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Abstract—Semi-supervised clustering with pairwise 

constraints has been a hot topic among researchers and experts. 

However, the problem becomes quite difficult to manage using 

random constraints for clustering data when the clusters have 

different shapes, densities, and sizes. This research proposes an 

active semi-supervised density-based clustering algorithm, 

termed "ASS-DBSCAN," designed specifically for clustering 

multi-density data. By integrating active learning and semi-

supervised techniques, ASS-DBSCAN enhances traditional 

clustering methods, allowing it to handle complex data 

distributions with varying densities more effectively. This 

research provides two major contributions. The first 

contribution of this research is to analyze how to link constraints 

(including that must be linked and ones that should not be 

linked) that will be utilized by the clustering algorithm. The 

second contribution made by this research is the ability to add 

multiple density levels to the dataset. We perform experiments 

over real datasets. The ASS-DBSCAN algorithm was evaluated 

against existing state-of-the-art system for various evaluation 

metrics in which it performed remarkably well. 

Keywords—Semi-supervised clustering; pairwise constraints; 

multi-density data; active learning 

I. INTRODUCTION 

In data mining, clustering algorithms are used to divide 
data into multiple groups based on selected similarity metrics 
[1]. The rate at which Web data is increasing also called Big 
Data, clustering algorithms are expected to death with 1) 
scalability, 2) noise, 3) multidimensional data, 4) discovering 
clusters with arbitrary shapes, and 5) least dependency of 
domain knowledge to establish input parameters [2]. 

Clustering algorithms are categorized into several 
categories based on the requirements of the problem given. 
This includes 1) Partitional, 2) grid-based, 3) hierarchical and 
4) density-based clustering algorithms [3]. From the list, 
density-based are suitable for finding clusters based on their 
unique size and shape. It does this by focusing on the density 
of the clusters in the region as opposed to clusters falling where 
the density is low [4-7]. 

The DBSCAN algorithm is one of the most popular used 
techniques in relation to this category of clustering algorithms 
that carries forward all advantages of density-based clustering 
family [8]. It works by calculating the total number of points 

(called Eps) around the point in a region. Points having density 
above the specified threshold value (called MinPts) are referred 
to as Core points, while others that do not meet these criteria 
are referred to as Noise points [9]. 

While this clustering technique is able to identify cluster 
regions having different shapes or sizes, it cannot handle data 
that contains clusters having points with different densities. 
This technique is only able to identify them as a cluster if the 
points are separated by sparse regions. 

For example, Fig. 1(a) shows the dataset contains two 
cluster groups, sparse cluster C1 (red points) and dense cluster 
C2 (green points), and noise data (black points). When using 
large Eps-distance, DBSCAN algorithm can find a sparse 
cluster successfully. However, as shown in Fig. 1(b), the 
algorithm merges the dense cluster with the adjacent noise 
points. While using small Eps-distance, as shown in Fig. 1(c), 
the DBSCAN algorithm can assist in finding dense cluster C2. 
On the other hand, it incorrectly marks the sparse clusters are 
noise points instead due to the core object condition. As a 
result of its reliance on set global parameters, DBSCAN is 
unable to discover clusters with variable densities. 

Moreover, most existing density-based algorithms are 
unsupervised learning methods that can’t utilise the available 
label information such as background knowledge [10] [11]. 
However, semi-supervised clustering algorithms can be 
considered as they utilize existing knowledge to enhance the 
clustering process. However, if these constraints are 
improperly selected the clustering performance will be affected 
[12]. Active learning was originally proposed to select the most 
important labeled data to generate pairwise constraints. 
However, most of the data in real-world applications is 
unlabeled [13-15]. 

To address the issue highlighted above, this is an enhanced 
version of DBSCAN algorithm that follows an active semi-
supervised clustering approach. This new algorithm is named 
as ASS-DBSCAN which is capable of clustering multi-density 
data with active pairwise constraints. By quantitively analyzing 
the data using statistical techniques, the research was able to 
split the dataset into various density groups. Then, generate a 
set of active pairwise constrints from existing groups and 
compute their Eps.  Finally, expand the clusters using selected 
active pairwise constraints. 
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Fig. 1. Finding clusters using the DBSCAN algorithm from multi-density data ( MinPt s = 5). 

The paper is organized as follows. In Section II, existing 
literature on the given research is highlighted and critically 
discussed. In Section III, the research discusses the proposed 
algorithm and its working. In Section IV, the dataset and 
evaluation metrics are briefly discussed before highlighting the 
results of the search and its comparison to existing state-of-the-
art systems. In Section V, the research is concluded along with 
directions for future research. 

II. RELATED WORK 

In this section, existing literature on clustering machine 
learning algorithms is reviewed. Since the scope of this 
research is limited towards density-based algorithms thus it 
will focus on that as well as active learning methods. 

In a study by Ankerst et al., an algorithm named OPTICS 
was proposed for the sole purpose of clustering analysis [1]. 
This algorithm generates two key parameters for clustering 
multi-density data including 1) core distance and 2) 
reachability. This additional information is added to the dataset 
to enable other algorithms to use the information for 
performing density-based clustering. The evaluation results 
showed that the algorithm was more efficient using these 
newly generated parameters over using existing information 
given in the dataset. 

In another research, authors presented a clustering 
algorithm named DBSCAN, which is capable of finding 
clusters having various shapes as well as considering multiple 
densities [8]. However, DBSCAN algorithm faces limitation in 
finding clusters as they are reliant on Eps and MinPts 
parameters, where these values are incorrectly applied. The 
two studies by Jahirabadkar et al. and Liu et al. also utilize k-
nearest neighbor of all selected objects so as to get the density 
for a given dataset. The authors further utilize various Eps 
values for sparse and dense clusters [2-3]. 

To address the issue of finding clusters using a dataset 
containing high dimensional data in distinct sizes, shapes, and 
density, Ertoz et al. suggested to check the points in the 
neighborhood of the clusters and use that information to check 
the similarity between the points [5]. Using this, the algorithm 
is able to define clusters using the defined points for those 
regions. 

With the aim of detecting clusters that may have a unique 
shape or size, Liu et al. provided a variant of the DBSCAN 
algorithm. This algorithm as named as Entropy and Probability 
Distribution (EPDCA) [9]. The evaluation results conducted on 

benchmark datasets for the EPDCA algorithm show improved 
performance over other algorithms that were evaluated on the 
same dataset. This work was improved further by providing an 
optimized combinatorial clustering algorithm specifically 
designed for noisy performance. This algorithm is vital, 
particularly for data that is large with random sampling [16]. 
The result shows that the proposed clustering algorithm 
outperformance various traditional approaches that are 
compared with. 

Kim et al. improved their work further by proposing an 
approximate adaptive AA-DBSCAN algorithm. This algorithm 
improved efficiency by reducing the time taken to calculate the 
parameters required to find clusters having multiple density 
points. The algorithm uses a density layer tree to distinguish 
between sparse and dense regions [10]. Kim et al. enhanced 
AA-DBSCAN further with kAA-DBSCAN that uses kth nearest 
neighbors technique. The newer algorithm showed 
improvement in approximating the Eps distance but requires a 
longer running time [10]. 

In another research, authors proposed the GCMDDBSCAN 
algorithm, which is based on the DBSCAN algorithm. The 
authors proposed this algorithm to allow better performance 
when dealing with large databases [11]. The evaluation results 
showed improved performance on large databases over other 
algorithms evaluated on the same databases. 

Constraint-based algorithms have emerged as extensions to 
traditional unsupervised clustering algorithms [17-19]. These 
methods incorporate constraints into the clustering process to 
enhance the learning of similarity metrics. Recently, several 
constraint-based clustering algorithms have been developed. 
For instance, Ruiz et al. introduced a pairwise-constrained 
clustering technique called C-DBSCAN, which leverages 
pairwise restrictions to enhance clustering accuracy [17]. The 
algorithm does this by determining the points that should be 
linked and the ones that should be avoided. This allows the 
algorithm to form clusters having unique shapes and sizes 
using the available constraints. In another study, a semi-
supervised clustering algorithm (SSDBSCAN) is proposed that 
uses information provided in the dataset for evaluating density 
parameters [18]. The evaluation results showed better 
performance in comparison to other algorithms. However, 
SSDBSCAN can only be applied on smaller datasets. 

Active learning in supervised machine learning has been a 
topic of interest for several decades when it comes to solving 
classification problems [20-22]. However, active learning for 
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clustering has acquired significant attention in recent years as it 
enhances the efficiency and accuracy of unsupervised learning 
algorithms [23]. Researchers have integrated active learning 
methods with different clustering algorithms. Active learning 
methods focused on uncertainty sampling, querying data points 
near cluster boundaries or with high uncertainty to improve 
cluster performance. Recently active semi-supervised 
clustering uses pairwise constraints to improve the clustering 
performance, especially for noisy, unbalanced or high-
dimensional data. Thus, active learning methods can enhance 
clustering performance while reducing labeling costs [24-26]. 

III. ASS-DBSCAN ALGORITHM 

This section covers ASS-DBSCAN that can rapidly and 
efficiently identify clusters for multi-density data having 
different shapes and sizes, with the knowledge of dealing with 
points that do not fall within the cluster. This algorithm 
comprises two main steps. 1) Partitioning dataset: divide the 
dataset into multiple density levels and generate pairwise 
constraints for linking and not linking points 2) Clusters are 
formed from the pairwise constraint information generated in 
step 1. 

A. Generating Density levels 

Let us suppose, that X = {x1, x2,…, xn} represent data points 
where the i-th point can show nominated as xi = {xi1, xi2, …, 
xim}. We start by computing the local density function for each 
data point. As described in Eq. (1), the local density is 
calculated by summing the distances between a point and its 
nearest neighbors. Next, the data points are ranked in 
descending order according to their local density values. This 
will allow the algorithm to calculate the difference in density 
between the point and its adjacent point xi and xi+1 denoted by 
DENVAR (xi, xi+1) as described in Eq. (3). 

𝐷𝐸𝑁(𝑥) = ∑ 𝐷(𝑥, 𝑦𝑖)𝑘
𝑖=1              (1) 

𝐷(𝑥, 𝑦𝑖) = √∑ (𝑥𝑗 − 𝑦𝑗)
2𝑚

j=1   (2) 

Here D(x, yi) shows the Euclidean distance between point x 
and its k-nearest neighbors yi. 

𝐷𝐸𝑁𝑉𝐴𝑅(𝑥𝑖 , 𝑥𝑖+1) =
|𝐷𝐸𝑁(𝑥𝑖+1)−𝐷𝐸𝑁(𝑥𝑖)|

𝐷𝐸𝑁(𝑥𝑖)
    (3) 

After getting the density variation between data points we 
will notice that the variation for points that are within the 
proximity of the density is small and there is some distinct 
variation between the different densities. Thus, all density level 
sets (DLS) are collected by computing the unique density 
variations. 

To simplify the explanation of our algorithm, we provide 
an example using a dataset that contains four clusters with 
varying densities, as explained in Fig. 2(a). We compute the 
density for each point of this dataset and sort them in 
descending order to get the results in Fig. 2(b). Fig. 2(b) 
contains four relatively smooth lines which accordingly 
represent four density levels and some sharp dips. After 
computing distinct variation, it can be seen that the smooth 
lines and sharp waves in Fig. 2(b) correspond to the density 
level sets and sharp change of two density levels that is 
highlighted in Fig. 2(c) respectively. 

Each smooth line needs to be extracted to acquire the 
density level for that set. This can be achieved by using a 
density variation threshold 𝜏. This can allow a dataset having 
multi-density data to be converted into a dataset containing 
multiple density level sets. Each Density level set should have 
data points with approximate densities. Points xi and xj are 
considered to be in the same density level set if the following 
criteria is met: 

𝑥𝑖 , 𝑥𝑗 ∈ 𝐷𝐿𝑆     𝑖𝑓 𝐷𝐸𝑁𝑉𝐴𝑅(𝑥𝑖 , 𝑥𝑗) ≤ 𝜏                  (4) 

The 𝜏 is calculated using the density variation values 
(DVList) as follows: 

𝜏 = 𝐸(𝐷𝑉𝐿𝑖𝑠𝑡) + 𝜎(𝐷𝑉𝐿𝑖𝑠𝑡) 

where, σ is standard deviation of DVList and E is the 
mathematical expectation. 

DVList values indicate that there are only a handful of 
points that have large DENVAR values. These points can be 
used to divide the dataset and transform into one having 
multiple density levels set. 

   
(a)     (b)     (c) 

Fig. 2. Density and density variation for multi-density dataset. 

After splitting the dataset into various density level sets, we 
generate a set pairwise constraints for performing clustering. 
The points that must be linked should be picked from the same 
density level and vice-versa Thus, we need to select the most 

informative objects from each density level set which have the 
highest neighborhood density. Now, we can generate a set of 
not to be linked constraints between the selected objects from 
different density level sets. Also, generate a set of constraints 
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for the points that must be linked between the most informative 
objects and their k-nearest neighbors objects in the same 
density level set. We summarize our strategy for selecting 
active pairwise constraints in Algorithm 1. 

Algorithm 1. Active Pairwise Constraints 

1. Initialization: N1 = {x}, where x is a random point in X; N = N1; 

l = 1; q = 0; 

2. while q<Q 

3. Select the most informative point x* with the highest 

neighborhood density. 

4. for each neighborhood Ni ∈ N  

5. Query x* against any data point xi ∈ Ni ; 

6. q++; 

7. if a must-link established between x* and xi  

8. Add x* to neighborhood Ni; 

9. end if 

10. end for 

11. if no must-link is achieved 

12. Add cannot-link between x* and all points in {𝑁𝑖}𝑖=1
𝑙 ; 

13. l++; create new neighborhood Nl = { x*}; N = N ∪ Nl 

14. end if 

15. end while 

16. return set of active pairwise constraints  
 

First, we select point having the most information, which 
has highest neighborhood density and query it against the 
points in each neighborhood. If a point is returned that must be 
linked, then this operation needs to be performed again. This 
process is repeated until a must does not link point is returned. 

We can generate more constraints using the transitive 
closure between the objects in pairwise constraints. For 
example, if we have must-link between the two objects xi and xj 
and must-link between the two objects xi and xk, then we get 
must-link between the two objects xj and xk. Also, if we have 
must-link between the two objects xi and xj and cannot-link 
between the two objects xi and xk, then we get cannot-link 
between the two objects xj and xk. The partitioning dataset into 
different density level sets and generating the pairwise 
constraints are presented in Algorithm 2. 

Algorithm 2: Generating density level sets with pairwise 

constraints 

1. Calculate the density function for every point in the dataset. 

2. Sort the points based on their density in descending order. 

3. Determine the density variation between each pair of consecutive 

data points. 

4. Group the dataset into different Density Level Sets (DLS) based on 

the computed density variations. 

5. Create a cannot-link constraint between data points in different 

density level; 

6. For each density level set (DLSi)  

7. Call Active Pairwise Constraints algorithm. 

B. Expanding Clusters 

When the Eps value is the same, clusters with different 
densities cannot be found. For every density level set, the Eps 
the value is approximated. The associated Eps for a particular 
density level set (DLS) can be boosted by setting the maximum 
DEN value. Some of the points selected may be classified as 
border objects or noise, which could affect the Eps value. 

Therefore, this issue is resolved by calculating Epsi for DLSi as 
follows: 

𝐸𝑝𝑠𝑖 = m𝑎𝑥𝐷𝐸𝑁(𝐷𝐿𝑆𝑖)  ∙ √
𝑚𝑒𝑑𝑖𝑎𝑛𝐷𝐸𝑁(𝐷𝐿𝑆𝑖)

𝑚𝑒𝑎𝑛𝐷𝐸𝑁(𝐷𝐿𝑆𝑖)
        (5) 

where, meanDEN, medianDEN and maxDEN, are the 
mean, median and maximum density of DLSi respectively. 

Now, we explain an example to demonstrate the effect of 
the proposed algorithm on a dataset with different densities. 
First, we assume that the parameter MinPts = 5 and compute 
the parameter Eps for each density according to Eq. (5). Next, 
as shown in Fig. 3(a), we have two different densities and set 
of noise points. Thus, we have two values for the Eps 
parameter (1.7 and 0.9) for the sparse and dense density 
respectively as shown in Fig. 3(b) and Fig. 3(c). 

With density levels partitioning and parameters estimation 
done, pairwise constraints are used for each density level 
cluster to increase the cluster size if necessary as shown in 
Algorithm 3: 

Algorithm 3. ASS-DBSCAN 

1. Partitioning the dataset and generating pairwise constraints using 

algorithm 1; 

2. For each density level set (DLSi)  

3. Estimate the parameter Epsi ; 

4. Initialize all data points in DLSi as UNCLUSTERED; 

5. ClusterNum  = 0; 

6. For each x ∈ DLSi 

7. If data x not CLUSTERED then 

Count the number of data points in x’s Eps-neighborhood; 

a. If the number of data points in neighborhood < MinPts  

add x to NOISE set; 

Else 

Add x to the current cluster ClusterNum; 

b. If there are must-link constraints between x and y  

For each point y in ML(x, y)  

Add y to the current cluster ClusterNum; 

c. For each point z in neighborhood do 

If z is not CLUSTERED and does not violated cannot-link 

constraints then 

Add z to the current cluster ClusterNum; 

8. ClusterNum = ClusterNum +1; 

9. Return the set of clusters. 

 In Step 7(a), after accurately estimating the Eps 
parameter, we proceed to compute the Eps-
neighborhood for each unclustered point. We then 
compare the number of data points within this 
neighborhood to the specified MinPts parameter to 
decide regarding the classification of the data point as 
part of a cluster or as noise. If the count of points in the 
Eps-neighborhood is less than MinPts, we classify the 
data point as noise. Conversely, if the number of points 
meets or exceeds MinPts, we incorporate the data point 
into the current cluster, thereby refining the clustering 
process. 

 In Step 7(b), we address the Must-link constraints. If a 
point has any Must-link constraints with other points, 
all of these points are assigned to the current cluster. 
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(a) (b) (c) 

Fig. 3. Example of different Eps values with varying densities (MinPt s = 5). 

 In Step 7(c), we consider the Cannot-link constraints. 
For each unclustered point within the current 
neighborhood that does not violate any Cannot-link 
constraints with the existing points in the current 
cluster, these points will also be included in the current 
cluster. 

C. Time Complexity 

This is divided into two parts. The first part is the time for 
dividing the dataset into different densities by calculating the 
density values. As per our calculations it leads to a time 
complexity of O(nlogn); the ordering of density values 
consumes O(nlogn); the other processes have the same runtime 
complexity of O(n). The second part is the time for expanding 
clusters, where the time required for a neighborhood query of a 
single object is O(n) and neighborhood query is is executed for 
every n points present in the dataset. The time of this part is 
O(m+n2); where m is the number of pairwise constraints.  
However, using an index structure like R*-tree, minimize the 
time required for a neighborhood query of a single object to 
O(logn). Thus the time required for this part is O(m + n log n). 
The total runtime complexity of the proposed algorithm is O(m 
+ n log n). 

IV. EXPERIMENTAL RESULTS 

This section evaluates the proposed algorithm against other 
baseline algorithms on a real dataset from the UCI repository. 
Each dataset was labeled with the number of data points, 
features, and cluster labels respectively as follows: Class 
(214,10,6), Ecoli (336,8,8), Ionosphere (351,34,2), Liver 
(345,6,2), Breast (683,9,2), Yeast (1484,8,10), Waveform 
(5000,21,3), Segment (2310,19,7) and Magic (19020,10,2). 
The evaluation of these algorithms is conducted using 
Normalized Mutual Information (NMI) as the clustering 
validation metric that is defined as follows: 

𝑁𝑀𝐼 =  
𝐼(𝑋; 𝑌)

(𝐻(𝑋) + 𝐻(𝑌))/2
 

A. Clustering Performance 

In this subsection, we explain the clustering performances 
of the algorithms C-DBSCAN, SSDBSCAN, AA-DBSCAN, 
and ASS-DBSCAN across the nine real-world datasets 
mentioned earlier. Table I presents the parameters values of 
each algorithm. As the parameter settings will be different 

according to each dataset, we employ a range of values for 
each parameter as detailed in Table I. 

TABLE I.  PARAMETERS VALUES OF EACH ALGORITHM 

Algorithm Parameters 

C-DBSCAN Eps ∈ [0.1, 0.5] and MinPts ∈ {3, 4, . . . , 10} 

SSDBSCAN Eps ∈ [0.1, 0.5] and MinPts ∈ {3, 4, . . . , 10} 

AA-DBSCAN MinPts ∈ {3, 4, . . . , 10} 

ASS-DBSCAN MinPts ∈ {3, 4, . . . , 10} 

We present the clustering performance result based on NMI 
of ASS-DBSCAN in comparison to compared algorithms with 
varied constraints on the real datasets. Each algorithm is shown 
with its own unique color in Fig. 4. For each dataset, a number 
of constraints were utilized with respect to the NMI. The result 
demonstrates that ASS-DBSCAN performance better than the 
compared algorithms in general. For example, as illustrated in 
Fig. 4(a), when utilizing 20 constraints, ASS-DBSCAN 
achieves a performance level exceeding 0.6 NMI, and with 80 
constraints, ASS-DBSCAN achieves NMI of more than 0.7, 
respectively. 

It can be observed that SSDBSCAN comes second in terms 
of effectiveness, followed by C-DBSCAN. Even though AA-
DBSCAN has a higher performance in the early stages. 
However, with the increased number of pairwise constraints, 
AA-DBSCAN has consistently shown in all the datasets its 
static performance with stable and non-improved result. This 
can be explained since algorithms are an unsupervised 
clustering algorithm. Hence, it is not effective with pairwise 
constraints. Also, we can observe that the performance of ASS-
DBSCAN can slowly increases with increased number of 
pairwise constraints as shown for Glass and Breast datasets. 
However, its performance surpasses the other algorithms. 

B. Running Time Evaluation 

This section discusses the running time of the ASS-
DBSCAN and other algorithms that have been evaluated. Fig. 
5 shows the execution times on the six datasets (containing 
pairwise constraints) used for evaluating. Lower execution 
time is considered better and vice versa. From Fig. 5, 
SSDBSCAN achieved the lowest performance of all pairwise 
constraints. AA-DBSCAN also has static value as shown in 
Fig. 5. These static values manifest as the number of 
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constraints are increased. We observed that the ASS-DBSCAN 
on most datasets achieve relatively high execution time with 
low constraints, however, overall, the execution time drops, 
and better performance was recorded for ASS-DBSCAN. 

Looking at all the experiments conducted on the other datasets, 
we can see that consistently ASS-DBSCAN performs better by 
achieving lower execution times in comparison to other 
algorithms. 

   
(a) Glass (b) Ecoli (c) Ionosphere 

   
(d) Liver (e) Breast (f) Yeast 

   
(g) Waveform (h) Segment (i) Magic 

Fig. 4. Clustering performance based on NMI with different numbers of pairwise constraints. 
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(d) Liver (e) Breast (f) Yeast 

   
(g) Waveform (h) Segment (i) Magic 

Fig. 5. Execution time with different numbers of pairwise constraints. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose ASS-DBSCAN for clustering 
different density data with a set of active pairwise constrints. 
By examining the statistical properties of the dataset's density 
variation, the suggested algorithm divides it into multiple 
density level sets, which are subsequently expanded using 
active pairwise constraints. The algorithm was evaluated for 
performance and execution time on the real datasets again 
other algorithms. The evaluations results showed that the 
algorithm not only performed better in achieving its goals but 
also took less time in order to do so. Future work includes the 
extension the current work to cluster more complex data from 
real-life streaming applications. In addition, we aim to develop 
a comprehensive system that integrates active learning and 
semi-supervised learning techniques to be applied on different 
applications. 
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