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Abstract—The high-voltage transmission system is a key 

component of the power network, and the reliability of its 

insulators directly affects the safe operation of the system. 

Traditional insulator defect detection methods are reliant on 

manual inspection, which requires significant human resources 

and is prone to substantial subjectivity. To address this issue, this 

paper proposes an insulator defect recognition method based on 

the improved YOLOv5 algorithm. This method first collects 

images of insulator defects and then utilizes the YOLOv5 model 

for recognition training. To enhance multi-scale feature fusion 

capability, a bidirectional feature pyramid network (BiFPN) is 

introduced. During the training process, the SiUL function is used, 

and the SE attention mechanism has been integrated into the 

detection backbone network, which enhances the model's 

detection accuracy. Experimental results show that the model 

achieves a detection precision of 90.27%, a recall of 89.14%, and 

a mAP of 91.34% on the test set. To further enhance the model's 

practicality, a PyQt5-based user interface (GUI) for the inspection 

system is designed, enabling interactive functions such as image 

uploading, defect detection, and result display. In summary, the 

research presented in this paper provides efficient and accurate 

technical support for intelligent power inspection, offering a wide 

range of application prospects. 
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I. INTRODUCTION 

High-voltage transmission lines are a key component of the 
power system, assuming the important task of transmitting 
electric energy, and their operational status is directly related to 
the stability and safety of the power system. As a key component 
of high-voltage transmission lines, insulators not only support 
and secure wires but also protect them from environmental 
erosion and mechanical damage. Therefore, the performance of 
insulators directly affects the insulation effect and service life of 
transmission lines. The traditional method for detecting 
insulator defects mainly relies on manual visual inspection, 
which has many problems [1]. First of all, the detection 
efficiency is low, manual visual inspection requires a lot of time 
and manpower, making it difficult to meet the needs of large-
scale and rapid detection. Secondly, the misdetection rate is 
high; due to human factors, it is easy to miss or incorrectly detect 
defects, which poses potential risks to the safe operation of the 
power system. 

With the continuous development of science and technology, 
deep learning-based image recognition technology shows great 
potential in the field of insulator defect detection. Deep learning 

technology can automatically extract defect features by learning 
from insulator images, facilitating efficient and accurate defect 
detection. Jia Yujin et al. (2023) proposed two lightweight 
enhancements to YOLOv5, combining the classical YOLOv5 
with the advantages of the lightweight convolutional neural 
networks MobileNetV3 and GhostNet, respectively. 
Experimental results showed that the enhanced model reduced 
computational load by 49.4% while maintaining detection 
accuracy [2]. Ru Hongfang et al. (2023) proposed an improved 
YOLO x method for detecting insulator self-explosion defects, 
incorporating the CBAM attention mechanism into the 
backbone network and optimizing the IoU calculation of the loss 
function to EIoU, achieving a detection accuracy of 97.26% [3]. 
Satyajit et al. proposed an automated inspection system utilizing 
a six-rotor UAV and the YOLOv8n model, achieving efficient 
real-time monitoring by training the model with a dataset of 
6020 insulator images and using image enhancement techniques 
to avoid overfitting. The YOLOv8n model achieved a mAP@50 
of 99.4%, significantly enhancing the efficiency and accuracy of 
insulator detection [4]. Souza developed a Hybrid-YOLO model 
based on the ResNet-18 classifier, trained using 1593 grid 
inspection images, with a mAP of 0.99262 and an F1 score of 
0.96216 for the multiclassification task, significantly improving 
the efficiency and accuracy of insulator detection [5]. 
Additionally, Yi et al. proposed the GC-YOLO model, which 
integrates the Ghost convolution module and CA attention 
mechanism in the backbone network and adds a small target 
detection head in the detection layer. Experimental results show 
that GC-YOLO achieves a recall of 89.7% and a mAP@0.5 of 
94.2%, which are 7% and 6.5% higher than YOLOv5s, 
respectively [6]. These studies demonstrate that deep learning-
based insulator defect detection techniques have significant 
advantages in improving detection efficiency and accuracy, 
showing promising application prospects. 

Collectively, these studies had underscored the remarkable 
advantages of deep learning-based insulator defect detection 
technologies in enhancing detection efficiency and accuracy. 
However, the pursuit of further improvements in detection 
precision and speed remained a focal point of ongoing research. 
Against this backdrop, this paper proposed an insulator defect 
detection method for high-voltage transmission lines based on 
an enhanced YOLOv5 model. By incorporating the SE attention 
mechanism, the BiFPN module, and employing the SiLU loss 
function, along with the development of an insulator interaction 
system interface, this method aimed to achieve efficient and 
precise detection of insulator defects, thereby improving 
detection accuracy and reducing the false detection rate. 

*Corresponding Author. 
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II. TESTS AND METHODS 

A. Image Acquisition 

In this study, the publicly available dataset of high-voltage 
transmission line insulators from Baidu AI Studio was used, 
along with insulator defect images obtained through web 

crawlers. Eventually, a total of 1033 insulator images were 
collected. Due to the limited number of insulator defect images 
in the original dataset, data augmentation techniques were 
applied to increase the dataset size and improve the model's 
generalization ability. After augmentation, the dataset contained 
2066 images, some of which were shown in Fig. 1. 

 
Fig. 1. Image of partial insulator defects. 

B. YOLOv5 Model 

The YOLOv5 model was the top-performing detection 
model in the YOLO family and consisted of four main modules: 
input, backbone network, neck, and head [7]. As shown in 
Fig. 2, the structure of the YOLOv5 model included techniques 
such as Mosaic data enhancement and adaptive anchor frame 

computation [8] in the input module. The backbone network 
employed Focus and CSPNet for feature extraction 
enhancement. The neck module combined different CSP 
modules and up-sampling techniques to obtain multi-scale 
contextual information. The head module was responsible for 
classification and regression tasks. 

 
Fig. 2. YOLOv5 model structure. 

C. YOLOv5 Improvements 

1) SE attention mechanism: Squeeze-and-Excitation 

Networks (SE) [9] were implemented through two main steps: 

compression and excitation. As shown in Fig. 3, in the 

compression step, the SE module compressed the input feature 

map into a vector through a global average pooling operation, 

and then mapped it to a smaller vector through a fully connected 

layer. This process would be interpreted as summarizing and 

generalizing the overall information of the input features. In the 

excitation step, each element in this vector was scaled between 

0 and 1 using a sigmoid function and multiplied with the 

original input feature map to obtain a weighted feature map 

[10]. This excitation operation would be understood as a 

recalibration of the local information of the input features. With 

the global averaged pooling and the excitation operations of the 

sigmoid function, the SE attention mechanism adapted to learn 

the importance of each channel, thus allowing the model to 

better understand the critical information in the input features 

and to focus on them more accurately in the output [11]. To 

improve the information interaction between each channel of 

the model and the utilization efficiency of feature information, 

this paper added the SE attention mechanism to the backbone 

network, and its specific position in the network was shown in 

Fig. 3. 
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Fig. 3. Structure diagram of SE attention mechanism.

2) Bidirectional Feature Pyramid Network (BiFPN): 

BiFPN [12] achieved effective fusion of multi-scale features 

through both top-down and bottom-up pathways , with its 

structural diagram illustrated in Fig. 4. Its weighted feature 

fusion mechanism allowed the model to dynamically adjust the 

importance of different scale features based on task 

requirements, thereby enhancing feature representation 

accuracy. In the context of detecting insulator defects, which 

were typically small targets, a BiFPN module had been 

introduced into the model’s neck section to replace the original 

feature pyramid network (FPN) [13]. This bi-directional feature 

fusion mechanism better integrated detailed information from 

low-level features with semantic information from high-level 

features, thereby improving the model's capability to detect 

defects across various scales. 

 
Fig. 4. Structure of bi-directional feature pyramid network. 

3) SiLU activation function: In YOLOv5, the activation 

function introduced nonlinear factors, thereby enhancing the 

model's expressive power [14]. Activation functions playde a 

crucial role in neural networks by mapping neuron outputs to 

nonlinear intervals. This nonlinear mapping enabled neural 

networks to better adapt to complex patterns, thereby 

improving accuracy and performance. SiLU (Sigmoid-

Weighted Linear Unit) acted as an implicit regularize with the 

following expression, suppressing the learning of numerous 

weights during training and enabling the model to focus more 

effectively on important features and patterns. This not only 

enhanced the model's generalization ability but also mitigates 

the risk of overfitting [15]. Additionally, due to SiLU's 

characteristics, the network's computational speed was 

improved. When the input x was large, SiLU's value was 

comparable to that of ReLU. Therefore, this paper adopted the 

SiLU activation function to enhance the overall performance of 

the model. 

( )SiLU x sigmoid x         (1) 

1

1 x
sigmoid

e



  (2) 

D. Interactive Interface Design for Detection Systems 

In the development of an enhanced insulator defect detection 
system, designing an intuitive and user-friendly graphical user 
interface (GUI) was paramount. This section elaborated on the 
interactive interface design utilizing Python's PyQt5 library, as 
depicted in Fig. 5. The GUI aimed to streamline the interaction 
between users and the detection model, enhancing the system's 
usability and user experience. 

The GUI integrated an image display area, an upload button, 
a detection button, and a feature for saving detection results in 
the backend. Users would effortlessly select an insulator image 
file for detection by clicking the upload button. Once loaded, the 
image was displayed in a designated area within the interface, 
facilitating user preview. Subsequently, upon clicking the 
detection button, the system automatically initiated the backend 
defect detection model, processing the image in real-time and 
instantly feeding back the detection results in graphical or 
textual form on the interface. This process not only visually 
showcased the detection effects but also significantly boosted 
detection efficiency. 

To further augment the system’s functionality and 
practicality, we had incorporated a logic for saving detection 
information in the backend after the detection process. Once 
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users confirmed the accuracy of the detection results, the 
information saving process was automatically triggered. The 
system then collected relevant detection details, including image 
paths, detection timestamps, defect types, locations, and 
severities, and leverages Python's file manipulation capabilities 
to save this information in a local JSON file. This step ensured 
the traceability and analyzability of detection results, facilitating 
subsequent data management and report generation. 

Moreover, to guarantee a seamless user experience, 
meticulous optimization and testing of the GUI were conducted. 
By arranging interface elements logically, refining interaction 
logic, and incorporating error handling and user feedback 
mechanisms, we ensured the GUI’s ease of use, stability, and 
reliability. Ultimately, a fully-featured, straightforward, and 
user-friendly GUI for the enhanced insulator defect detection 
system was successfully implemented, providing robust 
technical support for insulator inspection tasks in the power 
industry. 

 

Fig. 5. Detection system interaction interface. 

III. RESULTS AND DISCUSSION 

A. Test Environment 

For this model training experiment, the environment was 
configured as follows: Python 3.8.16 served as the primary 
programming language with PyTorch 2.0.0 as the chosen deep 
learning framework. Additional software environments included 
Torch 2.0.0 and CUDA 11.8.0. The system ran on Windows 11, 
utilizing an Intel Core i7-13900HX CPU paired with an 
NVIDIA GeForce RTX 3060 graphics card and 16 GB of RAM. 
This setup ensure stable and efficient model training, 
guaranteeing smooth experimentation and accurate results [16]. 

B. Evaluative Indicators 

In this study, multiple evaluative indicators were used to 
comprehensively assess the performance of the trained model. 
These indicators included precision, recall, and average 
precision, [17] which provided comprehensive information for 
evaluating different aspects of the model. 

C. Optimization of Model Training and Validation 

Parameters 

In the development of the insulator defect detection system, 
the optimization of parameters during the model training and 

validation stages represents a pivotal aspect ensuring model 
performance and generalization capability. 

Firstly, regarding the learning rate configuration, it served as 
a crucial hyperparameter modulating the step size of model 
weight updates, significantly impacting training efficiency and 
stability. This system employed an initial learning rate of 0.001, 
coupled with a learning rate decay strategy. Specifically, as 
training progresses, the learning rate was automatically adjusted 
to 10% of its previous value every 10 epochs. This strategy 
aimed to balance rapid convergence during initial training 
phases with fine-tuning in later stages, thereby preventing the 
model from becoming trapped in local optima or overfitting. 

Secondly, the selection of batch size needed a 
comprehensive consideration of hardware resource constraints 
and data processing efficiency. After thorough evaluation, a 
batch size of 32 was established in this system, ensuring efficient 
utilization of computational resources while maintaining the 
stability of the training process and mitigating noise in gradient 
estimations. 

An initial number of 100 epochs was prescribed for training 
iterations, with ongoing monitoring of validation set 
performance to facilitate dynamic adjustments. If stagnation or 
a downward trend in validation set performance metrics (such as 
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loss or accuracy) was observed, it might indicate that the model 
is nearing optimality or beginning to overfit, necessitating 
timely termination of training. 

In terms of optimizer selection, this system adopted the 
Adam optimizer, renowned for its adaptive learning rate 
adjustment capabilities, accelerating model convergence and 
minimizing computational resource consumption. 

To further enhance model generalization, regularization 
techniques were integrated. Specifically, L2 regularization 
(weight decay) was employed, penalizing the squared sum of 
model weights to constrain model complexity. A weight decay 
coefficient of 0.0005 was set. Additionally, the Dropout strategy 
was implemented in select layers of the model, randomly 
discarding a proportion (0.3) of neuron outputs to bolster model 
robustness. 

Through meticulous parameter optimization and effective 
training validation strategies, this system had successfully 
established a high-performance experimental environment for 
insulator defect detection models, laying a solid foundation for 
their stable performance and precise detection capabilities in 
practical applications. 

D. Results and Analysis 

1) Improved model validation analysis 

a) Add SE attention mechanism analysis: To thoroughly 

evaluated the impact of incorporating SE attention mechanisms 

on the model's detection performance, this paper conducted a 

comparative analysis before and after their addition under 

identical hardware and software conditions. The specific results 

were presented in Table Ⅰ, demonstrating that the inclusion of 

SE attention mechanisms notably enhances the model's 

accuracy in both feature extraction and classification. 

Specifically, precision increased by 1.3 percentage points, 

recall by 1.99 percentage points, and average precision by 1.79 

percentage points. 

TABLE I.  COMPARISON OF TESTS BEFORE AND AFTER ADDING SE 

MODULE 

Norm Original model 
After adding the SE 

module 

Accuracy/% 88.72 90.02 

Recall rate/% 86.36 88.35 

Average precision/% 88.45 90.24 

b) Adding Bidirectional Feature Pyramid Network 

(BiFPN) Analysis: To comprehensively assessed the impact of 

introducing a bidirectional feature pyramid network (BiFPN) 

on the model's detection performance, comparative 

experiments are conducted under identical hardware and 

software environments. The results, presented in Table Ⅱ, 

demonstrate that the inclusion of BiFPN significantly enhances 

both the model's multi-scale feature fusion capability and its 

detection performance. Specifically, following the introduction 

of BiFPN, the precision rate increases by 1.06 percentage 

points, the recall rate by 2.7 percentage points, and the average 

precision by 1.92 percentage points. 

TABLE II.  COMPARISON OF TESTS BEFORE AND AFTER ADDING BIFPN 

Norm Original model 
After adding 

BiFPN 

Accuracy/% 88.72 89.78 

Recall rate/% 86.36 89.06 

Average precision/% 88.45 90.37 

c) Analysis using the SiLU activation function: To 

evaluate the performance of the SiLU function, the activation 

function was tested before and after the enhancement of the 

YOLOv5 model on various datasets and models in this study. 

The results, presented in Table Ⅲ, demonstrate that the SiLU 

activation function excels across all performance indicators. 

Specifically, the precision rate achieved 90.27%, the recall rate 

was 89.14%, and the average precision reached 90.34%. 

TABLE III.  COMPARISON OF TESTS BEFORE AND AFTER ADDING SE 

MODULE 

Norm Original model 
SilU activation 

function 

Accuracy/% 88.72 90.27 

Recall rate/% 86.36 89.14 

Average 

precision/% 
88.45 90.34 

Following the adoption of the SiLU function, the model's 
precision, recall, and average precision were further enhanced, 
underscoring SiLU's ability to optimize model parameters and 
improve generalization. The inclusion of the SE attention 
mechanism alongside the SiLU optimization function notably 
boost model performance. This synergy suggested that these 
dual enhancements effectively complement each other, resulting 
in improved overall model performance. 

2) Comparative testing of different models: In this paper, 

several different models were tested against the improved 

YOLOv5 model. Specifically, YOLOv4, YOLOv5, and 

YOLOv8 were compared with the improved YOLOv5 model, 

and the results were shown in Table Ⅳ. 

TABLE IV.  TEST RESULTS OF DIFFERENT MODELS 

Model P/% R/% mAP/% 

YOLOv4 86.35 85.26 86.88 

YOLOv5 88.72 86.36 88.45 

YOLOv8 90.12 88.95 90.22 

This paper model 90.27 89.14 91.34 

Based on the experimental results, the improved model in 
this study demonstrated superior performance compared to the 
YOLOv5, YOLOv4, and YOLOv8 models in terms of precision, 
recall, and average precision metrics. These findings 
underscored the effectiveness of the enhancement strategy 
proposed in this paper. Consequently, the improved model 
exceled across all performance metrics, affirming the efficacy of 
the enhancement strategy and providing robust support for 
future research and applications. 

This paper compared and analyzed the image detection 
results of the YOLOv5 model on the test set before and after the 
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enhancement, as shown in Fig. 6. Fig. 6(a) illustrates the target 
detection results of the original YOLOv5 model, while Fig. 6(b) 
showd the target detection results of the improved YOLOv5 
model proposed in this study. It was evident from the figures that 
the enhanced model achieved more accurate identification of 

insulator defects and significantly improves detection accuracy, 
particularly for smaller and more challenging defects. This 
demonstrated the effectiveness of the enhancement strategy in 
improving the performance of the YOLOv5 model, making it 
suitable for practical applications. 

 

  

  
                                                                                          (a)                                                                     (b)   

Fig. 6. Comparison of models before and after improvement. 

IV. CONCLUSION 

This paper proposed an improved method for detecting 
insulator defects in high-voltage transmission lines, with a focus 
on intelligent identification. By incorporating a bidirectional 
feature pyramid network (BiFPN), the YOLOv5 model had been 
significantly enhanced in terms of multi-scale feature fusion. 
Additionally, the detection performance had been further 
optimized through the integration of an SE attention mechanism 
and the adoption of the SiLU activation function. Experimental 
validation had demonstrated that the improved model exhibited 
significant improvements in performance metrics such as 
precision, recall rate, and average precision, particularly in the 
areas of small target recognition and positional accuracy. 
Furthermore, the developed graphical user interface (GUI) 
inspection system enhances the model's usability, allowing users 
to easily upload images and perform defect detection operations. 

However, it should be noted that this study also had potential 
limitations and constraints. For instance, the performance of the 
model might be affected by variations in lighting conditions and 
image quality. Future work could involve exploring more robust 

methods to address these challenges and further improving the 
model's detection capabilities. 
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