
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

493 | P a g e

www.ijacsa.thesai.org

Active Semi-Supervised Clustering Algorithm for

Multi-Density Datasets

Walid Atwa1, Abdulwahab Ali Almazroi2, Eman A. Aldhahr3, Nourah Fahad Janbi4

Department of Information Technology-College of Computing and Information Technology at Khulais,

University of Jeddah, Jeddah, Saudi Arabia1, 2, 4

Department of Computer Science and Artificial Intelligence-College of Computer Sciences and Engineering,

University of Jeddah, Jeddah, Saudi Arabia3

Abstract—Semi-supervised clustering with pairwise

constraints has been a hot topic among researchers and experts.

However, the problem becomes quite difficult to manage using

random constraints for clustering data when the clusters have

different shapes, densities, and sizes. This research proposes an

active semi-supervised density-based clustering algorithm,

termed "ASS-DBSCAN," designed specifically for clustering

multi-density data. By integrating active learning and semi-

supervised techniques, ASS-DBSCAN enhances traditional

clustering methods, allowing it to handle complex data

distributions with varying densities more effectively. This

research provides two major contributions. The first

contribution of this research is to analyze how to link constraints

(including that must be linked and ones that should not be

linked) that will be utilized by the clustering algorithm. The

second contribution made by this research is the ability to add

multiple density levels to the dataset. We perform experiments

over real datasets. The ASS-DBSCAN algorithm was evaluated

against existing state-of-the-art system for various evaluation

metrics in which it performed remarkably well.

Keywords—Semi-supervised clustering; pairwise constraints;

multi-density data; active learning

I. INTRODUCTION

In data mining, clustering algorithms are used to divide
data into multiple groups based on selected similarity metrics
[1]. The rate at which Web data is increasing also called Big
Data, clustering algorithms are expected to death with 1)
scalability, 2) noise, 3) multidimensional data, 4) discovering
clusters with arbitrary shapes, and 5) least dependency of
domain knowledge to establish input parameters [2].

Clustering algorithms are categorized into several
categories based on the requirements of the problem given.
This includes 1) Partitional, 2) grid-based, 3) hierarchical and
4) density-based clustering algorithms [3]. From the list,
density-based are suitable for finding clusters based on their
unique size and shape. It does this by focusing on the density
of the clusters in the region as opposed to clusters falling where
the density is low [4-7].

The DBSCAN algorithm is one of the most popular used
techniques in relation to this category of clustering algorithms
that carries forward all advantages of density-based clustering
family [8]. It works by calculating the total number of points

(called Eps) around the point in a region. Points having density
above the specified threshold value (called MinPts) are referred
to as Core points, while others that do not meet these criteria
are referred to as Noise points [9].

While this clustering technique is able to identify cluster
regions having different shapes or sizes, it cannot handle data
that contains clusters having points with different densities.
This technique is only able to identify them as a cluster if the
points are separated by sparse regions.

For example, Fig. 1(a) shows the dataset contains two
cluster groups, sparse cluster C1 (red points) and dense cluster
C2 (green points), and noise data (black points). When using
large Eps-distance, DBSCAN algorithm can find a sparse
cluster successfully. However, as shown in Fig. 1(b), the
algorithm merges the dense cluster with the adjacent noise
points. While using small Eps-distance, as shown in Fig. 1(c),
the DBSCAN algorithm can assist in finding dense cluster C2.
On the other hand, it incorrectly marks the sparse clusters are
noise points instead due to the core object condition. As a
result of its reliance on set global parameters, DBSCAN is
unable to discover clusters with variable densities.

Moreover, most existing density-based algorithms are
unsupervised learning methods that can’t utilise the available
label information such as background knowledge [10] [11].
However, semi-supervised clustering algorithms can be
considered as they utilize existing knowledge to enhance the
clustering process. However, if these constraints are
improperly selected the clustering performance will be affected
[12]. Active learning was originally proposed to select the most
important labeled data to generate pairwise constraints.
However, most of the data in real-world applications is
unlabeled [13-15].

To address the issue highlighted above, this is an enhanced
version of DBSCAN algorithm that follows an active semi-
supervised clustering approach. This new algorithm is named
as ASS-DBSCAN which is capable of clustering multi-density
data with active pairwise constraints. By quantitively analyzing
the data using statistical techniques, the research was able to
split the dataset into various density groups. Then, generate a
set of active pairwise constrints from existing groups and
compute their Eps. Finally, expand the clusters using selected
active pairwise constraints.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

494 | P a g e

www.ijacsa.thesai.org

(a) (b) (c)

Fig. 1. Finding clusters using the DBSCAN algorithm from multi-density data (MinPt s = 5).

The paper is organized as follows. In Section II, existing
literature on the given research is highlighted and critically
discussed. In Section III, the research discusses the proposed
algorithm and its working. In Section IV, the dataset and
evaluation metrics are briefly discussed before highlighting the
results of the search and its comparison to existing state-of-the-
art systems. In Section V, the research is concluded along with
directions for future research.

II. RELATED WORK

In this section, existing literature on clustering machine
learning algorithms is reviewed. Since the scope of this
research is limited towards density-based algorithms thus it
will focus on that as well as active learning methods.

In a study by Ankerst et al., an algorithm named OPTICS
was proposed for the sole purpose of clustering analysis [1].
This algorithm generates two key parameters for clustering
multi-density data including 1) core distance and 2)
reachability. This additional information is added to the dataset
to enable other algorithms to use the information for
performing density-based clustering. The evaluation results
showed that the algorithm was more efficient using these
newly generated parameters over using existing information
given in the dataset.

In another research, authors presented a clustering
algorithm named DBSCAN, which is capable of finding
clusters having various shapes as well as considering multiple
densities [8]. However, DBSCAN algorithm faces limitation in
finding clusters as they are reliant on Eps and MinPts
parameters, where these values are incorrectly applied. The
two studies by Jahirabadkar et al. and Liu et al. also utilize k-
nearest neighbor of all selected objects so as to get the density
for a given dataset. The authors further utilize various Eps
values for sparse and dense clusters [2-3].

To address the issue of finding clusters using a dataset
containing high dimensional data in distinct sizes, shapes, and
density, Ertoz et al. suggested to check the points in the
neighborhood of the clusters and use that information to check
the similarity between the points [5]. Using this, the algorithm
is able to define clusters using the defined points for those
regions.

With the aim of detecting clusters that may have a unique
shape or size, Liu et al. provided a variant of the DBSCAN
algorithm. This algorithm as named as Entropy and Probability
Distribution (EPDCA) [9]. The evaluation results conducted on

benchmark datasets for the EPDCA algorithm show improved
performance over other algorithms that were evaluated on the
same dataset. This work was improved further by providing an
optimized combinatorial clustering algorithm specifically
designed for noisy performance. This algorithm is vital,
particularly for data that is large with random sampling [16].
The result shows that the proposed clustering algorithm
outperformance various traditional approaches that are
compared with.

Kim et al. improved their work further by proposing an
approximate adaptive AA-DBSCAN algorithm. This algorithm
improved efficiency by reducing the time taken to calculate the
parameters required to find clusters having multiple density
points. The algorithm uses a density layer tree to distinguish
between sparse and dense regions [10]. Kim et al. enhanced
AA-DBSCAN further with kAA-DBSCAN that uses kth nearest
neighbors technique. The newer algorithm showed
improvement in approximating the Eps distance but requires a
longer running time [10].

In another research, authors proposed the GCMDDBSCAN
algorithm, which is based on the DBSCAN algorithm. The
authors proposed this algorithm to allow better performance
when dealing with large databases [11]. The evaluation results
showed improved performance on large databases over other
algorithms evaluated on the same databases.

Constraint-based algorithms have emerged as extensions to
traditional unsupervised clustering algorithms [17-19]. These
methods incorporate constraints into the clustering process to
enhance the learning of similarity metrics. Recently, several
constraint-based clustering algorithms have been developed.
For instance, Ruiz et al. introduced a pairwise-constrained
clustering technique called C-DBSCAN, which leverages
pairwise restrictions to enhance clustering accuracy [17]. The
algorithm does this by determining the points that should be
linked and the ones that should be avoided. This allows the
algorithm to form clusters having unique shapes and sizes
using the available constraints. In another study, a semi-
supervised clustering algorithm (SSDBSCAN) is proposed that
uses information provided in the dataset for evaluating density
parameters [18]. The evaluation results showed better
performance in comparison to other algorithms. However,
SSDBSCAN can only be applied on smaller datasets.

Active learning in supervised machine learning has been a
topic of interest for several decades when it comes to solving
classification problems [20-22]. However, active learning for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

495 | P a g e

www.ijacsa.thesai.org

clustering has acquired significant attention in recent years as it
enhances the efficiency and accuracy of unsupervised learning
algorithms [23]. Researchers have integrated active learning
methods with different clustering algorithms. Active learning
methods focused on uncertainty sampling, querying data points
near cluster boundaries or with high uncertainty to improve
cluster performance. Recently active semi-supervised
clustering uses pairwise constraints to improve the clustering
performance, especially for noisy, unbalanced or high-
dimensional data. Thus, active learning methods can enhance
clustering performance while reducing labeling costs [24-26].

III. ASS-DBSCAN ALGORITHM

This section covers ASS-DBSCAN that can rapidly and
efficiently identify clusters for multi-density data having
different shapes and sizes, with the knowledge of dealing with
points that do not fall within the cluster. This algorithm
comprises two main steps. 1) Partitioning dataset: divide the
dataset into multiple density levels and generate pairwise
constraints for linking and not linking points 2) Clusters are
formed from the pairwise constraint information generated in
step 1.

A. Generating Density levels

Let us suppose, that X = {x1, x2,…, xn} represent data points
where the i-th point can show nominated as xi = {xi1, xi2, …,
xim}. We start by computing the local density function for each
data point. As described in Eq. (1), the local density is
calculated by summing the distances between a point and its
nearest neighbors. Next, the data points are ranked in
descending order according to their local density values. This
will allow the algorithm to calculate the difference in density
between the point and its adjacent point xi and xi+1 denoted by
DENVAR (xi, xi+1) as described in Eq. (3).

𝐷𝐸𝑁(𝑥) = ∑ 𝐷(𝑥, 𝑦𝑖)𝑘
𝑖=1 (1)

𝐷(𝑥, 𝑦𝑖) = √∑ (𝑥𝑗 − 𝑦𝑗)
2𝑚

j=1 (2)

Here D(x, yi) shows the Euclidean distance between point x
and its k-nearest neighbors yi.

𝐷𝐸𝑁𝑉𝐴𝑅(𝑥𝑖 , 𝑥𝑖+1) =
|𝐷𝐸𝑁(𝑥𝑖+1)−𝐷𝐸𝑁(𝑥𝑖)|

𝐷𝐸𝑁(𝑥𝑖)
 (3)

After getting the density variation between data points we
will notice that the variation for points that are within the
proximity of the density is small and there is some distinct
variation between the different densities. Thus, all density level
sets (DLS) are collected by computing the unique density
variations.

To simplify the explanation of our algorithm, we provide
an example using a dataset that contains four clusters with
varying densities, as explained in Fig. 2(a). We compute the
density for each point of this dataset and sort them in
descending order to get the results in Fig. 2(b). Fig. 2(b)
contains four relatively smooth lines which accordingly
represent four density levels and some sharp dips. After
computing distinct variation, it can be seen that the smooth
lines and sharp waves in Fig. 2(b) correspond to the density
level sets and sharp change of two density levels that is
highlighted in Fig. 2(c) respectively.

Each smooth line needs to be extracted to acquire the
density level for that set. This can be achieved by using a
density variation threshold 𝜏. This can allow a dataset having
multi-density data to be converted into a dataset containing
multiple density level sets. Each Density level set should have
data points with approximate densities. Points xi and xj are
considered to be in the same density level set if the following
criteria is met:

𝑥𝑖 , 𝑥𝑗 ∈ 𝐷𝐿𝑆 𝑖𝑓 𝐷𝐸𝑁𝑉𝐴𝑅(𝑥𝑖 , 𝑥𝑗) ≤ 𝜏 (4)

The 𝜏 is calculated using the density variation values
(DVList) as follows:

𝜏 = 𝐸(𝐷𝑉𝐿𝑖𝑠𝑡) + 𝜎(𝐷𝑉𝐿𝑖𝑠𝑡)

where, σ is standard deviation of DVList and E is the
mathematical expectation.

DVList values indicate that there are only a handful of
points that have large DENVAR values. These points can be
used to divide the dataset and transform into one having
multiple density levels set.

(a) (b) (c)

Fig. 2. Density and density variation for multi-density dataset.

After splitting the dataset into various density level sets, we
generate a set pairwise constraints for performing clustering.
The points that must be linked should be picked from the same
density level and vice-versa Thus, we need to select the most

informative objects from each density level set which have the
highest neighborhood density. Now, we can generate a set of
not to be linked constraints between the selected objects from
different density level sets. Also, generate a set of constraints

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

496 | P a g e

www.ijacsa.thesai.org

for the points that must be linked between the most informative
objects and their k-nearest neighbors objects in the same
density level set. We summarize our strategy for selecting
active pairwise constraints in Algorithm 1.

Algorithm 1. Active Pairwise Constraints

1. Initialization: N1 = {x}, where x is a random point in X; N = N1;

l = 1; q = 0;

2. while q<Q

3. Select the most informative point x* with the highest

neighborhood density.

4. for each neighborhood Ni ∈ N

5. Query x* against any data point xi ∈ Ni ;

6. q++;

7. if a must-link established between x* and xi

8. Add x* to neighborhood Ni;

9. end if

10. end for

11. if no must-link is achieved

12. Add cannot-link between x* and all points in {𝑁𝑖}𝑖=1
𝑙 ;

13. l++; create new neighborhood Nl = { x*}; N = N ∪ Nl

14. end if

15. end while

16. return set of active pairwise constraints

First, we select point having the most information, which
has highest neighborhood density and query it against the
points in each neighborhood. If a point is returned that must be
linked, then this operation needs to be performed again. This
process is repeated until a must does not link point is returned.

We can generate more constraints using the transitive
closure between the objects in pairwise constraints. For
example, if we have must-link between the two objects xi and xj
and must-link between the two objects xi and xk, then we get
must-link between the two objects xj and xk. Also, if we have
must-link between the two objects xi and xj and cannot-link
between the two objects xi and xk, then we get cannot-link
between the two objects xj and xk. The partitioning dataset into
different density level sets and generating the pairwise
constraints are presented in Algorithm 2.

Algorithm 2: Generating density level sets with pairwise

constraints

1. Calculate the density function for every point in the dataset.

2. Sort the points based on their density in descending order.

3. Determine the density variation between each pair of consecutive

data points.

4. Group the dataset into different Density Level Sets (DLS) based on

the computed density variations.

5. Create a cannot-link constraint between data points in different

density level;

6. For each density level set (DLSi)

7. Call Active Pairwise Constraints algorithm.

B. Expanding Clusters

When the Eps value is the same, clusters with different
densities cannot be found. For every density level set, the Eps
the value is approximated. The associated Eps for a particular
density level set (DLS) can be boosted by setting the maximum
DEN value. Some of the points selected may be classified as
border objects or noise, which could affect the Eps value.

Therefore, this issue is resolved by calculating Epsi for DLSi as
follows:

𝐸𝑝𝑠𝑖 = m𝑎𝑥𝐷𝐸𝑁(𝐷𝐿𝑆𝑖) ∙ √
𝑚𝑒𝑑𝑖𝑎𝑛𝐷𝐸𝑁(𝐷𝐿𝑆𝑖)

𝑚𝑒𝑎𝑛𝐷𝐸𝑁(𝐷𝐿𝑆𝑖)
 (5)

where, meanDEN, medianDEN and maxDEN, are the
mean, median and maximum density of DLSi respectively.

Now, we explain an example to demonstrate the effect of
the proposed algorithm on a dataset with different densities.
First, we assume that the parameter MinPts = 5 and compute
the parameter Eps for each density according to Eq. (5). Next,
as shown in Fig. 3(a), we have two different densities and set
of noise points. Thus, we have two values for the Eps
parameter (1.7 and 0.9) for the sparse and dense density
respectively as shown in Fig. 3(b) and Fig. 3(c).

With density levels partitioning and parameters estimation
done, pairwise constraints are used for each density level
cluster to increase the cluster size if necessary as shown in
Algorithm 3:

Algorithm 3. ASS-DBSCAN

1. Partitioning the dataset and generating pairwise constraints using

algorithm 1;

2. For each density level set (DLSi)

3. Estimate the parameter Epsi ;

4. Initialize all data points in DLSi as UNCLUSTERED;

5. ClusterNum = 0;

6. For each x ∈ DLSi

7. If data x not CLUSTERED then

Count the number of data points in x’s Eps-neighborhood;

a. If the number of data points in neighborhood < MinPts

add x to NOISE set;

Else

Add x to the current cluster ClusterNum;

b. If there are must-link constraints between x and y

For each point y in ML(x, y)

Add y to the current cluster ClusterNum;

c. For each point z in neighborhood do

If z is not CLUSTERED and does not violated cannot-link

constraints then

Add z to the current cluster ClusterNum;

8. ClusterNum = ClusterNum +1;

9. Return the set of clusters.

 In Step 7(a), after accurately estimating the Eps
parameter, we proceed to compute the Eps-
neighborhood for each unclustered point. We then
compare the number of data points within this
neighborhood to the specified MinPts parameter to
decide regarding the classification of the data point as
part of a cluster or as noise. If the count of points in the
Eps-neighborhood is less than MinPts, we classify the
data point as noise. Conversely, if the number of points
meets or exceeds MinPts, we incorporate the data point
into the current cluster, thereby refining the clustering
process.

 In Step 7(b), we address the Must-link constraints. If a
point has any Must-link constraints with other points,
all of these points are assigned to the current cluster.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

497 | P a g e

www.ijacsa.thesai.org

(a) (b) (c)

Fig. 3. Example of different Eps values with varying densities (MinPt s = 5).

 In Step 7(c), we consider the Cannot-link constraints.
For each unclustered point within the current
neighborhood that does not violate any Cannot-link
constraints with the existing points in the current
cluster, these points will also be included in the current
cluster.

C. Time Complexity

This is divided into two parts. The first part is the time for
dividing the dataset into different densities by calculating the
density values. As per our calculations it leads to a time
complexity of O(nlogn); the ordering of density values
consumes O(nlogn); the other processes have the same runtime
complexity of O(n). The second part is the time for expanding
clusters, where the time required for a neighborhood query of a
single object is O(n) and neighborhood query is is executed for
every n points present in the dataset. The time of this part is
O(m+n2); where m is the number of pairwise constraints.
However, using an index structure like R*-tree, minimize the
time required for a neighborhood query of a single object to
O(logn). Thus the time required for this part is O(m + n log n).
The total runtime complexity of the proposed algorithm is O(m
+ n log n).

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed algorithm against other
baseline algorithms on a real dataset from the UCI repository.
Each dataset was labeled with the number of data points,
features, and cluster labels respectively as follows: Class
(214,10,6), Ecoli (336,8,8), Ionosphere (351,34,2), Liver
(345,6,2), Breast (683,9,2), Yeast (1484,8,10), Waveform
(5000,21,3), Segment (2310,19,7) and Magic (19020,10,2).
The evaluation of these algorithms is conducted using
Normalized Mutual Information (NMI) as the clustering
validation metric that is defined as follows:

𝑁𝑀𝐼 =
𝐼(𝑋; 𝑌)

(𝐻(𝑋) + 𝐻(𝑌))/2

A. Clustering Performance

In this subsection, we explain the clustering performances
of the algorithms C-DBSCAN, SSDBSCAN, AA-DBSCAN,
and ASS-DBSCAN across the nine real-world datasets
mentioned earlier. Table I presents the parameters values of
each algorithm. As the parameter settings will be different

according to each dataset, we employ a range of values for
each parameter as detailed in Table I.

TABLE I. PARAMETERS VALUES OF EACH ALGORITHM

Algorithm Parameters

C-DBSCAN Eps ∈ [0.1, 0.5] and MinPts ∈ {3, 4, . . . , 10}

SSDBSCAN Eps ∈ [0.1, 0.5] and MinPts ∈ {3, 4, . . . , 10}

AA-DBSCAN MinPts ∈ {3, 4, . . . , 10}

ASS-DBSCAN MinPts ∈ {3, 4, . . . , 10}

We present the clustering performance result based on NMI
of ASS-DBSCAN in comparison to compared algorithms with
varied constraints on the real datasets. Each algorithm is shown
with its own unique color in Fig. 4. For each dataset, a number
of constraints were utilized with respect to the NMI. The result
demonstrates that ASS-DBSCAN performance better than the
compared algorithms in general. For example, as illustrated in
Fig. 4(a), when utilizing 20 constraints, ASS-DBSCAN
achieves a performance level exceeding 0.6 NMI, and with 80
constraints, ASS-DBSCAN achieves NMI of more than 0.7,
respectively.

It can be observed that SSDBSCAN comes second in terms
of effectiveness, followed by C-DBSCAN. Even though AA-
DBSCAN has a higher performance in the early stages.
However, with the increased number of pairwise constraints,
AA-DBSCAN has consistently shown in all the datasets its
static performance with stable and non-improved result. This
can be explained since algorithms are an unsupervised
clustering algorithm. Hence, it is not effective with pairwise
constraints. Also, we can observe that the performance of ASS-
DBSCAN can slowly increases with increased number of
pairwise constraints as shown for Glass and Breast datasets.
However, its performance surpasses the other algorithms.

B. Running Time Evaluation

This section discusses the running time of the ASS-
DBSCAN and other algorithms that have been evaluated. Fig.
5 shows the execution times on the six datasets (containing
pairwise constraints) used for evaluating. Lower execution
time is considered better and vice versa. From Fig. 5,
SSDBSCAN achieved the lowest performance of all pairwise
constraints. AA-DBSCAN also has static value as shown in
Fig. 5. These static values manifest as the number of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

498 | P a g e

www.ijacsa.thesai.org

constraints are increased. We observed that the ASS-DBSCAN
on most datasets achieve relatively high execution time with
low constraints, however, overall, the execution time drops,
and better performance was recorded for ASS-DBSCAN.

Looking at all the experiments conducted on the other datasets,
we can see that consistently ASS-DBSCAN performs better by
achieving lower execution times in comparison to other
algorithms.

(a) Glass (b) Ecoli (c) Ionosphere

(d) Liver (e) Breast (f) Yeast

(g) Waveform (h) Segment (i) Magic

Fig. 4. Clustering performance based on NMI with different numbers of pairwise constraints.

(a) Glass (b) Ecoli (c) Ionosphere

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints
N

M
I

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

C-DBSCAN

Number of Constraints

N
M

I

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
e

co
n

d
s)

Number of Constraints

ASS-DBSCAN C-DBSCAN

SSDBSCAN AA-DBSCAN

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
e

co
n

d
s)

Number of Constraints

ASS-DBSCAN C-DBSCAN

SSDBSCAN AA-DBSCAN

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
e

co
n

d
s)

Number of Constraints

ASS-DBSCAN C-DBSCAN

SSDBSCAN AA-DBSCAN

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

499 | P a g e

www.ijacsa.thesai.org

(d) Liver (e) Breast (f) Yeast

(g) Waveform (h) Segment (i) Magic

Fig. 5. Execution time with different numbers of pairwise constraints.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose ASS-DBSCAN for clustering
different density data with a set of active pairwise constrints.
By examining the statistical properties of the dataset's density
variation, the suggested algorithm divides it into multiple
density level sets, which are subsequently expanded using
active pairwise constraints. The algorithm was evaluated for
performance and execution time on the real datasets again
other algorithms. The evaluations results showed that the
algorithm not only performed better in achieving its goals but
also took less time in order to do so. Future work includes the
extension the current work to cluster more complex data from
real-life streaming applications. In addition, we aim to develop
a comprehensive system that integrates active learning and
semi-supervised learning techniques to be applied on different
applications.

ACKNOWLEDGMENT

This work was funded by the University of Jeddah, Saudi
Arabia, under grant No. (UJ-21-DR-134). The authors,
therefore, acknowledge with thanks the university’s technical
and financial support.

REFERENCES

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
ordering points to identify the clustering structure,” ACM Sigmod Rec.,
vol. 28, no. 2, pp. 49–60, 1999.

[2] P. Liu, D. Zhou, and N. Wu, “VDBSCAN: varied density based spatial
clustering of applications with noise,” in 2007 International conference
on service systems and service management, 2007, pp. 1–4.

[3] X. Zhang, and Z. Shibo “WOA-DBSCAN: Application of Whale
Optimization Algorithm in DBSCAN Parameter Adaption,” IEEE
Access, 2023.

[4] A. A. Almazroi, and W. Atwa, “An improved clustering algorithm for
multi-density data,” Axioms vol 11, no 8, 2022.

[5] L. Ertöz, M. Steinbach, and V. Kumar, “Finding clusters of different
sizes, shapes, and densities in noisy, high dimensional data,” in
Proceedings of the 2003 SIAM international conference on data mining,
2003, pp. 47–58.

[6] A. Fahim, “Adaptive Density-Based Spatial Clustering of Applications
with Noise (ADBSCAN) for Clusters of Different
Densities,” Computers, Materials & Continua vol 75, no 2, 2023.

[7] W. Atwa, and K. Li. "Constraint-based clustering algorithm for multi-
density data and arbitrary shapes." In Industrial Conference on Data
Mining, pp. 78-92. Springer, Cham, 2017.

[8] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, ‘A density based algorithm
for discovering clusters in large spatial databases with noise’. In
Proceedings of 2nd International Conference on Knowledge Discovery
and Data Mining, pp. 226–231, 1996.

[9] X. Liu, Q. Yang, and L. He, “A novel DBSCAN with entropy and
probability for mixed data,” Cluster Comput., vol. 20, no. 2, pp. 1313–
1323, 2017.

[10] J.-H. Kim, J.-H. Choi, K.-H. Yoo, and A. Nasridinov, “AA-DBSCAN:
an approximate adaptive DBSCAN for finding clusters with varying
densities,” J. Supercomput., vol. 75, no. 1, pp. 142–169, 2019.

[11] L. Zhang, Z. Xu, and F. Si, “GCMDDBSCAN: multi-density DBSCAN
based on grid and contribution,” in 2013 IEEE 11th International
Conference on Dependable, Autonomic and Secure Computing, 2013,
pp. 502–507.

[12] M. A. Masud, J. Z. Huang, M. Zhong, and X. Fu, “Generate pairwise
constraints from unlabeled data for semi-supervised clustering,” Data
Knowl. Eng., vol. 123, p. 101715, 2019.

[13] W. Atwa, and K. Li. "Active query selection for constraint-based
clustering algorithms." In International Conference on Database and
Expert Systems Applications, pp. 438-445. Springer, Cham, 2014.

[14] W. Atwa, and M. Emam. "Improving Semi-Supervised Clustering
Algorithms with Active Query Selection." Advances in Systems Science
and Applications 19, no. 4 (2019): 25-44.

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
ec

o
n

d
s)

Number of Constraints

ASS-DBSCAN C-DBSCAN

SSDBSCAN AA-DBSCAN

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
ec

o
n

d
s)

Number of Constraints

ASS-DBSCAN C-DBSCAN

SSDBSCAN AA-DBSCAN

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
ec

o
n

d
s)

Number of Constraints

ASS-DBSCAN C-DBSCAN

SSDBSCAN AA-DBSCAN

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
ec

o
n

d
s)

Number of Constraints

ASS-DBSCAN

SSDBSCAN

AA-DBSCAN

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
ec

o
n

d
s)

Number of Constraints

ASS-DBSCAN C-DBSCAN

SSDBSCAN AA-DBSCAN

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(S
ec

o
n

d
s)

Number of Constraints

ASS-DBSCAN

C-DBSCAN

SSDBSCAN

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

500 | P a g e

www.ijacsa.thesai.org

[15] W. Atwa, "A Supervised Feature Selection Method with Active Pairwise
Constraints." In Proceedings of the 11th International Conference on
Informatics & Systems (INFOS 2018). 2018.

[16] J. Kim, W. Lee, J. J. Song, and S.-B. Lee, “Optimized combinatorial
clustering for stochastic processes,” Cluster Comput., vol. 20, no. 2, pp.
1135–1148, 2017.

[17] C. Ruiz, M. Spiliopoulou and E. Menasalvas. C-DBSCAN: Density-
Based Clustering with Constraints. In Proceedings of the International
Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular
Computing, pages 216- 223, 2007.

[18] L. Lelis and J. Sander. Semi-Supervised Density-Based Clustering. In
Proceeding of the Ninth IEEE International Conference on Data Mining,
842-847, 2009.

[19] W. Atwa, and K. Li. "Semi-supervised Clustering Method for Multi-
density Data." In International Conference on Database Systems for
Advanced Applications, pp. 313-319. Springer, Cham, 2015.

[20] P. Zhou, S. Bicheng, L. Xinwang, D. Liang, and L. Xuejun, “Active
Clustering Ensemble With Self-Paced Learning,” IEEE Transactions on
Neural Networks and Learning Systems, 2023.

[21] P. Kumar, and G. Atul, “Active learning query strategies for
classification, regression, and clustering: a survey,” Journal of Computer
Science and Technology, vol 35, pp 913-945, 2020.

[22] A. Hussein, A. A. Almazroi, “Multiclass Classification for Cyber
Threats Detection on Twitter”, CMC-COMPUTERS MATERIALS &
CONTINUA, 77(3), 2023.

[23] W. Yu, L. Xing, F. Nie, and X. Li, “An efficient semi-supervised
balanced cut with hard pairwise constraints and partial labels,”
Knowledge-Based Systems, vol 276, 2023.

[24] J. Cai, J. Hao, H. Yang, X. Zhao, and Y. Yang, “A review on semi-
supervised clustering,” Information Sciences, 2023.

[25] W. Atwa, A. A. Almazroi, “Active selection constraints for semi-
supervised clustering algorithms”, . Int. J. Inf. Technol. Comput.
Sci, 2020.

[26] A. A. Almazroi, and W. Atwa, “Semi-Supervised Clustering Algorithms
Through Active Constraints”, International Journal of Advanced
Computer Science & Applications, 15(7), 2024.

https://cdn.techscience.cn/files/cmc/2023/TSP_CMC-77-3/TSP_CMC_40856/TSP_CMC_40856.pdf
https://cdn.techscience.cn/files/cmc/2023/TSP_CMC-77-3/TSP_CMC_40856/TSP_CMC_40856.pdf
https://www.academia.edu/download/73510462/IJITCS-V12-N6-3.pdf
https://www.academia.edu/download/73510462/IJITCS-V12-N6-3.pdf

