Method RF: 98.91% 
Web content & Lexical URL 

features were ignored. 

Saleem et.al[18] URL, UNB, Phistank dataset NLP -Vectorizer Methods 

Weighted Soft Voting 

Classifier:  
D1:91.4% , D2:99.1% 

Web content & Lexical URL 

features were ignored. 

Ozgur et.al [19] 
Phistank dataset, Yandex 
Search API 

NLP based features RF: 97.98% 
Web content  and other features 
were ignored. 

III. BACKGROUND 

The URL of the webpage and the webpage's content are 
both valuable resources for webpage classification, particularly 
for the detection of malicious webpages. A URL is a string that 
is used as a specific identifier to find resources online. It is 
made up of several components as shown in Fig. 1. Due to its 
risk-free nature, researchers employ the URL of the webpage 
for detection. Two distinct methods are used to extract features 
from the URLs. 

1) Numerical/presence measurement: check the URL for 

the presence of specific words or characters and count the 

occurrence of the specific word or character, 

URL/domain/path length, etc. 

2) Decompose the URL string using the ngram method 

and identify interesting features such as the amount of 2-

grams and the average length of 2-gram tokens, etc. 

 

Fig. 1. Components of an URL. 

Malicious websites can include a wide range of content that 
is intended to trick or exploit users, including fake login pages 
that steal login credentials, malware links that download 
malware onto the victim's computer, phishing forms that steal 
personal information, pop-up windows that direct users to 
phishing sites, redirect links that open phishing sites, malware 
scripts, fake surveys, and more. The textual content of a 

website serves as source for malicious activities. Generally, 
machine learning models operated on numerical features that 
are extracted from the raw dataset (list of url) and represented 
as 2-D array.  However, in addition to a collection of URL 
features, this paper vectorizes URL text using natural language 
processing (NLP) methods. NLP has a set of vectorization 
methods. such as Count, Hashing, and TFIDF vectorizer. 
Vectorization converts text into numerical features. Then the 
vectorized data will be used in machine learning algorithms. 
Table II lists the machine learning algorithms used for the 
experiment. 

a) Count vectorizer [20]: It works by first tokenizing 

the text corpus into individual words or n-grams (contiguous 

sequences of words). It then creates a vocabulary of unique 

tokens in the corpus and assigns an index to each token in the 

vocabulary. Finally, it counts the occurrence of each token in 

each document in the corpus and constructs a matrix of token 

counts, with one row per document and one column per token. 

The resulting matrix can be used as input to a machine 

learning algorithm for various NLP tasks. 

b) TFIDF [20]: It measure the importance of each term 

in a document or a corpus. It considers both the frequency of a 

term in a document and the frequency of the term across the 

entire corpus. The basic idea behind TF-IDF is that a term is 

considered important if it appears frequently in a document 

but is not so common that it appears in every document in the 

corpus. The TF-IDF score of a term in a document is 

calculated by multiplying the term frequency (TF) of the term 

in the document by the inverse document frequency (IDF) of 

the term in the corpus. 

The TF-IDF formula (1,2) can be expressed as follows: 
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𝑇𝐹(𝑡, 𝑑)  =
 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑) /
 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑) (1) 

𝐼𝐷𝐹(𝑡, 𝐷)  
=  𝑙𝑜𝑔_𝑒(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠 
/  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑖𝑡) 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷)  =  𝑇𝐹(𝑡, 𝑑)  ∗  𝐼𝐷𝐹(𝑡, 𝐷)  (2) 

 

𝑤ℎ𝑒𝑟𝑒: 

 𝑡: 𝑎 𝑡𝑒𝑟𝑚 

 𝑑: 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 

 𝐷: 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠 

c) Hashing vectorizer [20]: It is a technique used to 

convert a collection of text documents to a matrix of token 

occurrences. It is similar to Count-Vectorizer in that it creates 

a document-term matrix, but uses a hash function to convert 

each token to a numerical index, rather than storing the tokens 

as strings. This can be useful in situations where the 

vocabulary is very large, and the memory requirements of 

storing all the tokens are prohibitively high. The Hashing-

Vectorizer works by mapping each token to a numerical index 

using a hash function. The resulting numerical index is then 

used as the column index in the document-term matrix. The 

size of the matrix is fixed in advance and depends on the 

number of features (i.e. the number of hashed tokens) that are 

required. This means that the hashing-vectorizer is a stateless 

transformer, and does not need to keep track of the mapping 

between tokens and numerical indices. 

TABLE II.  MACHINE LEARNING ALGORITHMS [21] 

Algorithm Explanation 

Logistic Regression 
(LogR) 

The logistic function, also referred to as the sigmoid 
function, is applied to a linear combination of the 

input variables via the logistic regression procedure. 

Any input value is converted by the logistic function 
to a probability value between 0 and 1. The method 

predicts the positive class (i.e., 1) if the probability 

is greater than a predetermined threshold (often 0.5), 
otherwise it predicts the negative class (i.e., 0). 

Gaussian Naive 

Bayes (GNB) 

Gaussian Naive Bayes is a variant of the Naive 

Bayes algorithm in machine learning that assumes 

that the features follow a Gaussian (normal) 
distribution. In Gaussian Naive Bayes, the likelihood 

of the features given the class is modeled as a 

normal distribution with mean μ and standard 
deviation σ for each feature and class.  

Decision Tree (DT) 

The Decision Tree algorithm iteratively splits data 

by feature or attribute value, creating a tree-like 
structure. At each node in the tree, the algorithm 

chooses the feature that delivers the best split based 

on some criterion, such as the Gini index or entropy. 
The procedure is repeated until a stopping 

requirement, such as a maximum depth or minimum 

number of samples per leaf, is fulfilled. 

K Nearest Neighbors 
(KNN) 

The number of nearest neighbors to take into 

account for each prediction is the initial step in the 
KNN algorithm's operation. The algorithm then 

determines the k training samples that are most 

similar to each new input based on a distance metric 
(e.g., Euclidean distance or Manhattan distance). 

The algorithm then calculates a forecast by 

averaging the target values of the k-nearest 
neighbors (for regression) or obtaining the majority 

vote (for classification). 

Random Forest (RF) 

Random Forest is a popular machine learning 
algorithm for both classification and regression 

tasks. It belongs to the family of ensemble learning 

methods, which combine multiple individual models 
to improve the overall predictive performance.  

Gradient Boosting 
(GB) 

Gradient Boosting is an ensemble learning method 

that combines weak models, usually decision trees, 

to generate a more accurate model. Each decision 
tree in the method is trained to rectify the faults of 

the previous tree. All tree predictions are added to 

make the final projection. 

Extreme Gradient 

Boosting (XGB) 

Extreme Gradient Boosting is a popular 

implementation of the Gradient Boosting algorithm 
that is optimized for speed and performance. It uses 

a technique called "gradient boosting with 

regularization," which adds a penalty term to the 
loss function to reduce overfitting. XGB is known 

for its high performance, scalability, and ability to 
handle large and complex data sets. 

IV. PROPOSED METHOD 

The proposed method utilizes both URLs and the textual 
contents of webpages from the raw dataset. Three distinct 
feature sets, ULF (URL linguistic features), CNF (Character 
level ngram features), and WCF (Web content features), are 
created. 

 ULF-URL linguistic features, which include the 
conventional URL features. 

 CNF-URL character level ngram features, which 
tokenize the URL's domain name using character level 
ngram. 

 WCF-Web content features include webpage text. 

Three separate NLP vectorization algorithms are employed 
to vectorize CNF and WCF. Subsequently, ULF, CNF, and 
WCF are amalgamated to form the final dataset for training 
and testing. The process flow of the proposed method is shown 
in Fig. 2. 

 

Fig. 2. Process flow. 
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TABLE III.  URL FEATURES 

No Features  Description No Features  Description 

1 ip_status 
Presence of IP address in 

the URL 
12 hyp_dom 

Count the hyphens in 

domain name 

2 dots_url Count the dots in the URL. 13 at_dom 
Count the @ in domain 
name. 

3 slash_url Count the / in the URL 14 underscr_dom 
Count the underscores in the 

domain name 

4 hyp_url 
Count the hyphens in the 
URL 

15 urllen Length of the URL 

5 hash_url Count the # in the URL 16 num_url 
Count the numbers in the 

URL 

6 semi_url 
Count the semicolons in the 
URL 

17 alpha_url 
Count the alphabet in the 
URL 

7 and_url Count the & in the URL 18 spl_url 
Count the special symbols 

in the URL 

8 underscr_url 
Count the underscores in the 
URL 

19 domlen Length of domain name 

9 http_url Presence of http in the URL 20 num_dom 
Count the numbers in the 

domain name 

10 https_url 
Presence of https in the 
URL 

21 alpha_dom 
Count the alphabet in the 
domain name 

11 dots_dom 
Count the dots in the 

domain name 
22 spl_dom 

Count the special symbols 

in the domain name 

   23 url_class 
Class of the URL either 
malicious (1)/benign (0) 

A. Raw Dataset 

The experiment's dataset, which contains both malicious 
and benign URLs, was gathered from the Kaggle URLs dataset 
[22]. The collection contains 450176 URLs. Classification is 
influenced by imbalanced datasets [23]. To prevent this 
problem, the experiment employs 6504 benign and 6478 

malicious URLs. 

B. Conventional Feature Extraction (URL Linguistic 

Features (ULF)) 

Conventional URL features include the dots in the URL, 
numbers in the URL, etc. Our experiments use only 23 lexical 
features (22 independent features and 1 dependent feature) of 
URLs, which are listed in Table III and saved as a separate file 
(conv fs.csv) as shown in Fig. 2. 

C. Generating Character Level ngrams (Character level 

ngram features (CNF)) 

Character-level n-gram and word-level n-gram are two 
types of n-gram models used in natural language processing 
and machine learning. Both of these models are used for text 
analysis, but they operate at different levels of granularity [24]. 
To fully utilize the domain name of the URL, character level 
ngram is used in our experiment. A character-level n-gram 
model looks at sequences of characters in a text, regardless of 
the words they form. The model divides the text into n-grams, 
or consecutive groups of n characters called tokens, as shown 
in Fig. 3. Number of tokens for ngram is calculated by using 
the Eq. (3): 

Tn=L-n+1   (3) 

Where 

 Tn=Total number of Tokens 

 L=Length of the text 

 n=Size of the ngram   

For this experiment, the N value of the ngram is set 
between 3 and 7. 

 
Unigram 

 
Bigram 

 
Trigram 

Fig. 3. Generating N-gram from the domain name. 
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D. Webpage Text Extraction 

The process of extracting content from websites focuses on 
paragraph tags. The paragraph tag is a reasonable and 
straightforward way to organize the content of a web page 
because it is meant to denote a block of text that is unique from 
other blocks of text. After text extraction, text preprocessing 
begins. The preprocessing procedures are outlined in 
Algorithm 1. 

E. Preprocess 

The entire process of text vectorization is included in 
preprocessing. Text is cleansed by removing special characters 
and unnecessary components of the URL, such as the protocol, 
leaving only text and numbers. After text cleaning, it will be 
converted to lowercase, stop words will be removed, and 
lemmatized to reduce number of features during vectorization 
process. The procedures for preprocessing are summarized in 
Algorithm 2. 

Algorithm 1: Text Extractions 

Input: List of URLs (W) 

Output: doc  

Function Cont_Extraction (W, TagName) 

Con=Connect(W) 

Tag List = get Tag (Con, TagName) 

For tag in TagList do 

        doc = doc U getText(tag) 

end for 

return doc  

The pseudo code of the method Cont_Extract () is used to 
extract textual contents from particular tags on the webpage. 
The Connect() function is used to establish the connection to 
the appropriate website. Following the establishment of the 
connection, the content of the given tag "TagName" is 
extracted and added to the string "doc". This "doc" will be used 
for preprocessing. 

Algorithm 2: Data Preprocessing  

Input: doc              

Output: Corpus (T2 )      

Function preProcess(doc) 

Torg=read_Text(doc) 

T1=clean_Text(Torg)     

T1 = lower_Text(T1) 

For token in T1 do 

        if token is not in STOPWORDS of ENGLISH then 

                  T2 = T2 U Lemmatize(token) 

        End if 

end for 

return T2 

The pseudo-code of the preprocess() method is used to 
complete the preprocessing task for the given text document. 
The contents of the "doc" are read using the read_Text () 
function. The clean_Text() and lower_Text() routines convert 
text to uppercase and lowercase correspondingly. Stop words 
in a text are eliminated and lemmatized using the "for loop”. 
The resultant corpus is to be vectorized. 

F. Vectorization 

Most machine learning algorithms take numeric feature 
vectors as input. Consequently, while working with text 
documents, required to convert each document into a numeric 
vector. This method is referred to as text vectorization. By 
employing various NLP techniques, such as count vectorizer, 
TFIDF, and hashing vectorizer, the generated tokens of text in 
the preprocessing and character level ngram are converted into 
a real-valued vector. The output of vectorization is a two-
dimensional (2D) array. The vectorizer's features are set to 
2500 and stored in a CSV file to limit the 2D array's size. As 
illustrated in Fig. 2, two files are created in our experiment, one 
for character level ngram tokens and another for textual content 
of the webpage (char level vec.csv & para text vec.csv). 

G. Merging Files 

After vectorization, three separate files (conv fs.csv, char 
level vec.csv & para text vec.csv) are combined into a single 
data file (combined.csv) as shown in Fig. 2. This file serves as 
a data file for the machine learning algorithm. 

H. K-Fold Validation and Model Evaluation 

The process uses a single parameter, K, to partition a data 
sample into k groups. When a particular number for k is 
selected, it may be used in place of k in the reference to the 
model, such as k=10 becoming 10-fold cross-validation [15]. 
In our experiment, a machine learning algorithm using 10-fold 
cross validation is fed the combined dataset (combined.csv). 
Four important metrics—precision, recall, accuracy, and f1-
score—are used to assess the machine algorithm's 
performance. 

V. EXPERIMENTAL RESULT 

The experimental configuration consists of Windows 10, an 
I5 processor (3.2 GHz), and 8 GB of RAM. For programming, 
Python and sklearn package are utilized. Three distinct 
features, including URL Linguistic Features (ULF), Character-
level Ngram Features (CNF), and Web Content Features 
(WCF), are generated for the experiments. Table II lists the 
seven most popular machine learning techniques used in the 
experiments. Each feature set and feature set combination 
(ULF+CNF+WCF) is examined independently for 
performance evaluation. Three different vectorizers were used 
to generate the features. A range of features between 250 and 
2000 was taken for each trial. This range is known as "feature 
base." 

1) URL linguistic feature (ULF): The features are 

retrieved from the URL alone by counting some characters in 

the URL and checking for the presence of the required pattern 

or characters in the URL. Table III provides the 22 features 

extracted from the URL. These are the most common features 

seen in the majority of existing research works. Fig. 2 shows 

the conventional feature extraction module extracting features 

from the Raw dataset and preparing a 2D array of values 

where rows represent URLs and columns represent the 22 

features. The last column is the dependent feature called 

"class" which shows if the URL is benign (0) or malicious (1). 

The experiment's outcomes reveal that the random forest 
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achieves an accuracy of 98.31%, as depicted in both Table IV 

and Fig. 4. This outcome distinctly underscores the 

appropriateness of the selected features for the experiment. 

TABLE IV.  PERFORMANCE OF ULF 

Type 

Machine 

Learning 

Algorithm 

Accurac

y 

Precisi

on 
Recall 

F1-

Score 

URL Linguistic 

Features 

LogR 95.06 99.48 90.58 94.82 

KNN 96.80 97.67 95.91 96.77 

GNB 91.19 99.44 82.82 90.36 

DT 96.66 95.76 97.84 96.74 

RF 98.31 98.74 97.90 98.31 

GB 96.83 99.06 94.55 96.74 

XGB 97.03 96.99 97.39 97.12 

 

Fig. 4. Performance of ULF. 

2) Character level-n-gram features (CNF): Character-

level ngrams are generated by breaking a text into sequences 

of characters of a predetermined length. Character-level 

ngrams are useful for identifying patterns in text, specifically 

URL processing. In this experiment, character level ngram 

processing simply takes the URL's domain name into account. 

Character-level ngrams produce tokens. Following the 

generation of tokens, the tokens are vectorized using three 

distinct vectorizers for feature generation Experiments use 

seven machine learning algorithms to test the generated 

features and evaluate the performance.  Tables V to VII show 

the outcomes of the various trials for the count, TFIDF, and 

hashing vectorizer, respectively. The results showed that using 

a 2000 feature base, count vectorizer + random forest achieves 

an accuracy of 90.87%, TFIDF vectorizer + random forest 

achieves an accuracy of 90.04%, and Hashing vectorizer + 

random forest achieves an accuracy of 92.95%. Fig. 5 depicts 

the performance comparison of three different vectorizers. 

TABLE V.  PERFORMANCE OF CNF WITH COUNT VECTORIZER 

Feature 

Base 

Machine 

Learning 

Algorithm 

Accurac

y 
Precision 

Recal

l 

F1-

Score 

250 

LogR 70.11 66.55 92.84 76.65 

KNN 68.88 70.82 69.28 69.11 

GNB 67.32 63.47 99.35 76.50 

DT 72.78 68.72 92.08 78.00 

RF 72.38 68.55 91.94 77.70 

GB 70.65 66.64 94.38 77.28 

XGB 71.72 67.86 92.37 77.48 

500 

LogR 71.78 70.42 82.53 75.16 

KNN 76.65 75.60 82.19 78.28 

GNB 68.77 64.59 98.83 77.20 

DT 81.12 78.45 88.75 82.77 

RF 81.80 78.75 89.69 83.40 

GB 70.80 67.25 92.62 77.01 

XGB 76.27 73.45 87.47 79.23 

1000 

LogR 77.57 76.19 83.78 79.29 

KNN 77.33 88.71 62.86 73.51 

GNB 67.97 72.96 61.44 65.96 

DT 86.37 83.12 93.27 87.59 

RF 88.71 85.82 93.56 89.37 

GB 70.98 67.27 93.32 77.28 

XGB 78.37 77.64 84.59 80.17 

1500 

LogR 79.56 77.78 85.66 81.09 

KNN 78.27 87.31 66.59 75.43 

GNB 66.75 81.46 44.30 57.13 

DT 87.97 84.40 94.72 89.00 

RF 89.93 87.04 94.69 90.54 

GB 71.38 67.43 93.92 77.63 

XGB 78.23 76.77 86.54 80.47 

2000 

LogR 81.35 79.29 87.11 82.66 

KNN 79.16 86.77 69.42 76.98 

GNB 68.40 83.38 46.62 59.58 

DT 88.97 85.70 94.81 89.81 

RF 90.87 88.37 94.69 91.30 

GB 71.48 67.43 94.04 77.70 

XGB 78.82 77.53 86.66 80.93 

Configuring the count vectorizer with 2000 features results 
in an elevated accuracy of 90.87% and an F1-Score of 91.30% 
when applied in conjunction with the random forest algorithm. 
By incorporating n-grams, the count vectorizer not only 
captures individual words but also preserves contextual 
information regarding word combinations. 

LogR KNN GNB DT RF GB XGB

Accuracy 95.06 96.80 91.19 96.66 98.31 96.83 97.03

Precision 99.48 97.67 99.44 95.76 98.74 99.06 96.99

Recall 90.58 95.91 82.82 97.84 97.90 94.55 97.39

F1-Score 94.82 96.77 90.36 96.74 98.31 96.74 97.12

80.00

85.00

90.00

95.00

100.00

P
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TABLE VI.  PERFORMANCE OF CNF WITH TFIDF VECTORIZER 

Feature 

Base 

Machine 

Learning 

Algorithm 

Accura

cy 

Precisio

n 

Reca

ll 

F1-

Score 

250 

LogR 69.37 66.23 92.53 76.19 

KNN 69.84 69.60 75.97 71.87 

GNB 67.44 63.54 99.40 76.57 

DT 70.37 66.79 92.17 76.63 

RF 72.80 68.65 92.64 78.14 

GB 68.29 64.87 94.23 75.92 

XGB 72.62 68.57 92.76 78.10 

500 

LogR 71.38 70.61 80.73 74.41 

KNN 72.84 71.96 79.81 75.08 

GNB 68.87 64.67 98.64 77.20 

DT 78.71 75.75 88.79 81.11 

RF 79.54 76.41 89.61 81.87 

GB 72.43 68.32 93.35 78.07 

XGB 76.76 73.68 89.32 80.00 

1000 

LogR 76.57 74.83 84.05 78.64 

KNN 76.26 74.24 84.87 78.66 

GNB 69.97 73.48 66.84 69.21 

DT 85.18 81.71 93.32 86.74 

RF 85.68 82.14 94.09 87.29 

GB 72.96 69.63 91.23 77.90 

XGB 79.83 76.37 90.61 82.33 

1500 

LogR 77.62 75.61 85.61 79.74 

KNN 78.14 83.74 70.73 76.47 

GNB 67.86 82.42 46.14 58.90 

DT 87.41 84.21 94.29 88.62 

RF 87.09 83.48 94.92 88.46 

GB 72.02 69.52 89.67 77.08 

XGB 79.89 76.57 90.78 82.44 

2000 

LogR 78.49 76.05 86.92 80.59 

KNN 78.58 84.48 71.01 76.94 

GNB 69.49 84.35 48.27 61.18 

DT 86.54 83.12 94.75 88.10 

RF 90.04 87.01 95.17 90.72 

GB 69.44 67.31 88.18 74.98 

XGB 80.35 77.11 90.34 82.63 

Configuring the TF-IDF vectorizer with 2000 features 
yields improved performance, achieving an accuracy of 
90.04% and an F1-Score of 90.72% when coupled with the 
random forest algorithm. The incorporation of n-grams 
enhances the TF-IDF vectorizer, providing a more 
comprehensive representation of textual data. 

TABLE VII.  PERFORMANCE OF CNF WITH HASHING VECTORIZER 

Feature 

Base 

Machine Learning 

Algorithm 

Accurac

y 

Precisi

on 

Recal

l 

F1-

Score 

250 

LogR 67.97 67.40 79.14 71.94 

KNN 66.61 62.76 99.41 76.01 

GNB 62.36 61.28 88.25 71.06 

DT 88.79 85.36 95.85 89.94 

RF 90.51 87.86 95.51 91.26 

GB 76.04 72.25 90.26 79.61 

XGB 88.49 85.04 94.81 89.43 

500 

LogR 71.01 69.73 82.11 74.61 

KNN 66.38 62.67 99.35 75.90 

GNB 65.35 63.39 90.45 73.31 

DT 88.28 84.76 95.45 89.45 

RF 90.84 88.34 95.48 91.51 

GB 76.80 73.01 89.73 79.96 

XGB 87.31 83.54 94.37 88.39 

1000 

LogR 77.38 75.37 84.93 79.33 

KNN 66.18 62.54 99.38 75.81 

GNB 65.78 63.47 92.34 74.04 

DT 90.34 87.56 95.45 91.08 

RF 92.45 91.03 94.98 92.80 

GB 77.16 73.99 88.45 79.97 

XGB 87.75 84.24 93.89 88.63 

1500 

LogR 79.51 76.81 87.53 81.40 

KNN 66.09 62.48 99.34 75.75 

GNB 67.15 64.00 93.33 74.90 

DT 90.56 87.50 95.83 91.27 

RF 91.92 89.92 95.11 92.30 

GB 77.82 74.07 90.37 80.77 

XGB 86.73 82.76 93.92 87.80 

2000 

LogR 80.27 76.94 89.27 82.23 

KNN 66.08 62.48 99.40 75.76 

GNB 70.83 67.06 94.27 77.33 

DT 90.93 88.10 95.91 91.60 

RF 92.95 91.84 94.86 93.20 

GB 78.00 74.35 89.80 80.78 

XGB 87.31 83.80 93.62 88.23 

Configuring the Hashing vectorizer with 2000 features 
yields an elevated accuracy of 92.95% and an F1-Score of 
93.20% when coupled with the random forest algorithm. The 
incorporation of n-grams into the Hashing vectorizer enhances 
the representation of sequential word combinations, capturing 
contextual information and thereby improving the overall 
effectiveness of classification. 
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Fig. 5. Performance comparison of three vectorizers (2000 Features). 

3) Web content features (WCF): The content of a 

webpage is the most informative option for analysis. Our 

experiment uses Beautiful Soup and Request in Python to 

analyze paragraph tag text. Text contents were preprocessed to 

get rid of stop words, special characters, etc. After that split 

the words into sentences to produce a corpus. This corpus 

serves as the input for the vectorizer, which produces features. 

To examine the generated features and assess performance, 

experiments utilize seven machine learning techniques. The 

results of the various trials for count, TFIDF, and hashing 

vectorizer, are displayed in Tables VIII to X. A performance 

comparison of three different vectorizers is shown in Fig. 6. 

TABLE VIII.  PERFORMANCE OF WCF WITH COUNT VECTORIZER 

Feature 

Base 
Machine Learning 

Algorithm 
Accur

acy 
Precision 

Recal

l 
F1-

Score 

250 

LogR 77.28 72.72 91.60 80.58 

KNN 78.35 74.87 88.90 80.76 

GNB 69.36 64.26 98.21 77.02 

DT 87.69 82.71 97.04 89.04 

RF 90.71 86.94 97.10 91.53 

GB 78.43 74.47 91.23 81.41 

XGB 85.82 81.37 95.20 87.39 

500 

LogR 79.58 75.04 91.83 82.16 

KNN 80.21 76.47 90.03 82.26 

GNB 70.89 65.51 98.18 77.92 

DT 88.91 84.55 97.30 90.16 

RF 91.54 88.22 97.05 92.23 

GB 79.20 75.15 91.45 81.96 

XGB 86.37 82.07 95.28 87.84 

1000 

LogR 82.98 78.65 93.13 84.89 

KNN 80.54 75.54 93.27 83.10 

GNB 73.36 67.53 98.26 79.41 

DT 90.17 86.00 96.85 90.94 

RF 93.15 90.27 97.18 93.50 

GB 79.53 75.46 91.62 82.22 

XGB 88.41 83.86 96.33 89.45 

1500 

LogR 84.13 79.64 93.86 85.84 

KNN 79.78 74.94 92.64 82.43 

GNB 73.77 67.82 98.50 79.71 

DT 90.73 86.51 97.41 91.47 

RF 93.58 90.97 97.19 93.88 

GB 79.58 75.57 91.71 82.30 

XGB 88.75 84.25 96.42 89.73 

2000 

LogR 85.76 81.11 94.91 87.21 

KNN 80.06 75.33 92.48 82.61 

GNB 75.31 69.08 98.36 80.60 

DT 92.44 88.99 97.39 92.90 

RF 94.01 91.58 97.36 94.29 

GB 79.58 75.73 91.28 82.22 

XGB 88.85 84.40 96.34 89.79 

TABLE IX.  PERFORMANCE OF WCF WITH TFIDF VECTORIZER 

Feature 

Base 
Machine Learning 

Algorithm 
Accurac

y 
Precisi

on 
Recal

l 
F1-

Score 

250 

LogR 78.28 75.63 87.62 80.64 

KNN 77.98 73.51 91.94 81.18 

GNB 73.61 68.36 95.49 79.06 

DT 87.24 82.38 96.74 88.69 

RF 89.75 85.86 96.68 90.70 

GB 79.83 76.38 90.40 82.25 

XGB 86.04 81.87 94.74 87.50 

500 

LogR 80.89 78.40 88.58 82.68 

KNN 76.03 70.79 93.76 80.18 

GNB 77.05 71.43 95.45 81.19 

DT 88.29 83.51 97.22 89.57 

RF 91.78 88.68 96.96 92.44 

GB 80.80 77.42 90.60 82.97 

XGB 80.89 78.40 88.58 82.68 

1000 

LogR 83.34 80.96 89.58 84.65 

KNN 84.76 89.55 79.10 83.87 

GNB 77.60 71.70 96.71 81.81 

DT 90.46 86.08 97.31 91.20 

RF 93.27 90.52 97.10 93.60 

GB 80.18 76.59 91.11 82.65 

XGB 88.41 83.86 96.33 89.45 

1500 

LogR 85.03 82.53 90.65 86.07 

KNN 81.26 80.91 83.31 81.82 

GNB 79.19 73.32 97.16 83.00 

DT 92.42 89.07 97.19 92.86 

RF 93.70 91.12 97.25 94.00 

Accura

cy

Precisi

on
Recall

F1-

Score

Count Vectorizer +

Random Forest
90.87 88.37 94.69 91.30

TFIDF Vectorizer +

Random Forest
90.04 87.01 95.17 90.72

Hashing Vectorizer +

Random Forest
92.95 91.84 94.86 93.20
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GB 80.75 77.16 91.37 83.11 

XGB 88.75 84.25 96.42 89.73 

2000 

LogR 86.13 83.92 91.02 87.01 

KNN 81.64 81.44 83.39 82.13 

GNB 81.59 75.71 97.04 84.59 

DT 92.20 88.62 97.31 92.67 

RF 93.95 91.59 97.22 94.23 

GB 79.54 75.69 91.31 82.21 

XGB 88.85 84.40 96.34 89.79 

TABLE X.  PERFORMANCE OF WCF WITH HASHING VECTORIZER 

Feature 

Base 

Machine Learning 

Algorithm 

Accur

acy 
Precision 

Recal

l 

F1-

Score 

250 

LogR 76.18 75.93 80.69 77.65 

KNN 83.65 80.93 89.23 84.67 

GNB 75.37 77.30 73.99 75.22 

DT 92.06 89.50 95.92 92.47 

RF 95.16 94.97 95.55 95.22 

GB 82.40 79.80 88.85 83.73 

XGB 91.53 88.74 95.80 92.00 

500 

LogR 81.94 81.21 84.75 82.62 

KNN 84.69 82.20 89.56 85.53 

GNB 78.55 81.39 75.36 77.95 

DT 92.66 90.22 96.37 93.05 

RF 94.92 94.21 95.94 95.02 

GB 81.81 78.89 89.53 83.44 

XGB 92.18 89.63 95.71 92.50 

1000 

LogR 85.39 83.96 88.67 86.01 

KNN 85.52 83.11 89.95 86.23 

GNB 79.35 82.89 75.42 78.65 

DT 91.64 88.60 96.47 92.20 

RF 94.98 93.87 96.53 95.11 

GB 80.81 77.38 90.20 82.84 

XGB 90.65 87.25 95.89 91.23 

1500 

LogR 86.17 84.56 89.43 86.72 

KNN 86.01 83.98 89.78 86.62 

GNB 82.32 86.06 77.83 81.50 

DT 91.57 88.61 96.33 92.13 

RF 95.21 94.02 96.80 95.33 

GB 80.71 77.14 90.61 82.88 

XGB 90.10 86.23 96.16 90.78 

2000 

LogR 86.83 85.21 89.98 87.34 

KNN 86.50 84.88 89.36 86.94 

GNB 83.42 88.21 77.54 82.40 

DT 92.41 89.67 96.60 92.86 

RF 94.97 93.62 96.84 95.13 

GB 80.97 77.44 90.71 83.07 

XGB 90.72 87.04 96.31 91.31 

 

Fig. 6. Performance comparison of three vectorizers. 

The findings demonstrated that when employing the 2000 
feature base, the Count vectorizer with random forest achieves 
an accuracy of 94.01% and F1-Score of 94.29%. The TFIDF 
vectorizer with random forest reached an accuracy of 93.95% 
and an F1-score of 94.23%. However, the Hashing Vectorizer 
with Random Forest used a 1500 feature base and produced an 
accuracy of 95.21 % and an F1-score of 95.33%. 

4) Combined features (CF): The combined feature set 

includes the features of ULF+CNF+WCF. Features are 

combined in row-wise. The main objective of combining 

feature sets is to reduce the feature set size and achieve higher 

accuracy. A range of features between 250 and 2000 was 

taken for each trial. So, the dataset for the trial is formed based 

on the following Eq. (4)  

𝐶𝐹𝑛   =  𝑈𝐿𝐹 +  𝐶𝑁𝐹𝑛 +  𝑊𝐶𝐹𝑛       (4) 

Where n ϵ [250, 2000]    

The features are merged in row-wise to create a single 
unified feature set. Tables XI to XIII show the outcomes of the 
various trials for the count, TFIDF, and hashing vectorizer, 
respectively. Fig. 7 depicts the performance comparison of 
three different vectorizers. 

TABLE XI.  PERFORMANCE OF CF WITH COUNT VECTORIZER 

Feature 

Base 

Machine Learning 

Algorithm 

Accurac

y 

Precisi

on 

Recal

l 

F1-

Score 

250 

LogR 94.48 94.49 94.67 94.53 

KNN 86.59 82.70 93.66 87.64 

GNB 73.54 68.14 98.77 79.87 

DT 96.79 94.83 99.32 96.95 

RF 98.84 98.51 99.23 98.85 

GB 97.42 99.63 95.18 97.35 

XGB 98.51 98.09 99.03 98.54 

500 LogR 94.94 93.92 96.39 95.07 

1 2 3 4

Count Vectorizer

with random forest

(2000 features)
94.01 91.58 97.36 94.29

TFIDF Vectorizer

with random forest

(2000 features)
93.95 91.59 97.22 94.23

Hashing Vectorizer

with random forest

(1500 features)
95.21 94.02 96.80 95.33
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KNN 85.47 82.87 90.71 86.37 

GNB 76.14 70.30 98.61 81.40 

DT 98.24 97.23 99.37 98.27 

RF 99.38 99.63 99.12 99.37 

GB 97.81 99.83 95.79 97.76 

XGB 99.12 99.14 99.10 99.12 

1000 

LogR 96.03 94.34 98.15 96.15 

KNN 85.19 82.17 91.43 86.27 

GNB 78.51 72.52 98.44 82.88 

DT 98.64 97.91 99.44 98.66 

RF 99.38 99.57 99.18 99.37 

GB 97.94 99.90 95.97 97.90 

XGB 99.18 99.19 99.18 99.18 

1500 

LogR 96.17 94.59 98.10 96.28 

KNN 85.94 82.80 92.24 86.98 

GNB 79.17 73.08 98.63 83.34 

DT 98.24 97.19 99.44 98.28 

RF 99.33 99.63 99.03 99.33 

GB 97.91 99.89 95.92 97.86 

XGB 99.15 99.10 99.21 99.15 

2000 

LogR 96.47 94.89 98.38 96.57 

KNN 86.22 82.68 92.99 87.29 

GNB 79.96 73.92 98.53 83.87 

DT 98.68 97.96 99.44 98.69 

RF 99.23 99.46 99.00 99.23 

GB 97.93 99.87 95.97 97.88 

XGB 99.14 99.14 99.15 99.14 

TABLE XII.  PERFORMANCE OF CF WITH TFIDF VECTORIZER 

Feature 

Base 

Machine Learning 

Algorithm 

Accurac

y 

Precisi

on 

Recal

l 

F1-

Score 

250 

LogR 95.76 96.84 94.66 95.72 

KNN 89.05 85.13 95.62 89.90 

GNB 73.40 67.83 99.75 79.97 

DT 95.65 93.79 99.24 96.17 

RF 99.27 99.38 99.15 99.27 

GB 97.48 99.75 95.20 97.42 

XGB 98.98 98.93 99.03 98.98 

500 

LogR 96.63 97.60 95.68 96.61 

KNN 89.79 88.37 92.03 90.06 

GNB 79.73 73.38 99.66 83.90 

DT 98.73 98.12 99.38 98.74 

RF 99.33 99.54 99.12 99.33 

GB 97.74 99.84 95.63 97.69 

XGB 99.07 99.08 99.06 99.07 

1000 

LogR 97.51 97.97 97.07 97.51 

KNN 86.96 83.04 94.75 88.23 

GNB 83.74 77.42 99.23 86.51 

DT 98.60 97.94 99.35 98.62 

RF 99.35 99.48 99.21 99.34 

GB 97.78 99.73 95.82 97.73 

XGB 99.26 99.30 99.23 99.26 

1500 

LogR 97.86 98.49 97.22 97.85 

KNN 87.98 84.95 95.52 89.42 

GNB 85.08 78.99 99.31 87.52 

DT 98.56 97.84 99.35 98.58 

RF 99.38 99.68 99.07 99.37 

GB 97.78 99.76 95.79 97.73 

XGB 98.98 98.93 99.03 98.98 

2000 

LogR 98.13 98.83 97.44 98.12 

KNN 78.09 73.13 97.48 82.73 

GNB 86.56 80.75 99.12 88.57 

DT 98.60 97.94 99.31 98.61 

RF 99.32 99.52 99.12 99.32 

GB 97.86 99.83 95.88 97.81 

XGB 99.18 99.13 99.23 99.18 

TABLE XIII.  PERFORMANCE OF CF WITH HASHING VECTORIZER 

Feature 

Base 
Machine Learning 

Algorithm 
Accurac

y 
Precisi

on 
Recal

l 
F1-

Score 

250 

LogR 96.00 97.11 94.92 95.97 

KNN 91.71 90.58 93.32 91.87 

GNB 93.95 97.54 90.20 93.71 

DT 98.38 97.71 99.14 98.40 

RF 99.45 99.82 99.09 99.45 

GB 97.65 99.59 95.69 97.60 

XGB 99.41 99.63 99.20 99.41 

500 

LogR 97.19 97.87 96.53 97.18 

KNN 92.00 90.85 93.59 92.15 

GNB 91.93 90.71 93.89 92.16 

DT 98.26 97.43 99.18 98.28 

RF 99.15 99.29 99.03 99.15 

GB 97.68 99.87 95.48 97.62 

XGB 99.50 99.68 99.32 99.50 

1000 

LogR 97.57 98.43 96.71 97.55 

KNN 92.45 91.55 93.73 92.57 

GNB 90.58 87.13 96.30 91.28 

DT 98.57 97.96 99.23 98.58 

RF 99.33 99.68 98.98 99.33 

GB 97.80 99.79 95.79 97.75 
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XGB 99.46 99.65 99.27 99.46 

1500 

LogR 98.17 99.25 97.07 98.14 

KNN 92.55 91.97 93.42 92.63 

GNB 90.27 86.22 96.70 90.99 

DT 98.52 97.75 99.37 98.54 

RF 99.29 99.54 99.04 99.29 

GB 97.97 99.87 96.06 97.93 

XGB 99.50 99.69 99.31 99.50 

2000 

LogR 97.91 98.71 97.11 97.90 

KNN 92.51 91.71 93.67 92.63 

GNB 91.97 88.63 96.90 92.46 

DT 98.44 97.63 99.35 98.47 

RF 99.03 99.06 99.03 99.03 

GB 97.86 99.70 96.00 97.81 

XGB 99.46 99.65 99.27 99.46 

 

Fig. 7. Performance comparison of three vectorizers (500 Feature base). 

The results showed that using a 500 features base, the 
Count vectorizer with random forest achieves an accuracy of 
99.38% and an F1-score of 99.37%. The TFIDF vectorizer 
with random forest achieves an accuracy of 99.33% and an F1-
score of 99.33% Hashing Vectorizer with extreme gradient 
boosting achieves an accuracy and F1-score of 99.50%. 

All of the vectorizers employed in the experiment obtain 
higher accuracy and F1-score with 500 feature bases, 
especially the hashing vectorizer with extreme gradient 
boosting algorithm achieves the highest accuracy at 99.5%, as 
shown in Table XIV and Fig. 8. As compared to previous 
work, the proposed method significantly improves 
performance. 

TABLE XIV.  PERFORMANCE COMPARISON OF EXISTING AND PROPOSED 

METHOD 

Author Machine Learning Algorithm 
Highest 

Accuracy 

Saleem et al. [7] Random Forest 93.0% 

Saleem et al. [11] Random Forest 99.0% 

Malak et.al [12] Naïve Bayes  96.0% 

Kamel et.al [13] Random Forest 95.51% 

Lakshmanarao 
et.al[14] 

Hashing vectorizer with Random 
Forest 

97.50% 

Joshi et.al [15] Random Forest 92.0% 

Hong et al. [16] LA-FQ 94.16% 

Josh et.al [17] Random Forest 98.91% 

Saleem et.al[18] Weighted Soft Voting Classifier 99.10% 

Ozgur et.al [19] Random Forest 97.98% 

Proposed Method 
Hashing vectorizer with Extreme 

Gradient Boosting 
99.50% 

 

Fig. 8. Performance comparison of existing and proposed method. 

VI. CONCLUSION 

The majority of cybercrimes are committed using malicious 
links or malicious websites. Unintentionally visiting these 
websites or clicking on malicious links can have more serious 
effects, including the theft of private, sensitive information, 
security breaches, financial loss, and reputational damage. To 
find these kinds of dangerous websites on the internet, AI-
based automated solutions are needed. For the detection 
method, this paper makes use of both URLs and web contents. 
Two different feature types, including ULF and CNF, are 
generated using URL of the webpage. Moreover, web page 
content is processed to generate features (WCF) for the 
detection procedure. Seven different machine learning methods 
are combined with three different vectorizers. Results of the 
study show that the proposed method, which combines an 
extreme gradient boosting algorithm with a hashing vectorizer, 
offers a better level of accuracy. 
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