
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

328 | P a g e

www.ijacsa.thesai.org

Automated Detection of Malevolent Domains in

Cyberspace Using Natural Language Processing and

Machine Learning

Saleem Raja Abdul Samad1, Pradeepa Ganesan2, Amna Salim Al-Kaabi3, Justin Rajasekaran4, Singaravelan M5,

Peerbasha Shebbeer Basha6

IT Department, College of Computing and Information Sciences, Shinas, University of Technology and Applied Sciences,

Sultanate of Oman1, 2, 3, 4

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and

Technology, Chennai, Tamil Nadu, India5

Department of Computer Science, Jamal Mohammed College, Tiruchirappalli, Tamil Nadu, India6

Abstract—Cyberattacks are intentional attacks on computer

systems, networks, and devices. Malware, phishing, drive-by

downloads, and injection are popular cyberattacks that can harm

individuals, businesses, and organizations. Most of these attacks

trick internet users by using malicious links or webpages.

Malicious webpages can be used to distribute malware, steal

personal information, conduct phishing attacks, or perform other

malicious activities. Detecting such malicious websites is a tedious

task for internet users. Therefore, locating such a website in

cyberspace requires an automated detection tool. Currently,

machine learning techniques are being used to detect such

malicious websites. The majority of recent studies derive a

limited number of features from webpages (both benign and

malicious) and use machine learning (ML) algorithms to detect

fraudulent webpages. However, these constrained capabilities

might not use the full potential of the dataset. This study

addresses this issue by identifying malicious websites using both

the URL and webpage content features. To maximize detection

accuracy, both ngrams and vectorization methods in natural

language processing are adopted with minimum feature-set. To

exploit the full potential of the dataset, the proposed approach

derives the 22 common linguistic features of the URL and

generates ngrams from the domain name of the URL. The textual

content of the webpages was also used. The research employs

seven machine learning algorithms with three vectorization

methods. The outcome reveals that the proposed method

outperformed the results of previous studies.

Keywords—Machine learning; N-gram; linguistic features;

natural language processing (NLP); malicious webpage

I. INTRODUCTION

A malicious webpage is a website intentionally crafted to
harm users or their devices, often orchestrated by hackers and
cybercriminals utilizing various techniques to exploit
vulnerabilities. These webpages pose significant threats,
serving as conduits for malware distribution, personal
information theft, phishing attacks, and other malicious
activities. Cybercriminals employ common techniques like
phishing, where deceptive URLs (Uniform Resource Locators)

or webpages mimic legitimate sites to trick users into divulging
login credentials or personal data, facilitating identity theft or
financial fraud. Another tactic involves drive-by downloads,
concealing malicious code within a webpage to exploit
vulnerabilities in users' browsers or operating systems, and
installing malware without their knowledge. Malvertising
utilizes legitimate online advertising networks to redirect users
to malicious pages, aiming to infect their computers with
malware. Cryptojacking involves hijacking a user's computer
processing power to mine cryptocurrency for attackers. Once
users access a malicious webpage, they risk downloading
malware, suffering personal information theft, or falling victim
to various attacks. The consequences extend to severe impacts
on individuals, businesses, and organizations, encompassing
data theft, financial losses, reputational damage, and even
physical harm.

The cost of cyber-attacks continues to rise and is a
significant concern for organizations across all industries.
According to IBM's 2024 Cost of a Data Breach Report, the
global average cost of a breach has increased by 10% since
2023, reaching $4.88 million [1]. Global cybercrime
expenditures are anticipated to increase from $3 trillion in 2015
to $10.5 trillion annually by 2025, according to Cybersecurity
Ventures research [2]. Phishing attacks, which targeted 1339
brands, accounted for 36% of US data breaches in 2023. It
became the second-most expensive source of compromised
credentials with 5 million unique phishing sites, signaling a
significant change in the dynamics of breaches across
industries [3]. The financial impact of a cyber-attack depends
on factors such as its severity, organizational size, and the
compromised data. To mitigate these impacts, proactive
measures like implementing robust security systems and
conducting employee training programs are essential. While
conventional security systems often rely on stored lists of
URLs to block harmful links, recent attacks exploit
vulnerabilities using short URLs and algorithmically generated
ones, evading traditional security measures. Consequently, the
necessity for an automated system employing machine learning
techniques becomes increasingly critical to detect and prevent
these evolving cyber threats effectively. Timely detection plays
a pivotal role in ensuring a proactive defense against cyber

Funding: This research work is supported by the Research Internal
Funding Program (RIFP) 2024, of the University of Technology and Applied

Sciences-Shinas, Sultanate of Oman.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

329 | P a g e

www.ijacsa.thesai.org

threats, effectively safeguarding users and their devices from
various malicious activities.

Machine learning-based detection relies on feature
engineering. The researcher identifies and uses six types of
features for the detection of malicious webpages such as:

 Linguistic analysis of URL [3][4]: URL consists of
several parts such as protocol, domain name, path,
query-string, etc. Using these parts for the detection
process such as a number of subdomains in the URLs,
protocol used in the URL length of the path, etc.

 Information obtained Domain Name System (DNS)
[3][5][6]: DNS is a critical component of the internet
infrastructure, and it plays an important role in the
functioning of URLs. To generate features, researchers
obtain information from the DNS server such as server
location, registration and expiry date of the website, etc.

 Structural information of webpage [7]: The structural
information of a webpage refers to the underlying
organization of the webpage's content, including its
layout, formatting, and elements of the page. For
malicious website detection, the researcher analyzes
HTML tags, DOM objects, CSS, and JavaScript
elements, and other web page components.

 Linguistic analysis of webpage contents [8]: This is the
written content of the webpage, including headings,
paragraphs, and other text elements. The linguistic
analysis involves character and word-level analysis to
find harmful websites, such as finding probable
keywords, tokens, and keyword weight, etc.

 Website Reputation [9]: Website reputation or ranking
refers to the perceived level of trustworthiness,
authority, and relevance of a particular website, as
assessed by search engines, users, and other entities.
Websites with a high reputation or ranking are generally
viewed as more credible and valuable and may receive
more traffic and engagement as a result. Ranking of the
website globally and locally is considered as a feature
for malicious webpage detection.

 Visual Similarity of the Webpage [10]: Visual similarity
of a webpage can be a useful tool in malicious webpage
detection. Malicious actors may attempt to create
webpages that are visually similar to legitimate sites to
trick users into providing sensitive information or
installing malware. One approach to detecting visual
similarity in webpages is to use computer vision
techniques such as image processing, feature extraction,
and machine learning. These techniques can be used to
identify and compare visual elements of webpages, such
as logos, fonts, and layouts.

Among all these features, researchers preferably use the
linguistic analysis of URLs because it doesn't involve any
risks. Web page content, on the other hand, gets less attention
due to its risky nature. However, in comparison, webpage
contents are a rich source of malicious webpage detection. The
majority of recent studies derive a limited number of features
from the URL and use machine learning algorithms (ML) to

detect fraudulent webpages. However, these constrained
capabilities might not use the URL's full potential. This study
addresses this issue by identifying malicious websites using
both the URL and webpage content features. To maximize
detection accuracy with a minimum hybrid feature set, the
proposed approach uses both URL and webpage contents. To
exploit the full potential of the dataset, the proposed approach
derives the 22 common linguistic features of the URL and
generates ngrams from the domain name of the URL.
Moreover, it extracts text from the webpage's paragraph tags.
In the experiment, three distinct vectorization techniques
(Count vectorizer, TFIDF, and Hashing vectorizer) are used to
convert text into real numbered 2-D vectors. Lastly, the
vectorized features and linguistic features are integrated to
generate the experimental dataset. The incorporation of
vectorized contents with URL linguistic features (hybrid
approach) eliminates the necessity for generating and selecting
a limited number of features. This ensures the full exploitation
of the dataset's potential. The research employs seven machine
learning algorithms. The outcome reveals that the proposed
method outperformed the results of previous studies.

Contribution of the paper:

 Both URL and Webpage contents are utilized to
generate features.

 Two different feature sets are generated using URLs of
the webpages namely linguistic features and character-
level ngrams of the URL

 Textual contents are extracted from the paragraph tags
of the webpages.

 Three different NLP methods (Count vectorizer,
TFIDF, and Hashing vectorizer) are used to vectorize
the textual contents such as ngrams of the URL and
textual contents from the webpages.

 NLP methods are used for feature generation instead of
manual feature extraction.

 A balanced dataset (malicious and benign) is used for
the experiments.

 Seven machine learning algorithms are evaluated for
better detection accuracy.

 Achieve higher accuracy and f1-score with minimum
feature set.

The structure of this paper is organized as follows.
Section I outlines the significance of the problem and an
overview of the solution strategy. Existing research is
presented in Section II. The NLP techniques and machine
learning classifiers are presented in Section III. Section IV
presents the proposed method, and Section V reports the
experimental results. Section VI provides a conclusion of the
paper.

II. RELATED WORKS

Malicious webpage detection is a critical component of
web security, as it can help to protect users from a variety of
online threats, such as malware, phishing, and other types of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

330 | P a g e

www.ijacsa.thesai.org

malicious activity. Extensive research has been conducted in
this area. Table I summarizes recent research studies in this
field. Saleem et al. [7] introduced a technique for classifying
malicious webpages by analyzing their content through
machine learning and deep learning approaches. The presented
method exclusively uses of tags, events, keywords, scripts in
the website for classification. The study utilizes the Kaggle
dataset. From the dataset, over 206 features are retrieved. The
selectKbest approach selects the highest-scoring features for
the experiment. Scores in selectKbest are based on chi-square
tests. Support vector machine (SVM), random forest (RF), and
convolutional neural network (CNN) are used to test the
system. The results demonstrate that random forest and support
vector machine obtains the accuracy of 93% and 88%
respectively. Saleem et al. [11] suggested a simple technique
for detecting malicious URLs. The authors note that traditional
approaches to malicious URL detection, which rely on
blacklists and reputation-based systems, are not effective
against new or previously unseen threats. To address this, the
authors propose a new approach that uses a set of lexical
features, including the length of the URL, the presence of
certain characters, and the number of subdomains, to train a
machine learning model to detect malicious URLs. The authors
evaluate their method using a UNB dataset containing over
68851 URLs, including both malicious (33473) and benign
(35378) URLs. From the dataset, 27 lexical features were
taken, and 20 of those features were used in the experiment.
The study's findings indicate that the suggested method
achieves high accuracy in detecting malicious URLs, with 99%
accuracy for random forest (RF) and 98% accuracy for k-
nearest neighbor (k-NN) algorithms, respectively. Malak et al.
[12] evaluate different feature sets for detecting malicious
URLs using machine learning and deep learning models. The
authors note that existing approaches to malicious URL
detection often rely on a single feature set, which may limit
their effectiveness. To address this, the authors evaluate three
different feature sets: lexical, network-based, and content-
based. Many feature selection procedures, including correlation
analysis, ANOVA, and chi-square, were utilized to select
features from the dataset. Naive Bayes (NB) was shown to be
the most appropriate method for identifying malicious URLs in
the used dataset, with an accuracy of 96%. Kamel [13]
proposes a new approach for detecting and analyzing phishing
attacks on social networks, specifically on Twitter. The authors
note that phishing attacks on social networks are a growing
problem, and traditional approaches to detecting them, such as
manual analysis or keyword-based filtering, are not effective.
To address this, the authors proposed a new approach by using
machine learning algorithms to identify phishing attacks on
Twitter. The approach involves analyzing the content of tweets
and using machine learning to classify them as either phishing
or non-phishing. For this experiment, a UCI phishing,
Phishtank, and MillerSmiles datasets were utilized, and
roughly 25 features were retrieved from the URL, webpage,
and DNS server. For the studies, LR, SVM and RF were
applied, yielding 90.28%, 93.43%, and 95.51% accuracy,

respectively. Lakshmanarao et. al [14] proposes a web
application for detecting malicious URLs using natural
language processing (NLP) and machine learning techniques.
This method makes use of a count, a TFIDF, and a hashing
vectorizer. The outcome demonstrates that hashing vectorizer
and random forest obtained 97.5% accuracy. Machine and deep
learning help detect email-delivered malicious URLs,
according to Joshi et al [15]. To classify URLs, the proposed
method relied on their lexical features. The experiment
employed a dataset from openphish, alexa, and fire eye. The
proposed method used 23 distinct lexical characteristics to
distinguish between malicious and benign URLs. Combining
the lexical features with 1000 trigram-based features yielded
1023-long numerical vectors to represent the URLs. To
identify the most important traits, correlation and scatter
matrices were used. The results show that 92% accuracy is
achieved by the random forest method. Hong et al. [16] employ
lexical analysis and feature quantification to identify
potentially dangerous domain names. The method comprises of
two stages for accurate and successful detection. A domain
name is compared in the first step to a blacklist of harmful
domain links. The degree to which the domain name
modifications closely resemble the blacklist determines
whether it is malicious or possibly malicious. In the second
step, a suspected malicious domain name is assessed using the
reputation value of an N-gram model. Using the N-gram
approach, a collection of whitelist/blacklist substrings is
extracted from the top 100,000 regular Alexa domain names.
The frequency of substrings on whitelists and blacklists
determines their weights. Lastly, the authenticity of the
possibly dangerous domain name is determined by its
reputation value. The outcome shows that the accuracy rate for
the proposed method, LA-FQ, is 94.16%. Josh et al. [17] used
random forest to detect algorithmically generated domains. For
testing, the dataset comprised regular and algorithmically
generated domain names from several malware families.
Masked N-grams and other domain name data were extracted.
Results show that masked N-grams provide improved
performance and detection accuracy compared to state-of-the-
art methods. To detect harmful web links using NLP, Saleem et
al. [18] suggested an ensemble classifier. The author observed
that feature generation needs effort and topic expertise.
Sometimes the generated features don't maximize the data set.
Hence, the suggested method generates a feature set from the
URL using the NLP method and classifies using an ensemble
classifier. Two datasets (D1 and D2) were used in the
experiment. D1 and D2 had 91.4% and 99.1% accuracy,
respectively. The phishing URL detection method used by
Ozgur et al. [19] is based on machine learning and a natural
language processing (NLP) feature set. URLs were broken up
and features were taken from them. For the experiment, seven
different machine learning algorithms were used. The author
states that the proposed method is language-independent and
uses a large dataset. The outcome demonstrates that random
forest with NLP features has an accuracy of 97.98%.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

331 | P a g e

www.ijacsa.thesai.org

TABLE I. SUMMARY OF THE EXISTING WORK

Author Dataset/Data Source Features Accuracy Issues

Saleem et al. [7] Kaggle dataset Web content-based features SVM: 88%, RF: 93%
URL-based features and webpage

textual contents were ignored.

Saleem et al. [11] UNB Dataset Lexical features of URL RF:99%, KNN:98%
Limited number of features. Web

content features were ignored

Malak et.al [12] Singh & Kumar Dataset
Lexical, network-based, and

content-based features
NB:96%

Limited features. The full potential

of the dataset was not used.

Kamel et.al [13]
UCI phishing, Phishtank,

MillerSmiles datasets

Lexical, content based and DNS

server features

LR: 90.28%, SVM:

93.43%, RF: 95.51%

Limited features. The full potential

of the dataset was not used.

Lakshmanarao

et.al[14]
Kaggle dataset NLP -Vectorizer Methods

Hashing vectorizer

with RF: 97.5%

Potentials of web contents were

not utilized.

Joshi et.al [15] Openphish, Alexa, Fire eye
Lexical Features & N-Gram
Method

RF:92%
Web content features were
ignored.

Hong et al. [16]

Alexa, Anquan organization,

Malwaredomains.com,
Malicious domain list, Zeus

Tracker, Conficker, Torping,

Symmni, PhishTank

N-gram Method LA-FQ:94.16%
Web content & Lexical URL

features were ignored.

Josh et.al [17] Alexa, Bader repo extended N-Gram Method RF: 98.91%
Web content & Lexical URL

features were ignored.

Saleem et.al[18] URL, UNB, Phistank dataset NLP -Vectorizer Methods

Weighted Soft Voting

Classifier:
D1:91.4% , D2:99.1%

Web content & Lexical URL

features were ignored.

Ozgur et.al [19]
Phistank dataset, Yandex
Search API

NLP based features RF: 97.98%
Web content and other features
were ignored.

III. BACKGROUND

The URL of the webpage and the webpage's content are
both valuable resources for webpage classification, particularly
for the detection of malicious webpages. A URL is a string that
is used as a specific identifier to find resources online. It is
made up of several components as shown in Fig. 1. Due to its
risk-free nature, researchers employ the URL of the webpage
for detection. Two distinct methods are used to extract features
from the URLs.

1) Numerical/presence measurement: check the URL for

the presence of specific words or characters and count the

occurrence of the specific word or character,

URL/domain/path length, etc.

2) Decompose the URL string using the ngram method

and identify interesting features such as the amount of 2-

grams and the average length of 2-gram tokens, etc.

Fig. 1. Components of an URL.

Malicious websites can include a wide range of content that
is intended to trick or exploit users, including fake login pages
that steal login credentials, malware links that download
malware onto the victim's computer, phishing forms that steal
personal information, pop-up windows that direct users to
phishing sites, redirect links that open phishing sites, malware
scripts, fake surveys, and more. The textual content of a

website serves as source for malicious activities. Generally,
machine learning models operated on numerical features that
are extracted from the raw dataset (list of url) and represented
as 2-D array. However, in addition to a collection of URL
features, this paper vectorizes URL text using natural language
processing (NLP) methods. NLP has a set of vectorization
methods. such as Count, Hashing, and TFIDF vectorizer.
Vectorization converts text into numerical features. Then the
vectorized data will be used in machine learning algorithms.
Table II lists the machine learning algorithms used for the
experiment.

a) Count vectorizer [20]: It works by first tokenizing

the text corpus into individual words or n-grams (contiguous

sequences of words). It then creates a vocabulary of unique

tokens in the corpus and assigns an index to each token in the

vocabulary. Finally, it counts the occurrence of each token in

each document in the corpus and constructs a matrix of token

counts, with one row per document and one column per token.

The resulting matrix can be used as input to a machine

learning algorithm for various NLP tasks.

b) TFIDF [20]: It measure the importance of each term

in a document or a corpus. It considers both the frequency of a

term in a document and the frequency of the term across the

entire corpus. The basic idea behind TF-IDF is that a term is

considered important if it appears frequently in a document

but is not so common that it appears in every document in the

corpus. The TF-IDF score of a term in a document is

calculated by multiplying the term frequency (TF) of the term

in the document by the inverse document frequency (IDF) of

the term in the corpus.

The TF-IDF formula (1,2) can be expressed as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

332 | P a g e

www.ijacsa.thesai.org

𝑇𝐹(𝑡, 𝑑) =
 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑) /
 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑) (1)

𝐼𝐷𝐹(𝑡, 𝐷)
= 𝑙𝑜𝑔_𝑒(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠
/ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑖𝑡)

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) ∗ 𝐼𝐷𝐹(𝑡, 𝐷) (2)

𝑤ℎ𝑒𝑟𝑒:

 𝑡: 𝑎 𝑡𝑒𝑟𝑚

 𝑑: 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

 𝐷: 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠

c) Hashing vectorizer [20]: It is a technique used to

convert a collection of text documents to a matrix of token

occurrences. It is similar to Count-Vectorizer in that it creates

a document-term matrix, but uses a hash function to convert

each token to a numerical index, rather than storing the tokens

as strings. This can be useful in situations where the

vocabulary is very large, and the memory requirements of

storing all the tokens are prohibitively high. The Hashing-

Vectorizer works by mapping each token to a numerical index

using a hash function. The resulting numerical index is then

used as the column index in the document-term matrix. The

size of the matrix is fixed in advance and depends on the

number of features (i.e. the number of hashed tokens) that are

required. This means that the hashing-vectorizer is a stateless

transformer, and does not need to keep track of the mapping

between tokens and numerical indices.

TABLE II. MACHINE LEARNING ALGORITHMS [21]

Algorithm Explanation

Logistic Regression
(LogR)

The logistic function, also referred to as the sigmoid
function, is applied to a linear combination of the

input variables via the logistic regression procedure.

Any input value is converted by the logistic function
to a probability value between 0 and 1. The method

predicts the positive class (i.e., 1) if the probability

is greater than a predetermined threshold (often 0.5),
otherwise it predicts the negative class (i.e., 0).

Gaussian Naive

Bayes (GNB)

Gaussian Naive Bayes is a variant of the Naive

Bayes algorithm in machine learning that assumes

that the features follow a Gaussian (normal)
distribution. In Gaussian Naive Bayes, the likelihood

of the features given the class is modeled as a

normal distribution with mean μ and standard
deviation σ for each feature and class.

Decision Tree (DT)

The Decision Tree algorithm iteratively splits data

by feature or attribute value, creating a tree-like
structure. At each node in the tree, the algorithm

chooses the feature that delivers the best split based

on some criterion, such as the Gini index or entropy.
The procedure is repeated until a stopping

requirement, such as a maximum depth or minimum

number of samples per leaf, is fulfilled.

K Nearest Neighbors
(KNN)

The number of nearest neighbors to take into

account for each prediction is the initial step in the
KNN algorithm's operation. The algorithm then

determines the k training samples that are most

similar to each new input based on a distance metric
(e.g., Euclidean distance or Manhattan distance).

The algorithm then calculates a forecast by

averaging the target values of the k-nearest
neighbors (for regression) or obtaining the majority

vote (for classification).

Random Forest (RF)

Random Forest is a popular machine learning
algorithm for both classification and regression

tasks. It belongs to the family of ensemble learning

methods, which combine multiple individual models
to improve the overall predictive performance.

Gradient Boosting
(GB)

Gradient Boosting is an ensemble learning method

that combines weak models, usually decision trees,

to generate a more accurate model. Each decision
tree in the method is trained to rectify the faults of

the previous tree. All tree predictions are added to

make the final projection.

Extreme Gradient

Boosting (XGB)

Extreme Gradient Boosting is a popular

implementation of the Gradient Boosting algorithm
that is optimized for speed and performance. It uses

a technique called "gradient boosting with

regularization," which adds a penalty term to the
loss function to reduce overfitting. XGB is known

for its high performance, scalability, and ability to
handle large and complex data sets.

IV. PROPOSED METHOD

The proposed method utilizes both URLs and the textual
contents of webpages from the raw dataset. Three distinct
feature sets, ULF (URL linguistic features), CNF (Character
level ngram features), and WCF (Web content features), are
created.

 ULF-URL linguistic features, which include the
conventional URL features.

 CNF-URL character level ngram features, which
tokenize the URL's domain name using character level
ngram.

 WCF-Web content features include webpage text.

Three separate NLP vectorization algorithms are employed
to vectorize CNF and WCF. Subsequently, ULF, CNF, and
WCF are amalgamated to form the final dataset for training
and testing. The process flow of the proposed method is shown
in Fig. 2.

Fig. 2. Process flow.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

333 | P a g e

www.ijacsa.thesai.org

TABLE III. URL FEATURES

No Features Description No Features Description

1 ip_status
Presence of IP address in

the URL
12 hyp_dom

Count the hyphens in

domain name

2 dots_url Count the dots in the URL. 13 at_dom
Count the @ in domain
name.

3 slash_url Count the / in the URL 14 underscr_dom
Count the underscores in the

domain name

4 hyp_url
Count the hyphens in the
URL

15 urllen Length of the URL

5 hash_url Count the # in the URL 16 num_url
Count the numbers in the

URL

6 semi_url
Count the semicolons in the
URL

17 alpha_url
Count the alphabet in the
URL

7 and_url Count the & in the URL 18 spl_url
Count the special symbols

in the URL

8 underscr_url
Count the underscores in the
URL

19 domlen Length of domain name

9 http_url Presence of http in the URL 20 num_dom
Count the numbers in the

domain name

10 https_url
Presence of https in the
URL

21 alpha_dom
Count the alphabet in the
domain name

11 dots_dom
Count the dots in the

domain name
22 spl_dom

Count the special symbols

in the domain name

 23 url_class
Class of the URL either
malicious (1)/benign (0)

A. Raw Dataset

The experiment's dataset, which contains both malicious
and benign URLs, was gathered from the Kaggle URLs dataset
[22]. The collection contains 450176 URLs. Classification is
influenced by imbalanced datasets [23]. To prevent this
problem, the experiment employs 6504 benign and 6478

malicious URLs.

B. Conventional Feature Extraction (URL Linguistic

Features (ULF))

Conventional URL features include the dots in the URL,
numbers in the URL, etc. Our experiments use only 23 lexical
features (22 independent features and 1 dependent feature) of
URLs, which are listed in Table III and saved as a separate file
(conv fs.csv) as shown in Fig. 2.

C. Generating Character Level ngrams (Character level

ngram features (CNF))

Character-level n-gram and word-level n-gram are two
types of n-gram models used in natural language processing
and machine learning. Both of these models are used for text
analysis, but they operate at different levels of granularity [24].
To fully utilize the domain name of the URL, character level
ngram is used in our experiment. A character-level n-gram
model looks at sequences of characters in a text, regardless of
the words they form. The model divides the text into n-grams,
or consecutive groups of n characters called tokens, as shown
in Fig. 3. Number of tokens for ngram is calculated by using
the Eq. (3):

Tn=L-n+1 (3)

Where

 Tn=Total number of Tokens

 L=Length of the text

 n=Size of the ngram

For this experiment, the N value of the ngram is set
between 3 and 7.

Unigram

Bigram

Trigram

Fig. 3. Generating N-gram from the domain name.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

334 | P a g e

www.ijacsa.thesai.org

D. Webpage Text Extraction

The process of extracting content from websites focuses on
paragraph tags. The paragraph tag is a reasonable and
straightforward way to organize the content of a web page
because it is meant to denote a block of text that is unique from
other blocks of text. After text extraction, text preprocessing
begins. The preprocessing procedures are outlined in
Algorithm 1.

E. Preprocess

The entire process of text vectorization is included in
preprocessing. Text is cleansed by removing special characters
and unnecessary components of the URL, such as the protocol,
leaving only text and numbers. After text cleaning, it will be
converted to lowercase, stop words will be removed, and
lemmatized to reduce number of features during vectorization
process. The procedures for preprocessing are summarized in
Algorithm 2.

Algorithm 1: Text Extractions

Input: List of URLs (W)

Output: doc

Function Cont_Extraction (W, TagName)

Con=Connect(W)

Tag List = get Tag (Con, TagName)

For tag in TagList do

 doc = doc U getText(tag)

end for

return doc

The pseudo code of the method Cont_Extract () is used to
extract textual contents from particular tags on the webpage.
The Connect() function is used to establish the connection to
the appropriate website. Following the establishment of the
connection, the content of the given tag "TagName" is
extracted and added to the string "doc". This "doc" will be used
for preprocessing.

Algorithm 2: Data Preprocessing

Input: doc

Output: Corpus (T2)

Function preProcess(doc)

Torg=read_Text(doc)

T1=clean_Text(Torg)

T1 = lower_Text(T1)

For token in T1 do

 if token is not in STOPWORDS of ENGLISH then

 T2 = T2 U Lemmatize(token)

 End if

end for

return T2

The pseudo-code of the preprocess() method is used to
complete the preprocessing task for the given text document.
The contents of the "doc" are read using the read_Text ()
function. The clean_Text() and lower_Text() routines convert
text to uppercase and lowercase correspondingly. Stop words
in a text are eliminated and lemmatized using the "for loop”.
The resultant corpus is to be vectorized.

F. Vectorization

Most machine learning algorithms take numeric feature
vectors as input. Consequently, while working with text
documents, required to convert each document into a numeric
vector. This method is referred to as text vectorization. By
employing various NLP techniques, such as count vectorizer,
TFIDF, and hashing vectorizer, the generated tokens of text in
the preprocessing and character level ngram are converted into
a real-valued vector. The output of vectorization is a two-
dimensional (2D) array. The vectorizer's features are set to
2500 and stored in a CSV file to limit the 2D array's size. As
illustrated in Fig. 2, two files are created in our experiment, one
for character level ngram tokens and another for textual content
of the webpage (char level vec.csv & para text vec.csv).

G. Merging Files

After vectorization, three separate files (conv fs.csv, char
level vec.csv & para text vec.csv) are combined into a single
data file (combined.csv) as shown in Fig. 2. This file serves as
a data file for the machine learning algorithm.

H. K-Fold Validation and Model Evaluation

The process uses a single parameter, K, to partition a data
sample into k groups. When a particular number for k is
selected, it may be used in place of k in the reference to the
model, such as k=10 becoming 10-fold cross-validation [15].
In our experiment, a machine learning algorithm using 10-fold
cross validation is fed the combined dataset (combined.csv).
Four important metrics—precision, recall, accuracy, and f1-
score—are used to assess the machine algorithm's
performance.

V. EXPERIMENTAL RESULT

The experimental configuration consists of Windows 10, an
I5 processor (3.2 GHz), and 8 GB of RAM. For programming,
Python and sklearn package are utilized. Three distinct
features, including URL Linguistic Features (ULF), Character-
level Ngram Features (CNF), and Web Content Features
(WCF), are generated for the experiments. Table II lists the
seven most popular machine learning techniques used in the
experiments. Each feature set and feature set combination
(ULF+CNF+WCF) is examined independently for
performance evaluation. Three different vectorizers were used
to generate the features. A range of features between 250 and
2000 was taken for each trial. This range is known as "feature
base."

1) URL linguistic feature (ULF): The features are

retrieved from the URL alone by counting some characters in

the URL and checking for the presence of the required pattern

or characters in the URL. Table III provides the 22 features

extracted from the URL. These are the most common features

seen in the majority of existing research works. Fig. 2 shows

the conventional feature extraction module extracting features

from the Raw dataset and preparing a 2D array of values

where rows represent URLs and columns represent the 22

features. The last column is the dependent feature called

"class" which shows if the URL is benign (0) or malicious (1).

The experiment's outcomes reveal that the random forest

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

335 | P a g e

www.ijacsa.thesai.org

achieves an accuracy of 98.31%, as depicted in both Table IV

and Fig. 4. This outcome distinctly underscores the

appropriateness of the selected features for the experiment.

TABLE IV. PERFORMANCE OF ULF

Type

Machine

Learning

Algorithm

Accurac

y

Precisi

on
Recall

F1-

Score

URL Linguistic

Features

LogR 95.06 99.48 90.58 94.82

KNN 96.80 97.67 95.91 96.77

GNB 91.19 99.44 82.82 90.36

DT 96.66 95.76 97.84 96.74

RF 98.31 98.74 97.90 98.31

GB 96.83 99.06 94.55 96.74

XGB 97.03 96.99 97.39 97.12

Fig. 4. Performance of ULF.

2) Character level-n-gram features (CNF): Character-

level ngrams are generated by breaking a text into sequences

of characters of a predetermined length. Character-level

ngrams are useful for identifying patterns in text, specifically

URL processing. In this experiment, character level ngram

processing simply takes the URL's domain name into account.

Character-level ngrams produce tokens. Following the

generation of tokens, the tokens are vectorized using three

distinct vectorizers for feature generation Experiments use

seven machine learning algorithms to test the generated

features and evaluate the performance. Tables V to VII show

the outcomes of the various trials for the count, TFIDF, and

hashing vectorizer, respectively. The results showed that using

a 2000 feature base, count vectorizer + random forest achieves

an accuracy of 90.87%, TFIDF vectorizer + random forest

achieves an accuracy of 90.04%, and Hashing vectorizer +

random forest achieves an accuracy of 92.95%. Fig. 5 depicts

the performance comparison of three different vectorizers.

TABLE V. PERFORMANCE OF CNF WITH COUNT VECTORIZER

Feature

Base

Machine

Learning

Algorithm

Accurac

y
Precision

Recal

l

F1-

Score

250

LogR 70.11 66.55 92.84 76.65

KNN 68.88 70.82 69.28 69.11

GNB 67.32 63.47 99.35 76.50

DT 72.78 68.72 92.08 78.00

RF 72.38 68.55 91.94 77.70

GB 70.65 66.64 94.38 77.28

XGB 71.72 67.86 92.37 77.48

500

LogR 71.78 70.42 82.53 75.16

KNN 76.65 75.60 82.19 78.28

GNB 68.77 64.59 98.83 77.20

DT 81.12 78.45 88.75 82.77

RF 81.80 78.75 89.69 83.40

GB 70.80 67.25 92.62 77.01

XGB 76.27 73.45 87.47 79.23

1000

LogR 77.57 76.19 83.78 79.29

KNN 77.33 88.71 62.86 73.51

GNB 67.97 72.96 61.44 65.96

DT 86.37 83.12 93.27 87.59

RF 88.71 85.82 93.56 89.37

GB 70.98 67.27 93.32 77.28

XGB 78.37 77.64 84.59 80.17

1500

LogR 79.56 77.78 85.66 81.09

KNN 78.27 87.31 66.59 75.43

GNB 66.75 81.46 44.30 57.13

DT 87.97 84.40 94.72 89.00

RF 89.93 87.04 94.69 90.54

GB 71.38 67.43 93.92 77.63

XGB 78.23 76.77 86.54 80.47

2000

LogR 81.35 79.29 87.11 82.66

KNN 79.16 86.77 69.42 76.98

GNB 68.40 83.38 46.62 59.58

DT 88.97 85.70 94.81 89.81

RF 90.87 88.37 94.69 91.30

GB 71.48 67.43 94.04 77.70

XGB 78.82 77.53 86.66 80.93

Configuring the count vectorizer with 2000 features results
in an elevated accuracy of 90.87% and an F1-Score of 91.30%
when applied in conjunction with the random forest algorithm.
By incorporating n-grams, the count vectorizer not only
captures individual words but also preserves contextual
information regarding word combinations.

LogR KNN GNB DT RF GB XGB

Accuracy 95.06 96.80 91.19 96.66 98.31 96.83 97.03

Precision 99.48 97.67 99.44 95.76 98.74 99.06 96.99

Recall 90.58 95.91 82.82 97.84 97.90 94.55 97.39

F1-Score 94.82 96.77 90.36 96.74 98.31 96.74 97.12

80.00

85.00

90.00

95.00

100.00

P
er

fo
rm

an
ce

 %

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

336 | P a g e

www.ijacsa.thesai.org

TABLE VI. PERFORMANCE OF CNF WITH TFIDF VECTORIZER

Feature

Base

Machine

Learning

Algorithm

Accura

cy

Precisio

n

Reca

ll

F1-

Score

250

LogR 69.37 66.23 92.53 76.19

KNN 69.84 69.60 75.97 71.87

GNB 67.44 63.54 99.40 76.57

DT 70.37 66.79 92.17 76.63

RF 72.80 68.65 92.64 78.14

GB 68.29 64.87 94.23 75.92

XGB 72.62 68.57 92.76 78.10

500

LogR 71.38 70.61 80.73 74.41

KNN 72.84 71.96 79.81 75.08

GNB 68.87 64.67 98.64 77.20

DT 78.71 75.75 88.79 81.11

RF 79.54 76.41 89.61 81.87

GB 72.43 68.32 93.35 78.07

XGB 76.76 73.68 89.32 80.00

1000

LogR 76.57 74.83 84.05 78.64

KNN 76.26 74.24 84.87 78.66

GNB 69.97 73.48 66.84 69.21

DT 85.18 81.71 93.32 86.74

RF 85.68 82.14 94.09 87.29

GB 72.96 69.63 91.23 77.90

XGB 79.83 76.37 90.61 82.33

1500

LogR 77.62 75.61 85.61 79.74

KNN 78.14 83.74 70.73 76.47

GNB 67.86 82.42 46.14 58.90

DT 87.41 84.21 94.29 88.62

RF 87.09 83.48 94.92 88.46

GB 72.02 69.52 89.67 77.08

XGB 79.89 76.57 90.78 82.44

2000

LogR 78.49 76.05 86.92 80.59

KNN 78.58 84.48 71.01 76.94

GNB 69.49 84.35 48.27 61.18

DT 86.54 83.12 94.75 88.10

RF 90.04 87.01 95.17 90.72

GB 69.44 67.31 88.18 74.98

XGB 80.35 77.11 90.34 82.63

Configuring the TF-IDF vectorizer with 2000 features
yields improved performance, achieving an accuracy of
90.04% and an F1-Score of 90.72% when coupled with the
random forest algorithm. The incorporation of n-grams
enhances the TF-IDF vectorizer, providing a more
comprehensive representation of textual data.

TABLE VII. PERFORMANCE OF CNF WITH HASHING VECTORIZER

Feature

Base

Machine Learning

Algorithm

Accurac

y

Precisi

on

Recal

l

F1-

Score

250

LogR 67.97 67.40 79.14 71.94

KNN 66.61 62.76 99.41 76.01

GNB 62.36 61.28 88.25 71.06

DT 88.79 85.36 95.85 89.94

RF 90.51 87.86 95.51 91.26

GB 76.04 72.25 90.26 79.61

XGB 88.49 85.04 94.81 89.43

500

LogR 71.01 69.73 82.11 74.61

KNN 66.38 62.67 99.35 75.90

GNB 65.35 63.39 90.45 73.31

DT 88.28 84.76 95.45 89.45

RF 90.84 88.34 95.48 91.51

GB 76.80 73.01 89.73 79.96

XGB 87.31 83.54 94.37 88.39

1000

LogR 77.38 75.37 84.93 79.33

KNN 66.18 62.54 99.38 75.81

GNB 65.78 63.47 92.34 74.04

DT 90.34 87.56 95.45 91.08

RF 92.45 91.03 94.98 92.80

GB 77.16 73.99 88.45 79.97

XGB 87.75 84.24 93.89 88.63

1500

LogR 79.51 76.81 87.53 81.40

KNN 66.09 62.48 99.34 75.75

GNB 67.15 64.00 93.33 74.90

DT 90.56 87.50 95.83 91.27

RF 91.92 89.92 95.11 92.30

GB 77.82 74.07 90.37 80.77

XGB 86.73 82.76 93.92 87.80

2000

LogR 80.27 76.94 89.27 82.23

KNN 66.08 62.48 99.40 75.76

GNB 70.83 67.06 94.27 77.33

DT 90.93 88.10 95.91 91.60

RF 92.95 91.84 94.86 93.20

GB 78.00 74.35 89.80 80.78

XGB 87.31 83.80 93.62 88.23

Configuring the Hashing vectorizer with 2000 features
yields an elevated accuracy of 92.95% and an F1-Score of
93.20% when coupled with the random forest algorithm. The
incorporation of n-grams into the Hashing vectorizer enhances
the representation of sequential word combinations, capturing
contextual information and thereby improving the overall
effectiveness of classification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

337 | P a g e

www.ijacsa.thesai.org

Fig. 5. Performance comparison of three vectorizers (2000 Features).

3) Web content features (WCF): The content of a

webpage is the most informative option for analysis. Our

experiment uses Beautiful Soup and Request in Python to

analyze paragraph tag text. Text contents were preprocessed to

get rid of stop words, special characters, etc. After that split

the words into sentences to produce a corpus. This corpus

serves as the input for the vectorizer, which produces features.

To examine the generated features and assess performance,

experiments utilize seven machine learning techniques. The

results of the various trials for count, TFIDF, and hashing

vectorizer, are displayed in Tables VIII to X. A performance

comparison of three different vectorizers is shown in Fig. 6.

TABLE VIII. PERFORMANCE OF WCF WITH COUNT VECTORIZER

Feature

Base
Machine Learning

Algorithm
Accur

acy
Precision

Recal

l
F1-

Score

250

LogR 77.28 72.72 91.60 80.58

KNN 78.35 74.87 88.90 80.76

GNB 69.36 64.26 98.21 77.02

DT 87.69 82.71 97.04 89.04

RF 90.71 86.94 97.10 91.53

GB 78.43 74.47 91.23 81.41

XGB 85.82 81.37 95.20 87.39

500

LogR 79.58 75.04 91.83 82.16

KNN 80.21 76.47 90.03 82.26

GNB 70.89 65.51 98.18 77.92

DT 88.91 84.55 97.30 90.16

RF 91.54 88.22 97.05 92.23

GB 79.20 75.15 91.45 81.96

XGB 86.37 82.07 95.28 87.84

1000

LogR 82.98 78.65 93.13 84.89

KNN 80.54 75.54 93.27 83.10

GNB 73.36 67.53 98.26 79.41

DT 90.17 86.00 96.85 90.94

RF 93.15 90.27 97.18 93.50

GB 79.53 75.46 91.62 82.22

XGB 88.41 83.86 96.33 89.45

1500

LogR 84.13 79.64 93.86 85.84

KNN 79.78 74.94 92.64 82.43

GNB 73.77 67.82 98.50 79.71

DT 90.73 86.51 97.41 91.47

RF 93.58 90.97 97.19 93.88

GB 79.58 75.57 91.71 82.30

XGB 88.75 84.25 96.42 89.73

2000

LogR 85.76 81.11 94.91 87.21

KNN 80.06 75.33 92.48 82.61

GNB 75.31 69.08 98.36 80.60

DT 92.44 88.99 97.39 92.90

RF 94.01 91.58 97.36 94.29

GB 79.58 75.73 91.28 82.22

XGB 88.85 84.40 96.34 89.79

TABLE IX. PERFORMANCE OF WCF WITH TFIDF VECTORIZER

Feature

Base
Machine Learning

Algorithm
Accurac

y
Precisi

on
Recal

l
F1-

Score

250

LogR 78.28 75.63 87.62 80.64

KNN 77.98 73.51 91.94 81.18

GNB 73.61 68.36 95.49 79.06

DT 87.24 82.38 96.74 88.69

RF 89.75 85.86 96.68 90.70

GB 79.83 76.38 90.40 82.25

XGB 86.04 81.87 94.74 87.50

500

LogR 80.89 78.40 88.58 82.68

KNN 76.03 70.79 93.76 80.18

GNB 77.05 71.43 95.45 81.19

DT 88.29 83.51 97.22 89.57

RF 91.78 88.68 96.96 92.44

GB 80.80 77.42 90.60 82.97

XGB 80.89 78.40 88.58 82.68

1000

LogR 83.34 80.96 89.58 84.65

KNN 84.76 89.55 79.10 83.87

GNB 77.60 71.70 96.71 81.81

DT 90.46 86.08 97.31 91.20

RF 93.27 90.52 97.10 93.60

GB 80.18 76.59 91.11 82.65

XGB 88.41 83.86 96.33 89.45

1500

LogR 85.03 82.53 90.65 86.07

KNN 81.26 80.91 83.31 81.82

GNB 79.19 73.32 97.16 83.00

DT 92.42 89.07 97.19 92.86

RF 93.70 91.12 97.25 94.00

Accura

cy

Precisi

on
Recall

F1-

Score

Count Vectorizer +

Random Forest
90.87 88.37 94.69 91.30

TFIDF Vectorizer +

Random Forest
90.04 87.01 95.17 90.72

Hashing Vectorizer +

Random Forest
92.95 91.84 94.86 93.20

80.00

85.00

90.00

95.00

100.00
P

er
fo

rm
an

ce
 %

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

338 | P a g e

www.ijacsa.thesai.org

GB 80.75 77.16 91.37 83.11

XGB 88.75 84.25 96.42 89.73

2000

LogR 86.13 83.92 91.02 87.01

KNN 81.64 81.44 83.39 82.13

GNB 81.59 75.71 97.04 84.59

DT 92.20 88.62 97.31 92.67

RF 93.95 91.59 97.22 94.23

GB 79.54 75.69 91.31 82.21

XGB 88.85 84.40 96.34 89.79

TABLE X. PERFORMANCE OF WCF WITH HASHING VECTORIZER

Feature

Base

Machine Learning

Algorithm

Accur

acy
Precision

Recal

l

F1-

Score

250

LogR 76.18 75.93 80.69 77.65

KNN 83.65 80.93 89.23 84.67

GNB 75.37 77.30 73.99 75.22

DT 92.06 89.50 95.92 92.47

RF 95.16 94.97 95.55 95.22

GB 82.40 79.80 88.85 83.73

XGB 91.53 88.74 95.80 92.00

500

LogR 81.94 81.21 84.75 82.62

KNN 84.69 82.20 89.56 85.53

GNB 78.55 81.39 75.36 77.95

DT 92.66 90.22 96.37 93.05

RF 94.92 94.21 95.94 95.02

GB 81.81 78.89 89.53 83.44

XGB 92.18 89.63 95.71 92.50

1000

LogR 85.39 83.96 88.67 86.01

KNN 85.52 83.11 89.95 86.23

GNB 79.35 82.89 75.42 78.65

DT 91.64 88.60 96.47 92.20

RF 94.98 93.87 96.53 95.11

GB 80.81 77.38 90.20 82.84

XGB 90.65 87.25 95.89 91.23

1500

LogR 86.17 84.56 89.43 86.72

KNN 86.01 83.98 89.78 86.62

GNB 82.32 86.06 77.83 81.50

DT 91.57 88.61 96.33 92.13

RF 95.21 94.02 96.80 95.33

GB 80.71 77.14 90.61 82.88

XGB 90.10 86.23 96.16 90.78

2000

LogR 86.83 85.21 89.98 87.34

KNN 86.50 84.88 89.36 86.94

GNB 83.42 88.21 77.54 82.40

DT 92.41 89.67 96.60 92.86

RF 94.97 93.62 96.84 95.13

GB 80.97 77.44 90.71 83.07

XGB 90.72 87.04 96.31 91.31

Fig. 6. Performance comparison of three vectorizers.

The findings demonstrated that when employing the 2000
feature base, the Count vectorizer with random forest achieves
an accuracy of 94.01% and F1-Score of 94.29%. The TFIDF
vectorizer with random forest reached an accuracy of 93.95%
and an F1-score of 94.23%. However, the Hashing Vectorizer
with Random Forest used a 1500 feature base and produced an
accuracy of 95.21 % and an F1-score of 95.33%.

4) Combined features (CF): The combined feature set

includes the features of ULF+CNF+WCF. Features are

combined in row-wise. The main objective of combining

feature sets is to reduce the feature set size and achieve higher

accuracy. A range of features between 250 and 2000 was

taken for each trial. So, the dataset for the trial is formed based

on the following Eq. (4)

𝐶𝐹𝑛 = 𝑈𝐿𝐹 + 𝐶𝑁𝐹𝑛 + 𝑊𝐶𝐹𝑛 (4)

Where n ϵ [250, 2000]

The features are merged in row-wise to create a single
unified feature set. Tables XI to XIII show the outcomes of the
various trials for the count, TFIDF, and hashing vectorizer,
respectively. Fig. 7 depicts the performance comparison of
three different vectorizers.

TABLE XI. PERFORMANCE OF CF WITH COUNT VECTORIZER

Feature

Base

Machine Learning

Algorithm

Accurac

y

Precisi

on

Recal

l

F1-

Score

250

LogR 94.48 94.49 94.67 94.53

KNN 86.59 82.70 93.66 87.64

GNB 73.54 68.14 98.77 79.87

DT 96.79 94.83 99.32 96.95

RF 98.84 98.51 99.23 98.85

GB 97.42 99.63 95.18 97.35

XGB 98.51 98.09 99.03 98.54

500 LogR 94.94 93.92 96.39 95.07

1 2 3 4

Count Vectorizer

with random forest

(2000 features)
94.01 91.58 97.36 94.29

TFIDF Vectorizer

with random forest

(2000 features)
93.95 91.59 97.22 94.23

Hashing Vectorizer

with random forest

(1500 features)
95.21 94.02 96.80 95.33

80.00
85.00
90.00
95.00

100.00

P
er

fo
rm

an
ce

 %

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

339 | P a g e

www.ijacsa.thesai.org

KNN 85.47 82.87 90.71 86.37

GNB 76.14 70.30 98.61 81.40

DT 98.24 97.23 99.37 98.27

RF 99.38 99.63 99.12 99.37

GB 97.81 99.83 95.79 97.76

XGB 99.12 99.14 99.10 99.12

1000

LogR 96.03 94.34 98.15 96.15

KNN 85.19 82.17 91.43 86.27

GNB 78.51 72.52 98.44 82.88

DT 98.64 97.91 99.44 98.66

RF 99.38 99.57 99.18 99.37

GB 97.94 99.90 95.97 97.90

XGB 99.18 99.19 99.18 99.18

1500

LogR 96.17 94.59 98.10 96.28

KNN 85.94 82.80 92.24 86.98

GNB 79.17 73.08 98.63 83.34

DT 98.24 97.19 99.44 98.28

RF 99.33 99.63 99.03 99.33

GB 97.91 99.89 95.92 97.86

XGB 99.15 99.10 99.21 99.15

2000

LogR 96.47 94.89 98.38 96.57

KNN 86.22 82.68 92.99 87.29

GNB 79.96 73.92 98.53 83.87

DT 98.68 97.96 99.44 98.69

RF 99.23 99.46 99.00 99.23

GB 97.93 99.87 95.97 97.88

XGB 99.14 99.14 99.15 99.14

TABLE XII. PERFORMANCE OF CF WITH TFIDF VECTORIZER

Feature

Base

Machine Learning

Algorithm

Accurac

y

Precisi

on

Recal

l

F1-

Score

250

LogR 95.76 96.84 94.66 95.72

KNN 89.05 85.13 95.62 89.90

GNB 73.40 67.83 99.75 79.97

DT 95.65 93.79 99.24 96.17

RF 99.27 99.38 99.15 99.27

GB 97.48 99.75 95.20 97.42

XGB 98.98 98.93 99.03 98.98

500

LogR 96.63 97.60 95.68 96.61

KNN 89.79 88.37 92.03 90.06

GNB 79.73 73.38 99.66 83.90

DT 98.73 98.12 99.38 98.74

RF 99.33 99.54 99.12 99.33

GB 97.74 99.84 95.63 97.69

XGB 99.07 99.08 99.06 99.07

1000

LogR 97.51 97.97 97.07 97.51

KNN 86.96 83.04 94.75 88.23

GNB 83.74 77.42 99.23 86.51

DT 98.60 97.94 99.35 98.62

RF 99.35 99.48 99.21 99.34

GB 97.78 99.73 95.82 97.73

XGB 99.26 99.30 99.23 99.26

1500

LogR 97.86 98.49 97.22 97.85

KNN 87.98 84.95 95.52 89.42

GNB 85.08 78.99 99.31 87.52

DT 98.56 97.84 99.35 98.58

RF 99.38 99.68 99.07 99.37

GB 97.78 99.76 95.79 97.73

XGB 98.98 98.93 99.03 98.98

2000

LogR 98.13 98.83 97.44 98.12

KNN 78.09 73.13 97.48 82.73

GNB 86.56 80.75 99.12 88.57

DT 98.60 97.94 99.31 98.61

RF 99.32 99.52 99.12 99.32

GB 97.86 99.83 95.88 97.81

XGB 99.18 99.13 99.23 99.18

TABLE XIII. PERFORMANCE OF CF WITH HASHING VECTORIZER

Feature

Base
Machine Learning

Algorithm
Accurac

y
Precisi

on
Recal

l
F1-

Score

250

LogR 96.00 97.11 94.92 95.97

KNN 91.71 90.58 93.32 91.87

GNB 93.95 97.54 90.20 93.71

DT 98.38 97.71 99.14 98.40

RF 99.45 99.82 99.09 99.45

GB 97.65 99.59 95.69 97.60

XGB 99.41 99.63 99.20 99.41

500

LogR 97.19 97.87 96.53 97.18

KNN 92.00 90.85 93.59 92.15

GNB 91.93 90.71 93.89 92.16

DT 98.26 97.43 99.18 98.28

RF 99.15 99.29 99.03 99.15

GB 97.68 99.87 95.48 97.62

XGB 99.50 99.68 99.32 99.50

1000

LogR 97.57 98.43 96.71 97.55

KNN 92.45 91.55 93.73 92.57

GNB 90.58 87.13 96.30 91.28

DT 98.57 97.96 99.23 98.58

RF 99.33 99.68 98.98 99.33

GB 97.80 99.79 95.79 97.75

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

340 | P a g e

www.ijacsa.thesai.org

XGB 99.46 99.65 99.27 99.46

1500

LogR 98.17 99.25 97.07 98.14

KNN 92.55 91.97 93.42 92.63

GNB 90.27 86.22 96.70 90.99

DT 98.52 97.75 99.37 98.54

RF 99.29 99.54 99.04 99.29

GB 97.97 99.87 96.06 97.93

XGB 99.50 99.69 99.31 99.50

2000

LogR 97.91 98.71 97.11 97.90

KNN 92.51 91.71 93.67 92.63

GNB 91.97 88.63 96.90 92.46

DT 98.44 97.63 99.35 98.47

RF 99.03 99.06 99.03 99.03

GB 97.86 99.70 96.00 97.81

XGB 99.46 99.65 99.27 99.46

Fig. 7. Performance comparison of three vectorizers (500 Feature base).

The results showed that using a 500 features base, the
Count vectorizer with random forest achieves an accuracy of
99.38% and an F1-score of 99.37%. The TFIDF vectorizer
with random forest achieves an accuracy of 99.33% and an F1-
score of 99.33% Hashing Vectorizer with extreme gradient
boosting achieves an accuracy and F1-score of 99.50%.

All of the vectorizers employed in the experiment obtain
higher accuracy and F1-score with 500 feature bases,
especially the hashing vectorizer with extreme gradient
boosting algorithm achieves the highest accuracy at 99.5%, as
shown in Table XIV and Fig. 8. As compared to previous
work, the proposed method significantly improves
performance.

TABLE XIV. PERFORMANCE COMPARISON OF EXISTING AND PROPOSED

METHOD

Author Machine Learning Algorithm
Highest

Accuracy

Saleem et al. [7] Random Forest 93.0%

Saleem et al. [11] Random Forest 99.0%

Malak et.al [12] Naïve Bayes 96.0%

Kamel et.al [13] Random Forest 95.51%

Lakshmanarao
et.al[14]

Hashing vectorizer with Random
Forest

97.50%

Joshi et.al [15] Random Forest 92.0%

Hong et al. [16] LA-FQ 94.16%

Josh et.al [17] Random Forest 98.91%

Saleem et.al[18] Weighted Soft Voting Classifier 99.10%

Ozgur et.al [19] Random Forest 97.98%

Proposed Method
Hashing vectorizer with Extreme

Gradient Boosting
99.50%

Fig. 8. Performance comparison of existing and proposed method.

VI. CONCLUSION

The majority of cybercrimes are committed using malicious
links or malicious websites. Unintentionally visiting these
websites or clicking on malicious links can have more serious
effects, including the theft of private, sensitive information,
security breaches, financial loss, and reputational damage. To
find these kinds of dangerous websites on the internet, AI-
based automated solutions are needed. For the detection
method, this paper makes use of both URLs and web contents.
Two different feature types, including ULF and CNF, are
generated using URL of the webpage. Moreover, web page
content is processed to generate features (WCF) for the
detection procedure. Seven different machine learning methods
are combined with three different vectorizers. Results of the
study show that the proposed method, which combines an
extreme gradient boosting algorithm with a hashing vectorizer,
offers a better level of accuracy.

REFERENCES

[1] Data Breach Report. Internet: https://www.ibm.com/reports/data-breach.
(Last access 18 oct 2024)

[2] Cybercrime magazine Internet:
https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-
by-2025/. (Last access 18 oct 2024)

[3] Hamadouche, Boudraa, Gasmi. Combining Lexical, Host, and Content-
based features for Phishing Websites detection using Machine Learning
Models. EAI Endorsed Transactions on Scalable Information Systems,
vol.11, no.6, 2024.
https://publications.eai.eu/index.php/sis/article/view/4421

[4] Saleem, Madhubala, Rajesh, Shaheetha, Arulkumar. Survey on
Malicious URL Detection Techniques, 6th International Conference on
Trends in Electronics and Informatics (ICOEI), pp. 778-781, 2022. DOI:
10.1109/ICOEI53556.2022.9777221.

[5] MohammadMoein, Arash, Hardhik,Unveiling malicious DNS behavior
profiling and generating benchmark dataset through application layer
traffic analysis,Computers and Electrical Engineering, vol.118, 2024.
https://doi.org/10.1016/j.compeleceng.2024.109436..

[6] Shivika, Feature-Rich Models and Feature Reduction for Malicious
URLs Classification and Prediction, Iowa State University, 2019.
https://dr.lib.iastate.edu/handle/20.500.12876/16711.

[7] Saleem, Sundarvadivazhagan, Vijayarangan, Veeramani., Malicious
Webpage Classification Based on Web Content Features using Machine
Learning and Deep Learning, International Conference on Green
Energy, Computing and Sustainable Technology (GECOST), pp. 314-
319, 2022. DOI: 10.1109/GECOST55694.2022.10010386.

Accur

acy

Precisi

on
Recall

F1-

Score

Count Vectorizer +

Random Forest
99.38 99.63 99.12 99.37

TFIDF Vectorizer +

Random Forest
99.33 99.54 99.12 99.33

Hashing Vectorizer +

Extreme Gradient

Boosting
99.50 99.68 99.32 99.50

80.00
85.00
90.00
95.00

100.00

P
er

fo
rm

an
ce

 %

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

341 | P a g e

www.ijacsa.thesai.org

[8] Rong, Yan, Jiefan, Binbin., Detection of malicious web pages based on
hybrid analysis, Journal of Information Security and Applications, vol
35, pp. 68-74, 2017. (https://doi.org/10.1016/j.jisa.2017.05.008).

[9] Cho Do, Hoa Dinh, Tisenko, Malicious URL Detection based on
Machine Learning, International Journal of Advanced Computer Science
and Applications (IJACSA), vol. 11, no. 1, 2020. DOI:
10.14569/IJACSA.2020.0110119.

[10] Jiann, Yi, Kuan., Intelligent Visual Similarity-Based Phishing Websites
Detection, Symmetry, 12, 1681. 2020.
(https://doi.org/10.3390/sym12101681).

[11] Saleem, Vinodini, Kavitha, Lexical features based malicious URL
detection using machine learning techniques, Materials Today:
Proceedings, vol 47, 1, pp.163-166, 2021.
https://doi.org/10.1016/j.matpr.2021.04.041.

[12] Malak, Fahd, Rami, Samiha, Dina, Hanan, Sara., An Assessment of
Lexical, Network, and Content-Based Features for Detecting Malicious
URLs Using Machine Learning and Deep Learning Models.
Computational Intelligence and Neuroscience., 2022. DOI:
10.1155/2022/3241216.

[13] Kamel, Boukhalfa, Zakaria , Oussama., A new approach for the
detection and analysis of phishing in social networks: the case of
Twitter, Seventh International Conference on Social Networks Analysis,
Management and Security (SNAMS), pp. 1-8, 2020. DOI:
10.1109/SNAMS52053.2020.9336572.

[14] Lakshmanarao, Babu, Bala, Malicious URL Detection using NLP,
Machine Learning and FLASK, International Conference on Innovative
Computing, Intelligent Communication and Smart Electrical Systems
(ICSES), pp. 1-4, 2021. DOI: 10.1109/ICSES52305.2021.9633889.

[15] Saleem, Pradeepa, Justin, Madhubala, Hariraman, Vinodhini,
SmishGuard: Leveraging Machine Learning and Natural Language
Processing for Smishing Detection, International Journal of Advanced

Computer Science and Applications, vol. 14, no. 11, 2023. DOI:
10.14569/IJACSA.2023.0141160.

[16] Hong, Zhaobin, Weijie, Xiangyan, Malicious Domain Names Detection
Algorithm Based on Lexical Analysis and Feature Quantification, IEEE
Access, vol. 7, pp. 128990-128999, 2019. DOI:
10.1109/ACCESS.2019.2940554.

[17] Jose, Ricardo , Emilio., Detection of algorithmically generated malicious
domain names using masked N-grams, Expert Systems with
Applications, vol.124, pp.156-163, 2019.
https://doi.org/10.1016/j.eswa.2019.01.050.

[18] Saleem, Sundaravadivazhagan, Pradeepa, Justin, Karthikeyan.,
Weighted ensemble classifier for malicious link detection using natural
language processing, International Journal of Pervasive Computing and
Communications, 2023. https://doi.org/10.1108/IJPCC-09-2022-0312.

[19] Ozgur, Ebubekir, Onder, Banu., Machine learning based phishing
detection from URLs, Expert Systems with Applications, vol.117,
pp.345-357, 2019. https://doi.org/10.1016/j.eswa.2018.09.029.

[20] Benjamin, Rebecca, Tony., Applied Text Analysis with Python Enabling
Language-Aware Data Products with Machine Learning, O’Reilly
Media, Inc, 2018. ISBN-13: 978-1491963043.

[21] Aurélien Géron , Hands-On Machine Learning with Scikit-Learn and
TensorFlow, O’Reilly Media, 2017. ISBN: 9781492032649.

[22] Malicious and Benign URLs:
https://www.kaggle.com/datasets/siddharthkumar25/malicious-and-
benign-urls.

[23] Jadhav, Mostafa, Elmannai, Khalid, An Empirical Assessment of
Performance of Data Balancing Techniques in Classification Task,
Applied Sciences, 12, 3928, 2022,
https://doi.org/10.3390/app12083928.

[24] Li, Aletras, Improving Graph-Based Text Representations with
Character and Word Level N-grams, arXiv:2210.05999.
https://doi.org/10.48550/arXiv.2210.05999.

