
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

501 | P a g e

www.ijacsa.thesai.org

MSMA: Merged Slime Mould Algorithm for Solving

Engineering Design Problems

Khaled Mohammad Alhashash1, Hussein Samma2, Shahrel Azmin Suandi3*

Intelligent Biometric Group, School of Electrical and Electronic Engineering, USM Engineering Campus, Universiti Sains

Malaysia, Nibong Tebal 14300, Penang, Malaysia1, 3

SDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRCAI), King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia2

Abstract—The Slime Mould Algorithm (SMA) has effectively

solved various real-world problems such as image segmentation,

solar photovoltaic cell parameter estimation, and economic

emission dispatch. However, SMA and its variants still face

limitations when dealing with low-dimensional optimization

problems, including slow convergence and local optima traps. This

study aims to develop an optimized algorithm, the Merged Slime

Mould Algorithm (MSMA), to overcome these limitations and

improve performance in low-dimensional optimization tasks.

Additionally, MSMA introduces a novel approach by merging the

Adaptive Opposition Slime Mould Algorithm (AOSMA) and the

Smart Switching Slime Mould Algorithm (S2SMA), simplifying

the hybridization process and enhancing optimization

performance. MSMA eliminates the need for multiple

initializations, avoids memory-switching requirements, and

employs adaptive and smart switching rules to harness the

strengths of both algorithms. The performance of MSMA is

evaluated using the CEC 2005 benchmark and ten real-world

applications. The Wilcoxon rank-sum test verifies the effectiveness

of the proposed approach, with results compared to various SMA

variations and related optimization methods. Numerical findings

demonstrate superior fitness values achieved by the proposed

strategy, while statistical results indicate MSMA's

outperformance with a rapid convergence curve.

Keywords—Slime mould algorithm; engineering design

problems; metaheuristic; optimization

I. INTRODUCTION

Metaheuristic algorithms (MAs) offer valuable tools for
solving complex engineering problems in a reasonable time [1].
These algorithms provide a flexible and efficient approach to
optimization, enabling engineers to find near-optimal solutions
in diverse domains. MAs have two main elements: exploration
and exploitation abilities [2]. Exploration capability is the ability
to converge to a possible global optimum with increasing
solution space and randomness. On the other hand, exploitation
capability refers to the ability to search more precisely in the
region that the algorithm's exploration phase has identified.
There are two categories of metaheuristics: population-based
and single-solution-based metaheuristics [3]. Population-based
approaches involve utilizing a collection of solutions, referred to
as a population, to generate and substitute candidate solutions
throughout the optimization procedure. Some of the popular
population-based metaheuristic approaches are Particle Swarm
Optimization (PSO) [4], whale optimization algorithm (WOA)
[5], and Harris Hawk Optimizer (HHO) [6]. In contrast,

metaheuristics that rely on a single solution-based approach
involve generating a set of potential solutions derived from the
current solution. Subsequently, the current solution is
substituted with one of the candidate solutions during each
iteration. This category involves the local search (LS)[7], Tabu
search (TS)[8], and simulated annealing (SA) [9].

Single-based and population-based algorithms have benefits
and are widely utilized to address various issues. Nevertheless,
no single approach can solve all optimization problems [10].
Developing an optimization algorithm to address these issues is
necessary, but researchers have found it challenging to design
new optimization algorithms from scratch. In this direction,
hybridizing meta-heuristic algorithms is the most common and
successful technique. For example, on hybridizing meta-
heuristic algorithms [11]–[13].

In the literature, several optimizers have emerged recently,
such as SMA [14], Fitness Dependent Optimizer (FDO) [15],
Black Widow Optimization Algorithm (BWO) [16], and Reptile
Search Algorithm (RSA) [17]. SMA has captured considerable
attention due to its smooth structure, limited parameter
requirements, robustness, and flexibility in implementation. It
presents itself as a valuable and efficient approach for
addressing a wide range of real-world optimization problems
[18], such as image segmentation [19], estimation of solar
photovoltaic cell parameters [20], and economic emission
dispatch [21]. Nevertheless, similar to other metaheuristic
algorithms, SMA encounters challenges related to local
optimality and premature convergence in some optimization
problems [22], [23]. Moreover, Utilizing two random search
agents from the entire population to determine the future
displacement and direction based on the best search agents
restricts SMA's exploitation and exploration capabilities [24].
Researchers suggested hybridized and modified variants of
SMA to address these limitations.

This research article presents the hybridization of two
variants of SMA, namely S2SMA [25] and AOSMA [24]. The
integration involves incorporating a set of vertical smart
switching rules to govern the transition process between
AOSMA and S2SM. The two algorithms were combined
intelligently, where the invocation procedure exclusively occurs
during the update of slime locations. This merger is unique and
distinct from SAM's previous integration due to the following
three advantages: no necessity for multiple initializations for
different algorithms, no memory-switching needs, and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

502 | P a g e

www.ijacsa.thesai.org

employing adaptive and intelligent switching rules to leverage
the strengths of both algorithms. The main contributions of this
work are outlined as follows:

 MSMA introduces a novel optimization approach by
intelligently merging AOSMA and S2SMA, setting it
apart from previous SMA integrations through its
streamlined operational framework, which simplifies the
algorithm hybridization process.

 The MSMA eliminates the necessity for multiple
initializations and memory-switching, significantly
enhancing computational efficiency. This innovation
reduces the algorithm's complexity and resource
consumption, facilitating a more seamless optimization
experience.

 Incorporating Vertical Smart Switching Rules (VSSR)
enables MSMA to facilitate dynamic algorithmic
switches based on problem-specific attributes,
amplifying adaptability and operational efficiency.
VSSR represents a critical innovation, ensuring effective
navigation through complex problem spaces and
significantly improving optimization performance.

 The MSMA has been rigorously validated through
extensive experiments and numerical studies,
demonstrating its superiority in solving optimization
problems.

This paper's remaining sections are organized as follows.
The pertinent studies on SMA and engineering design problems
are summarized in Section II. Section III illustrates the slime
mould algorithm and the proposed work in detail. Section IV
presents the numerical experiment and statistical analysis. This
paper's conclusion is given in Section V.

II. RELATED WORK

As mentioned previously, SMA can be categorized into
hybridized and modified forms of SMA. Many studies have
investigated the idea of hybridizing SMA with other
metaheuristic algorithms [26]–[30]. Among these
advancements, Naik et al. [26] introduced the Equilibrium Slime
Mould Algorithm (ESMA), merging the Slime Mould
Algorithm (SMA) with the Equilibrium Optimizer (EO) for
enhanced multilevel thresholding in breast thermogram images.
ESMA aims to reduce entropic dependencies between image
classes, showing improved exploration capability and efficient
analysis over other optimization methods. Although it
outperforms in breast thermogram analysis, suggesting potential
benefits for medical diagnostics, ESMA faces challenges in
specific clinical contexts and broader medical imaging
applications. Further contributing to the field, Chen et al. [27]
introduced CHDESMA, an improved Slime Mould Algorithm
(SMA) using chaotic maps and Differential Evolution (DE).
CHDESMA mitigates SMA's local optima and population
diversity issues by integrating chaotic maps for initialization and
DE strategies for enhanced search. Evaluations against
benchmarks and real-world problems show CHDESMA's
competitive performance against advanced algorithms and DE
variants, emphasizing its effectiveness and contributions in
diverse scenarios. Moreover, Bhandakkar and Mathew [28]

proposed using Integrated Slime Mould Algorithm (ISMA) for
optimal placement of a Hybrid Power Flow Controller (HPFC).
ISMA combines the Slime Mould Algorithm (SMA) with WOA
for enhanced searching behavior. This optimization aims to
minimize system power loss and generation cost by determining
optimal locations for Unified Power Flow Controllers (UPFCs)
and their capacities while considering system stability
constraints. Chen et al. [29] presented RCLSMAOA, merging
SMA and AOA to improve optimization. Through extensive
testing, it effectively combines global exploration and local
exploitation strategies. Despite the success, challenges persist in
high-dimensional spaces and convergence accuracy. Future
work aims to refine RCLSMAOA's performance in practical
engineering problems and high dimensions, potentially
exploring a binary version of the algorithm for further
enhancement. Finally, Ewees et al. [30] introduced GBOSMA,
a hybrid method merging Gradient-Based Optimizer (GBO) and
Slime Mould Algorithm (SMA) to improve global optimization
and feature selection. GBOSMA enhances exploration by using
SMA as a local search within GBO, achieving better
performance than standard GBO, SMA, and recent algorithms
in both speed and accuracy across diverse benchmarks. The
results showcase GBOSMA's superiority, achieving top fitness
values in 66% of global optimization functions and the highest
accuracy in 93% of feature selection benchmarks. This approach
holds potential for various applications like medical imaging,
object detection, and weather prediction tasks.

In many investigations, modified SMA methods were
presented [24], [25], [31]–[34]. The Adaptive Opposition Slime
Mould Algorithm (AOSMA), as introduced by Naik et al. [24],
represents an advancement in the Slime Mould Algorithm
(SMA) through the integration of adaptive opposition-based
learning. This enhancement significantly boosts the algorithm's
exploration and exploitation capabilities, making it a powerful
tool for solving complex problems. However, AOSMA is not
without its limitations. It shows a marked reliance on specific
problem types, indicating that its effectiveness may be
constrained to particular domains. Additionally, there is a noted
requirement for further validation to confirm its broader
applicability across a wider range of problem scenarios.
Alhashash et al. [25] introduced an enhanced optimizer named
Smart Switching Slime Mould Algorithm (S2SMA) that
enhances the accuracy of face sketch recognition by fine-tuning
pre-trained deep learning models, which is challenging due to
limited sketch datasets. S2SMA simultaneously fine-tunes
multiple deep learning models and uses embedded rules and
search operations for adaptive switching between search
operations during execution. The proposed algorithm was
evaluated on CEC's 2010 large-scale benchmark and two face
sketch databases and outperformed other optimization
techniques with a faster convergence rate. The outcomes
revealed the superiority of S2SMA in the majority of
experiments. Ewees et al. [31] presented a modified version of
the slime mould algorithm (SMA) called SMAMPA, which
incorporates the Marine Predators Algorithm (MPA) operators
as a local search strategy. The proposed feature selection
technique was evaluated on twenty UCI datasets and compared
with other state-of-the-art FS methods, showing superior
performance in terms of efficiency and performance metrics.
The SMAMPA method was also applied to real-world problems,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

503 | P a g e

www.ijacsa.thesai.org

such as QSAR modeling and chemometrics, with promising
results. Future work includes investigating SMAMPA in more
complicated problems, such as multi-optimization problems and
big data mining. Abid et al. [32] proposed an enhanced slime
mould optimization algorithm (ESMOA) to optimize tuning
parameters for a cascaded proportional derivative-proportional
integral (PD-PI) controller in order to solve frequency stability
problems (FSP) in multi-area power systems (MAPSs) with
two-area non-reheat thermal systems. ESMOA surpassed
current PID and PI controllers. Cascaded PD-PI controller
designs are more reliable than GSO and CO algorithms due to
ESMOA's chaotic dynamic and elite group. In time domain
simulations, ESMOA beat both GSO and CO. Deng and Liu
[33] proposed AGSMA, an improved variant of the slime mould
algorithm, to address limitations such as insufficient
exploration, slow convergence, and an imbalance between
diversity and convergence. AGSMA achieved a balance
between convergence and diversity through adaptive grouping,
a new search mechanism, and an efficient learning operator.
Experiments demonstrated that it outperformed other methods
and is able to solve complex nonlinear problems. However,
premature convergence in some multimodal problems needs
additional study. Sharma et al. [34] presented modifications to
the Slime Mould Algorithm (SMA) to make it more effective for
engineering design tasks, including opposition theory and a sine
cosine-based position update mechanism. These modifications
were found to significantly enhance the performance of SMA on
standard benchmark functions and make it suitable for demand-
side management tasks.

In the evolving field of metaheuristic algorithms, recent
studies have made significant strides in addressing complex
engineering design problems. Samma et al. [13] pioneered the
Q-learning-based Simulated Annealing (QLSA) algorithm,
setting a precedent for dynamic parameter control and
adaptability, albeit with scalability and exploration scope
limitations. Building on this, Nadimi-Shahraki et al. [1]
introduced the Gaze Cues Learning-based Grey Wolf Optimizer
(GGWO), which incorporated novel search strategies inspired
by wolf behavior, showing promise despite challenges in
selective pressure optimization. Further contributions, such as
Wang et al. [35]'s Artificial Rabbits Optimization (ARO) and
Yildiz et al. [36]'s Elite Opposition-Based Learning
Grasshopper Optimization (EOBL-GOA), demonstrated the
algorithms' strengths in diverse engineering problems but also
highlighted the need for domain-specific adaptability. Zhang et
al. [37] and Yıldız et al. [38] proposed enhancements to the
Slime Mould Algorithm (SMA) and introduced the Chaotic
Lévy flight distribution (CLFD) algorithm, respectively,
achieving improved solution quality and exploration-
exploitation balance. Recent developments saw Yang et al. [39]
focus on the ARSCA algorithm, addressing computational
complexity while improving convergence accuracy. Abdel-
Basset et al. [40] applied the Nutcracker Optimization
Algorithm (NOA) to engineering problems, demonstrating the
ease of implementation and high convergence speed but facing
challenges in exploration-exploitation balance. Gharehchopogh
et al. [41] introduced the Chaotic Quasi-oppositional Farmland
Fertility Algorithm (CQFFA), which enhanced exploration and
convergence via chaotic maps and the Quasi-Oppositional
Binary Leader strategy, albeit with hybridization challenges.

Deng and Liu [42] showcased the Multi-strategy Improved
Slime Mould Algorithm (MSMA), signaling a need for
enhancements in multi-objective optimization and broader
domain adaptability.

Despite significant advancements in developing SMA
variants, current methods still face challenges in broader
applicability and often struggle with slow convergence and local
optima traps in low-dimensional optimization problems. This
gap highlights the need for improved solutions that can
overcome these limitations. The proposed approach addresses
these challenges by integrating SMA variants with adaptive
mechanisms, enhancing computational efficiency, reducing the
reliance on multiple initializations, and simplifying the
hybridization process, offering a more robust and effective
solution for complex optimization tasks.

III. PROPOSED SMA-BASED METHOD

A. The original Slime Mould Algorithm (SMA)

Li et al. [14] introduced the SMA as an innovative
optimization mechanism for global optimization. SMA focuses
on the behavior and morphological changes that the slime mould
Physarum polycephalum undergoes during nutrient acquisition.
Approaching, wrapping, and grabbing food are the three stages
of SMA.

1) Approaching food: The concentration of odor in the air

is essential for a slime mould to approach food. This contraction

pattern when nearing food is defined by Eq. (1):

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {
𝑋𝑏(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ (�⃗⃗⃗� ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) , 𝑟2 < 𝑝

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟2 ≥ 𝑝

where the parameter 𝑣𝑏⃗⃗⃗⃗ takes values within the range of [-
a, a], while 𝑣𝑐⃗⃗⃗⃗ gradually decreases from one to zero in a linearly.

The position 𝑋𝑏
⃗⃗ ⃗⃗ refers to the current location of an individual

with the highest concentration of odor detected. 𝑋 represents the

current location of slime mould. 𝑋𝐴
⃗⃗ ⃗⃗ and 𝑋𝐵

⃗⃗ ⃗⃗ denote two
randomly selected individuals from a population of size n. The
variables 𝑡 and 𝑟2 indicate the current iteration number and a
random value between 0 and 1, respectively. The weight of

slime mould is represented by �⃗⃗⃗� . The parameter p is computed
using Eq. (2):

𝑝 = 𝑡𝑎𝑛ℎ|𝑆(𝑖) − 𝐷𝐹|

where i ∈ 1,2, … , n. The fitness of the current location X⃗⃗ is
denoted by S(i) , while DF denotes the best fitness achieved

across all iterations. The formula for computing vb⃗⃗⃗⃗ can be found
in Eq. (3), and the value of 𝑎 is provided in Eq. (4).

𝑣𝑏⃗⃗⃗⃗ = [−𝑎, 𝑎])

𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(−(
𝑡

𝑚𝑎𝑥_𝑡
) + 1)

Here, 𝑚𝑎𝑥_𝑡 refers to the maximum number of iterations.

The formula for calculating �⃗⃗⃗� is presented in Eq. (5), while its
𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 is defined in Eq. (6).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

504 | P a g e

www.ijacsa.thesai.org

𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖))⃗⃗ =

{
1 + 𝑟3 ∙ 𝑙𝑜𝑔 (

𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑟3 ∙ 𝑙𝑜𝑔 (
𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠

𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆)

where, condition represents that S(i) must be ranked within
the top fifty percent of the entire population. The variable r3
denotes a random value ranging from 0 to 1. The best fitness
value achieved during the current iteration process is represented
as 𝑏𝐹 , while the worst fitness value is denoted as 𝑤𝐹 .
SmellIndex corresponds to the sequence of fitness values
arranged in ascending order.

2) Wrapping food: Updates to the position of slime mould

can be calculated using the formula given in Eq. (7):

𝑋∗(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {

𝑟4 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟1 < 𝑧

𝑋𝑏(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ (𝑊 ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) , 𝑟2 < 𝑝𝑎𝑛𝑑𝑟1 ≥ 𝑧

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟2 ≥ 𝑝𝑎𝑛𝑑𝑟1 ≥ 𝑧

where, 𝑟1, r2 and r4 are randomly selected from the interval
[0,1]. 𝐵 and 𝑈𝐵 represent the lower and upper bounds of the
search range, respectively. The 𝑝 value signifies the probability
associated with the presence of slime mould, while 𝑧 is a
parameter with a constant value of 0.03.

3) Grabbling food: To represent the slime mould venous

width changes, SMA utilizes the vectors �⃗⃗⃗� , 𝑣𝑏⃗⃗⃗⃗ , and 𝑣𝑐⃗⃗⃗⃗ . �⃗⃗⃗�
reflects the oscillating frequency of slime mould, which is

determined by analyzing the quality of the food source. It helps

update the speed of movement towards the food source, aiding

the slime mould in selecting the most suitable food source.

The values of 𝑣𝑏⃗⃗⃗⃗ and 𝑣𝑐⃗⃗⃗⃗ undergo random oscillations within

specific ranges. The vector 𝑣𝑏⃗⃗⃗⃗ ranges from -𝑎 to 𝑎, while 𝑣𝑐⃗⃗⃗⃗
ranges from -1 to 1. As the iterative process progresses, these
vectors converge towards zero.

The variation in 𝑣𝑏⃗⃗⃗⃗ replicates the slime mould's behaviour
when it encounters a new food source. Even if an improved food
supply has been identified, the slime mould continues to explore
other locations by separating some organic matter. This
behaviour increases the chances of finding higher-quality food
sources and improves the optimization of local problems. For
further details on the SMA, refer to the study conducted by Li et
al. [14].

B. The Proposed Merged Slime Mould Algorithm

MSMA is a novel optimization method that combines two
variants SMA: AOSMA and S2SMA. This merger distinguishes
itself from previous integrations by providing three primary
advantages: the elimination of the necessity for multiple
initializations for different algorithms, avoidance of memory-
switching requirements, and the incorporation of adaptive and
intelligent switching rules, known as the Vertical Smart
Switching Rules (VSSR).

The formulation of VSSR involves incorporating four
embedded vertical smart switching rules to control the recall
ratio between AOSMA and S2SMA during slime position
updates. The activation of VSSR is dependent on the occurrence
of specific events, comprising seven parameters: 𝐴𝑂𝑆𝑀𝐴_𝐸𝑁
parameter, 𝑆2𝑆𝑀𝐴_𝐸𝑁 parameter, EVAL_C parameter,
𝐴𝑂𝑆𝑀𝐴_𝐶 parameter, 𝑆2𝑆𝑀𝐴_𝐶 parameter,
𝑉𝐸𝑅_𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝐿𝐸𝐴𝐷𝐸𝑅 parameter, and 𝑝𝑒𝑟. The first parameter
is 𝐴𝑂𝑆𝑀𝐴_𝐸𝑁. It will take either zero or one. If AOSMA is
chosen to update slime positions, it will be one; otherwise, it will
be zero. The second parameter is 𝑆2𝑆𝑀𝐴_𝐸𝑁. It will take either
zero or one. If S2SMA is chosen to update slime positions, it will
be one; otherwise, it will be zero. The third parameter, EVAL_C,
evaluation counter represents the number of iterations required
to evaluate the performance of the two algorithms and is
computed using Eq. (8). The fourth and fifth parameters,
𝐴𝑂𝑆𝑀𝐴_𝐶 and 𝑆2𝑆𝑀𝐴_𝐶 , respectively, count the number of
times each algorithm successfully finds a new leader within
𝐸𝑉𝐴𝐿_𝑃 iterations when used to update slime positions. The
sixth parameter, 𝑉𝐸𝑅_𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝐿𝐸𝐴𝐷𝐸𝑅 , assumes one value if
any methods can find a new leader and zero otherwise. The final
parameter, 𝑝𝑒𝑟, takes on a value within the range of [0,1], and
its value depends on the rules to be applied, which will be further
expounded in the ensuing section.

𝐸𝑉𝐴𝐿_𝑃 = ϵ ∗ 𝑚𝑎𝑥_𝑡

where, ϵ is a constant parameter of 0.02, its value is
affordable, which was selected to ensure timely switching.
However, increasing this value would result in slower switching,
perhaps introducing bias. Conversely, decreasing the value
would lead to faster switching, hence increasing complexity.
Moreover, this parameter is adjustable based on the nature of a
given problem.

The first and second rules are depicted in Fig. 1 and Fig. 2
respectively. They were developed to update the value of
𝐴𝑂𝑆𝑀𝐴_𝐶 and 𝑆2𝑆𝑀𝐴_𝐶 , which indicates the number of
successes for each approach during the process of finding a new
leader. Both rules will be checked in every iteration. The first
rule will apply if AOSMA is called while updating the slime
position and a new leader is found. Thus, 𝐴𝑂𝑆𝑀𝐴_𝐶 will be
updated. The second rule will apply if S2SMA is called while
updating the slime position and a new leader is found. Thus,
𝑆2𝑆𝑀𝐴_𝐶 will be updated. It should be noted that the proposed
method will give AOSMA and S2SMA equal priority to change
slime positions during the first 𝐸𝑉𝐴𝐿_𝑃. During the process, the
values of both 𝐴𝑂𝑆𝑀𝐴_𝐶 and 𝑆2𝑆𝑀𝐴_𝐶 will be updated as
explained in Rule1 and Rule2.

Fig. 1. RULE 1 To count the number of times AOSMA was successful

during a given period.

Fig. 2. RULE 2 To count the number of times S2SMA was successful during

a given period.

The third and fourth rules are shown in Fig. 3 and Fig. 4,
respectively. They are formulated to calculate 𝑝𝑒𝑟, which is the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

505 | P a g e

www.ijacsa.thesai.org

ratio of AOSMA and S2SMA calling to update slime positions
during the subsequent 𝐸𝑉𝐴𝐿_𝑃 . This value depends on the
values of 𝐴𝑂𝑆𝑀𝐴_𝐶 and 𝑆2𝑆𝑀𝐴_𝐶, as explained in Rule1 and
Rule2. If AOSMA and S2SMA cannot find a new leader during
the current 𝐸𝑉𝐴𝐿_𝑃 , both methods will be given an equal
chance over the subsequent 𝐸𝑉𝐴𝐿_𝑃; otherwise, the third and
fourth rules will be applied. The third rule is applied if the value
of 𝐴𝑂𝑆𝑀𝐴_𝐶 is greater than 𝑆2𝑆𝑀𝐴_𝐶; otherwise, the fourth
rule will be applied.

Fig. 3. RULE 3 to compute the probability of AOSMA being called within

the specified period.

Fig. 4. RULE 4 to compute the probability of S2SMA being called within

the specified period.

In the SMA algorithm, the arctanh function is utilized to
calculate the value of parameter 𝑎 in Eq. (4). However, it has
been observed that the arctanh function can lead to programming
warnings/errors [43]-[45]. To enhance the performance and
stability of the standard SMA algorithm and achieve faster
convergence with reduced warnings/errors during program
execution, alternative controlling equations, such as the cosine
function, have been proposed as viable solutions [44]. In this
study, the value of parameter 𝑎 was computed using Eq. (9),
which was directly obtained from [45].

𝑎 = 1 + 𝑐𝑜𝑠(
𝑡

𝑚𝑎𝑥_𝑡
 ∙ 𝜋)

where 𝑚𝑎𝑥_𝑡 is the maximum number of iterations and t is
the current iteration.

Fig. 5 depicts the complete stages of the proposed MSMA
algorithm.

Fig. 5. Flow chart of the proposed MSMA algorithm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this analysis section, several experiments were conducted
to demonstrate MSMA's efficacy. Three case studies were
investigated, comprising basic benchmark problems CEC 2005
[46] and seven engineering designs.

A. Evaluation on Basic Benchmark Functions

In this section, a total of 23 CEC 2005 [46] continuous
benchmarks were used, categorized into seven unimodal (F1-
F7), six multimodal (F8-F13), and ten fixed-dimensional
multimodal functions (F14-F23), as illustrated in Table I, Table
II, and Table III. Unimodal functions assess exploitation
efficiency with one global optimum, while multimodal functions
(F8-F13) evaluate exploration and local optima avoidance.
Fixed-dimensional tests (F14-F23) provide a middle ground
with fewer local optima, gauging the algorithm's balance
between exploitation and exploration.

TABLE I. DESCRIPTION OF UNIMODAL BENCHMARK FUNCTIONS

Function Description Dim Range 𝒇𝒎𝒊𝒏

𝐹1(𝑋) = ∑𝑥𝑗
2

𝐷

𝑗=1

Sphere 30 [-100,100] 0

𝐹2(𝑋) = ∑|𝑥𝑗| + ∏|𝑥𝑗|

𝐷

𝑗=0

𝐷

𝑗=0

Schwefel

2.22
30 [-10,10] 0

𝐹3(𝑋) = ∑(∑𝑥𝑘)

𝑗

𝑘=1

2
𝐷

𝑗=1

Schwefel

1.2
30 [-100,100] 0

𝐹4(𝑋) = 𝑚𝑎𝑥𝑗{|𝑥𝑗|,1 ≤ 𝑗 ≤ 𝐷} Schwefel

2.21
30 [-100,100] 0

𝐹5(𝑋) = ∑[

𝐷−1

𝑗=1

100(𝑥𝑗+1 −𝑥𝑗
2)2

+ (𝑥𝑗 − 1)2]

Rosenbrock 30 [-30,30] 0

𝐹6(𝑋) = ∑([𝑥𝑗 + 0.5])2

𝐷

𝑗=1

Step 30 [-100,100] 0

𝐹7(𝑋) = ∑𝑗𝑥𝑗
4

𝐷

𝑗=0

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1]
Quartic 30 [-128,128] 0

TABLE II. DESCRIPTION OF MULTIMODAL BENCHMARK FUNCTIONS

Function Descripti

on

Di

m

Range 𝒇𝒎𝒊𝒏

𝐹8(𝑋) = ∑−𝑥𝑗sin(√|𝑥𝑗|)

𝐷

𝑗=1

Schwefel 30 [-500,500] −418.98

29 ∗n

𝐹9(𝑋) = ∑[𝑥𝑗
2 − 10 cos(2𝜋𝑥𝑗)

𝐷

𝑗=1

+ 10]

Rastrigin 30 [−5.12,5.1

2]
0

𝐹10(𝑋)

= −20 exp(−0.2√
1

𝐷
∑𝑥𝑗

2

𝐷

𝑗=1

)

− exp(
1

𝐷
∑cos(2𝜋𝑥𝑗)

𝐷

𝑗=1

) + 20

+ 𝑒

Ackley 30 [-32,32] 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

506 | P a g e

www.ijacsa.thesai.org

Function Descripti

on

Di

m

Range 𝒇𝒎𝒊𝒏

𝐹11(𝑋)

=
1

4000
∑𝑥𝑗

2

𝐷

𝑗=1

− ∏cos(
𝑥𝑗

√𝑗
) + 1

𝐷

𝑗=1

Griewank 30 [-600,600] 0

𝐹12(𝑋)

=
𝜋

𝐷
{10 sin(𝜋𝑦1)

+ ∑(𝑦𝑗 − 1)2[1

𝐷−1

𝑗=1

+ 10𝑠𝑖𝑛2(𝜋𝑦𝑗+1)] + (𝑦𝐷 − 1)2}

+ ∑𝑢(𝑥𝑗 , 10,100,4)

𝐷

𝑗=1

𝑦𝑗 = 1 +
𝑥𝑗 + 1

4

𝑢(𝑥𝑗 , 𝑎, 𝑘,𝑚)

= {

𝑘(𝑥𝑗 − 𝑎)
𝑚
𝑥𝑗 > 𝑎

0 − 𝑎 < 𝑥𝑗 < 𝑎

𝑘(−𝑥𝑗 − 𝑎)
𝑚
𝑥𝑗 < 𝑎

Penalized 30 [-50,50] 0

𝐹13(𝑋)

= 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1)

+ ∑(𝑥𝑗 − 1)
2

𝐷

𝑗=1

[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑗

+ 1)] + (𝑥𝐷 − 1)2[1

+ 𝑠𝑖𝑛2(2𝜋𝑥𝐷)]}

+ ∑𝑢(𝑥𝑗 , 5,100,4)

𝐷

𝑗=1

Penalize 2 30 [-50,50] 0

TABLE III. DESCRIPTION OF FIXED-DIMENSION MULTIMODAL

BENCHMARK FUNCTIONS

Function Description Dim Range 𝒇𝒎𝒊𝒏

𝐹14(𝑋)

= (
1

500

+ ∑
1

𝑗 + ∑ (𝑥𝑘 − 𝑎𝑘𝑗)
62

𝑘=1

25

𝑗=1

)−1

Foxholes 2 [-

65,65]
1

𝐹15(𝑋)

= ∑[𝑎𝑗 −
𝑥1(𝑏𝑗

2 − 𝑏𝑗𝑥2)

𝑏𝑗
2 + 𝑏𝑗𝑥3 + 𝑥4

]2
11

𝑗=1

Kowalik 4 [−5,5] 0.0003

𝐹16(𝑋) = 4𝑥1
2 − 2.1𝑥1

2 +
1

3
𝑥1

6

+ 𝑥1𝑥2

− 4𝑥2
2

+ 4𝑥2
4

Six-hump

Camel-

Back

2 [-5,5] -1.0316

𝐹17(𝑋)

= (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)2

+ 10(1 −
1

8𝜋
)𝑐𝑜𝑠𝑥1 + 10

Branin 2 [-5,5] 0.398

Function Description Dim Range 𝒇𝒎𝒊𝒏

𝐹18(𝑋)
= [1 + (𝑥1 + 𝑥2 + 1)2(19
− 14𝑥1 + 3𝑥1

2 − 14𝑥2

+ 6𝑥1𝑥2 + 3𝑥2
2)] ∗ [30

+ (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1

+ 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2

+ 27𝑥2
2)]

Goldstein-

Price
2 [-2,2] 3

𝐹19(𝑋)

= −∑𝑐𝑗 exp(−∑𝑎𝑗𝑘(𝑥𝑘

3

𝑘=1

4

𝑗=1

− 𝑝𝑗𝑘)
2)

Hartman 3 3 [1,3] -3.86

𝐹20(𝑋)

= −∑𝑐𝑗 exp(−∑𝑎𝑗𝑘(𝑥𝑘

6

𝑘=1

4

𝑗=1

− 𝑝𝑗𝑘)
2)

Hartman 6 6 [0,1] -3.32

𝐹21(𝑋) = −∑[(𝑋 − 𝑎𝑗)(𝑋

5

𝑗=1

− 𝑎𝑗)
𝑇

+ 𝑐𝑗]
−1

Shekel 5 4 [0,10] -10.1532

𝐹22(𝑋) = −∑[(𝑋 − 𝑎𝑗)(𝑋

7

𝑗=1

− 𝑎𝑗)
𝑇

+ 𝑐𝑗]
−1

Shekel 7 4 [0,10] -10.4028

𝐹23(𝑋) = −∑[(𝑋 − 𝑎𝑗)(𝑋

10

𝑗=1

− 𝑎𝑗)
𝑇

+ 𝑐𝑗]
−1

Shekel 10 4 [0,10] -10.5363

1) Comparison with SMA and SMA variants:

a) Performance analysis: This section compares the

efficacy of MSMA to that of SMA [14] and SMA variants.

Specifically, S2SMA [25], ESMA [26], LSMA [19], and

AOSMA [24] are executed based on the parameters shown in

Table IV. The mean, and standard deviation of MSMA and

other algorithms are reported in Table V. The ranking was

determined by using an average of 30 runs. MSMA achieved

the optimal value, zero, or the best result in most functions

relative to other algorithms. This is due to the application of

rules that aid in selecting the optimal algorithm, which in turn

enables the achievement of optimal results. However, the

outcomes were not satisfactory due to the nature of the

functions F5, F6, F7, F19, and F20.

TABLE IV. CONFIGURATION PARAMETERS FOR THE EXAMINED

ALGORITHMS

Method Population

size

The

maximum

number

 of iterations

Other parameters

MSMA

(Proposed)

30 103 𝑧 = 0.03, 𝜇 =0.5,

ϵ=0.02, α = 5 and 𝛽
=3/2

SMA [14] 30 103 𝑧 = 0.03

LSMA [19] 30 103 𝑧 = 0.03

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

507 | P a g e

www.ijacsa.thesai.org

AOSMA [24] 30 103 𝑧 = 0.03

ESMA [26] 30 103 𝑧 = 0.03

TABLE V. RESULTS OF CEC 2005 FUNCTIONS

Funct

ion

Fitn

ess

Algorithm

MSMA
S2SM

A
SMA ESMA LSMA AOSMA

F1

Mea

n

0.000E+0

0

6.525

E-06

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

Std
0.000E+0

0

2.863

E-06

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

F2

Mea

n

0.000E+0

0

2.250

E-03

1.233E-

196

2.988E-

227

0.000E+

00

0.000E+

00

Std
0.000E+0

0

8.600

E-04

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

F3

Mea

n

0.000E+0

0

7.737

E-04

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

Std
0.000E+0

0

3.599

E-04

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

F4

Mea

n

0.000E+0

0

9.313

E-02

6.527E-

201

2.532E-

295

0.000E+

00

0.000E+

00

Std
0.000E+0

0

7.777

E-02

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

F5

Mea

n
3.129E-02

8.328

E-01

1.174E+

00

9.674E-

01
1.866E-

02

2.254E-

02

Std 1.165E-01
4.461

E+00

4.931E+

00

4.676E+

00

1.451E-

02

6.369E-

02

F6

Mea

n
4.397E-06

3.152

E-05

9.883E-

04

5.087E-

04

1.710E-

04
3.987E-

06

Std 2.498E-06
1.238

E-05

4.196E-

04

2.147E-

04

6.327E-

05

1.589E-

06

F7

Mea

n
4.950E-05

3.833

E-03

7.968E-

05

7.292E-

05

5.945E-

05
2.761E-

05

Std 6.893E-05
4.007

E-03

7.901E-

05

7.692E-

05

6.367E-

05

2.676E-

05

F8

Mea

n

-

1.257E+0

4

-

1.257
E+04

-

1.257E+
04

-

1.257E+
04

-

1.257E+
04

-

1.257E+
04

Std 1.563E-04
1.724

E-04

8.373E-

02

2.321E-

02

4.497E-

03

1.784E-

04

F9

Mea

n

0.000E+0

0

3.574

E-06

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

Std
0.000E+0

0

1.111

E-06

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

F10

Mea

n
8.882E-16

6.185

E-04

8.882E-

16

8.882E-

16

8.882E-

16

8.882E-

16

Std
0.000E+0

0

1.318

E-04

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

F11

Mea

n

0.000E+0

0

5.694

E-03

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

Std
0.000E+0

0

1.168

E-02

0.000E+

00

0.000E+

00

0.000E+

00

0.000E+

00

F12

Mea

n
1.193E-06

7.800

E-07

8.589E-

04

4.542E-

04

3.119E-

05

3.051E-

05

Std 7.749E-07
3.096

E-07

1.335E-

03

5.612E-

04

1.612E-

05

1.576E-

04

F13

Mea

n
9.972E-06

1.106

E-05

7.211E-

04

4.259E-

04

2.254E-

04

1.110E-

03

Std 5.603E-06
4.735

E-06

4.926E-

04

2.342E-

04

1.175E-

04

3.352E-

03

F14
Mea

n
9.980E-01

9.980

E-01

9.980E-

01

9.980E-

01

9.980E-

01

9.980E-

01

Funct

ion

Fitn

ess

Algorithm

MSMA
S2SM

A
SMA ESMA LSMA AOSMA

Std 1.526E-15
1.517

E-15

1.508E-

13

8.343E-

14

2.859E-

13

6.661E-

14

F15

Mea

n
3.448E-04

4.613

E-04

5.015E-

04

4.679E-

04

5.629E-

04

5.246E-

04

Std 8.868E-05
3.506

E-04

2.224E-

04

1.964E-

04

2.814E-

04

3.570E-

04

F16

Mea

n

-

1.032E+0

0

-

1.032

E+00

-

1.032E+

00

-

1.032E+

00

-

1.032E+

00

-

1.032E+

00

Std 6.421E-13
2.593

E-11

1.878E-

10

3.863E-

10

1.630E-

09

5.656E-

12

F17

Mea

n
3.979E-01

3.979

E-01

3.979E-

01

3.979E-

01

3.979E-

01

3.979E-

01

Std 2.171E-09
1.531

E-07

3.122E-

08

4.086E-

08

7.897E-

08

5.215E-

09

F18

Mea

n

3.000E+0

0

3.000

E+00

3.000E+

00

3.000E+

00

3.000E+

00

3.000E+

00

Std 3.720E-10
1.187

E-09

6.592E-

12

9.030E-

13

7.936E-

08

7.377E-

10

F19

Mea

n

-

3.863E+0

0

-

3.863

E+00

-

3.863E

+00

-

3.863E+

00

-

3.863E+

00

-

3.863E+

00

Std 3.073E-06
1.824

E-05

3.073E-

08

8.330E-

07

2.485E-

06

9.483E-

07

F20

Mea

n

-

3.254E+0
0

-

3.230
E+00

-

3.239E+
00

-

3.231E+
00

-

3.237E+
00

-

3.270E

+00

Std 6.014E-02
5.138

E-02

5.543E-

02

5.133E-

02

5.636E-

02

6.038E-

02

F21

Mea

n

-

1.015E+0

1

-

1.015
E+01

-

1.015E+
01

-

1.015E+
01

-

1.015E+
01

-

1.015E+
01

Std 5.139E-07
9.000

E-05

9.021E-

05

1.180E-

04

3.903E-

05

5.340E-

06

F22

Mea

n

-

1.040E+0

1

-

1.040
E+01

-

1.040E+
01

-

1.040E+
01

-

1.040E+
01

-

1.040E+
01

Std 7.056E-07
7.015

E-05

9.711E-

05

1.015E-

04

3.713E-

05

6.514E-

06

F23

Mea

n

-

1.054E+0

1

-

1.054
E+01

-

1.054E+
01

-

1.054E+
01

-

1.054E+
01

-

1.054E+
01

Std 1.544E-07
7.791

E-05

1.054E-

04

1.122E-

04

4.224E-

05

6.612E-

06

b) Analysis of execution time: The computer's software

and hardware specifications used to conduct the investigations

in this study are elaborated on in Table VI. Table VII displays

the computational time (in seconds) for three different

algorithms: MSMA, SMA, and AOSMA. According to Table

VIII, the SMA algorithm achieved a computation time of

0.51318182 seconds, while the AOSMA algorithm recorded a

shorter time at 0.260618 seconds. As a result of hybridizing

AOSMA and S2SMA, MSMA achieved a computation time of

0.380505 seconds and thus outperformed the original SMA

algorithm. These results indicate that MSMA shows promise in

improving task-specific computational time compared to the

traditional SMA approach. Notably, the programming

language, programmer proficiency, and machine configuration

influence the CPU time utilized by each method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

508 | P a g e

www.ijacsa.thesai.org

TABLE VI. SETTING INFORMATION FOR HARDWARE AND SOFTWARE

Item Component Setting

Hardware CPU Intel(R) Core (TM) i7-10700

Frequency 2.9 GHz

RAM 16GB

GPU Nvidia GeForce GTX 1660 Super

SSD 256 GB

Hard Drive 2 TB

Software Operating system Windows 10

Language MATLAB R2021a

TABLE VII. COMPUTATIONAL TIME ANALYSIS

 MSMA (Proposed) SMA AOSMA

Time (Second) 0.380505 0.51318182 0.260618

2) Comparison with conventional algorithms:

a) Performance analysis: This section compares the

performance of the MSMA algorithm with six popular

metaheuristic algorithms: WOA [5], Multi-Verse Optimizer

(MVO) [47], Grey Wolf Optimizer (GWO) [48], Sine Cosine

Algorithm (SCA) [49], Arithmetic Optimization Algorithm

(AOA) [50], and PSO [4] across unimodal and multimodal

functions (F1-F13). The primary parameter configurations of

these algorithms are displayed in Table VIII below. It has been

demonstrated that the MSMA variant outperforms the original

SMA and other SMA variants. Therefore, the upcoming

comparative experiment will not include SMA for comparison.

According to Table IX, MSMA's ability to achieve highly
competitive best fitness values frequently converges to zero or
near-zero fitness on unimodal functions such as F1 and F2,
emphasizing its exceptional exploitation efficiency. Moreover,
on multimodal functions like F13, MSMA exhibits worthy
exploration capabilities, navigating intricate landscapes and
converging to optimal solutions. These findings collectively
highlight MSMA as an effective metaheuristic algorithm with
the potential for solving real-world problems in various
domains.

TABLE VIII. THE SETTING OF ALGORITHMS’ PARAMETERS

Method Population

size

The

maximum

number of

iterations

Other parameters

MSMA

(Proposed)
30 103 𝑧 = 0.03, 𝜇

=0.5,ϵ=0.02, α = 5 and

𝛽 =3/2

(WOA) [5] 30 103 𝑎1 = 2–0; 𝑎2
= −1–−2; 𝑏 = 1

(MVO) [47] 30 103 Wormhole Existence

Probability WEPMax = 1;

WEPMin = 0.2;

(GWO) [48] 30 103 𝑎: 2– 1

(SCA) [49] 30 103 𝑎 = 2

AOA [50] 30 103 𝜇 =0.5 and 𝛼= 5

(PSO) [4] 30 103 c1 = 2.5 – 0.5, c2 =

0.5–2.5, w = 0.9–0.5.

TABLE IX. COMPARISON MSMA WITH CONVENTIONAL ALGORITHMS

Functi

on

Fitne

ss

Algorithm

MSMA WOA MO GWO SCA AOA PSO

F1

Mea

n 0

6.9E-

153

0.3133

23

1.81E-

58

0.0785

75

2.23E-

32

5866.4

22

Std
0

3.3E-

152

0.0982

9

7.72E-

58

0.2370

2

1.22E-

31

1311.9

36

F2

Mea

n 0

4E-

104

0.4200

4

8.46E-

35

3.22E-

05 0

48.397

58

Std
0

1.9E-

103

0.0939

26

1.14E-

34

6.67E-

05 0

10.435

52

F3

Mea

n 0

23143.

08

44.965

97

1.64E-

15

3319.7

78

0.0047

37

24646.

9

Std
0

9726.5

87

20.691

63

6.89E-

15

2581.6

94

0.0090

56

5292.9

21

F4

Mea

n 0

41.815

78

0.8991

34

2.87E-

14

21.890

53

0.0248

24

37.873

62

Std
0

31.173

43

0.2833

96

1.05E-

13

12.177

32

0.0209

85

3.2951

81

F5

Mea

n
0.8544

5

27.214

63

204.32

83

26.776

13

184.42

34

28.262

49

27351

75

Std
4.5647

21

0.5535

41

224.41

48

0.8295

96

300.52

98

0.4065

2

11673

78

F6

Mea

n
5.59E-

06

0.0939

81

0.3152

47

0.5554

92

4.8135

4

2.7785

31

6032.9

4

Std
5.29E-

06

0.1166

12

0.0795

13

0.3291

67

0.7832

88

0.2791

5

1379.1

02

F7

Mea

n

9.38E-

05

0.0020

88

0.0213

31

0.0009

15

0.0353

31
3.45E-

05

2.1572

3

Std
8.94E-

05

0.0017

7

0.0085

88

0.0005

62

0.0307

23

3.86E-

05

0.7982

18

F8

Mea

n

-

12569.

5

-

11210.

8

-

7972.4

8

-

6055.2

5

-

3921.0

6

-

5738.8

8

-

3277.0

7

Std
0.0001

5

1489.6

77

621.05

26

956.90

94

261.20

19

492.38

83

419.03

1

F9

Mea

n 0

1.89E-

15

109.10

13

0.8487

48

25.832

91 0

267.11

43

Std
0

1.04E-

14

30.770

91

2.4142

91

37.673

91 0

19.378

47

F10

Mea

n
8.88E-

16

4.56E-

15

1.2783

01

1.6E-

14

13.021

86
8.88E-

16

13.728

74

Std
0

2.38E-

15

0.9685

8

2.79E-

15

8.5105

19 0

0.8710

03

F11

Mea

n 0 0

0.5682

99

0.0010

77

0.1771

92

0.0905

59

57.979

14

Std
0 0

0.0915

16

0.0033

14

0.2046

52

0.0673

12

11.144

15

F12

Mea

n
1.19E-

06

0.0058

29

1.5578

51

0.0405

31

2.3137

04

0.4145

41

65308

0.9

Std
6.37E-

07 0.0047

1.2982

17

0.0198

03

3.7307

89

0.0497

7

63619

2.7

F13

Mea

n
3.09E-

05

0.1926

08

0.0730

73

0.5214

47

12.552

31

2.7881

5

51196

19

Std
0.0001

1

0.1158

27

0.0378

76

0.2082

39

35.923

83

0.0954

86

35073

65

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

509 | P a g e

www.ijacsa.thesai.org

b) Convergence curve: In this section, Fig. 6 shows the

convergence curves of MSMA compared to WOA [5], MVO

[47], GWO [48], SCA [49], AOA [50], and PSO [4]. Fig. 6

displays convergence curves derived from the average best

objective function value achieved over 30 runs, as detailed in

Table IX. The x-axis represents 1000 iterations, while the y-

axis represents the maximum score achieved. The results show

that MSAM is superior to its competitors in most of the

unimodal functions (1–7), and this reflects its high ability in the

exploitation phase. Furthermore, MSAM's exploratory

capabilities were showcased in multimodal functions (8–13),

highlighting its superiority in all functions. Overall, it

demonstrates that the convergence of MSMA is significantly

superior to that of other algorithms across most functions. This

is due to VSRR, which intelligently switches between

algorithms in MSMA to take advantage of its exploitation and

exploration capabilities.

F1

F2

F3

F4

F5

F6

F7

F8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

510 | P a g e

www.ijacsa.thesai.org

F9

F10

F11

F12

F13

Fig. 6. The convergence curves for unimodal and multimodal functions.

B. Experimental Results on Constraints Problems

(Engineering Design Problems)

The performance of MSMA was assessed by applying the
method to solve various engineering design problems. These
included a cantilever beam problem, a welded beam design
problem, a pressure vessel problem, a compression coil spring
design problem, a multiple disc clutch brake problem, a speed
reducer problem, and a gear train design problem. The
mathematical formulas relating to these problems are provided
in "Appendix A". These validations evaluated the effectiveness
and suitability of MSMA in tackling different design challenges.

This experiment standardized the parameters for all
optimization techniques to ensure a fair comparison. The
maximum number of function iterations was set to 10,000, and
the population size was set to 30. For statistically reliable results,
each method underwent 30 runs independently.

1) Performance analysis: This section compares the

efficacy of MSMA to that of SMA [14] and SMA variants

(S2SMA [25], LSMA [36], AOSMA [24], and ESMA [26]).

Table X shows performance metrics for MSMA and the other

algorithms on Engineering design problems, including the

mean, and the standard deviation.

Based on the obtained results, in the problem of Cantilever
Beam analysis, MSMA, boasting a mean of 13.36523309,
clearly outperforms its counterparts. ESMA, LSMA, and SMA
yield closely clustered means of 13.36532, 13.36531551, and
13.36536, respectively, while AOSMA displays a slightly
elevated average. This highlights MSMA's superior
effectiveness. Likewise, in Welded Beam problem assessments,
MSMA's mean of 1.724885178 is notably superior to its peers.
ESMA closely trails with a mean of 1.724979, while other
algorithms register marginally higher averages, underscoring the
unmistakable dominance of MSMA in this context.
Transitioning to the Pressure Vessel problem, MSMA stands out
as the top-performing algorithm. Its mean of 6766.643344
significantly outperforms SMA, ESMA, and LSMA, all of
which yield notably higher means. This underscores MSMA's
exceptional suitability for this specific problem. In the
Compression Coil Spring Design problem, MSMA's mean of
0.01284604 distinctly outshines alternative algorithms, which
yield significantly higher averages. This glaring disparity
underscores the exceptional performance of MSMA in this
scenario.

Moreover, in the Multiple Disk Clutch Brake problem,
MSMA, SMA, and ESMA exhibit closely aligned means, with
MSMA marginally leading. While LSMA and AOSMA register
slightly higher values, MSMA's marginal lead implies superior
efficacy for this problem. In the Speed Reducer problem,
MSMA, ESMA, and AOSMA stand out with proximate mean
values, with MSMA in the lead. In contrast, SMA and LSMA
yield substantially higher averages, reinforcing the notable
performance of MSMA. Lastly, in the Gear Train Design
problem, MSMA's mean value of 3.25763E-20 is strikingly
lower than those of alternative algorithms, which produce
considerably higher means, unequivocally solidifying its
unparalleled suitability for this specific function. These results
demonstrate MSMA's superior performance across various
engineering problems, affirming its pivotal role in optimization
endeavours.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

511 | P a g e

www.ijacsa.thesai.org

TABLE X. STATISTICAL RESULTS OF ENGINEERING DESIGN PROBLEMS

Function
Fitn

ess

Algorithm

MSM

A

S2SM

A
SMA

ESM

A

LSM

A

AOS

MA

Cantilever beam

Mea

n
13.36

523

13.36

534

13.36

536

13.36

532

13.36

532

13.36

526

Std
2.23E
-05

0.000
1

7.36E
-05

9.2E-
05

5.69E
-05

3.74E
-05

Cantilever beam

Mea

n
1.724

885

1.725

027

1.725

076

1.724

979

1.725

094

1.725

079

Std
7.13E
-05

0.000
174

0.000
276

0.000
113

0.000
21

0.000
229

Pressure Vessel

Mea

n
6766.

643

6861.

241

7818

1.51

6880

8.52

7491

9.22

3755

4.12

Std
565.1
678 501.2

4022
6.18

4486
6.76

4230
2.85

4491
2.3

Compression Coil

Spring design

Mea

n
0.012

846

0.013

245

5000

0.01

4000

0.01

5333

3.34

5666

6.67

Std
0.000
151

0.000
301

5085
4.76

4982
7.28

5074
1.62

5040
0.69

Multiple disk clutch

brake

Mea

n

0.259

77

0.259

784

0.259

774

0.259

774

0.259

785

0.259

771

Std
3.18E
-06

1.26E
-05

2.98E
-06

4.5E-
06

1.47E
-05

1.34E
-06

Speed reducer

Mea

n
2996.

351

2996.

352

1000

00

9676

6.54

9353

3.09

9676

6.54

Std
0.009
292

0.003
918

0
1771
0.36

2461
0.61

1771
0.36

Gear train design

Mea

n
3.26E

-20

2E-

14

3.74E

-14

4.35E

-14

3.13E

-14

5.45E

-15

Std
8E-

20

2.84E

-14

1.31E

-13

1.08E

-13

6.49E

-14

1.44E

-14

2) Statistical analysis: To statistically evaluate the

performance of MSMA and the compared algorithms, including

SMA [14] S and SMA variants (S2SMA [25], LSMA [36],

AOSMA [24], and ESMA [26]), on various engineering design

problems. Calculating the p-value of the Wilcoxon signed-rank

test [51]. Each value greater than 0.05 is displayed in bold font,

indicating that the difference is not statistically significant. The

calculated p-values indicate substantial evidence of

differentiation, as shown in Table XI MSMA's p-values are

smaller than 0.05 in the majority of cases, indicating significant

differences. Notably, the "Pressure Vessel" problem exhibits a

relatively large p-value (approximately 0.76) when comparing

MSMA to AOSMA, indicating that the difference with

AOSMA is not statistically significant. In contrast, for the

"Gear train design" problem, the p-values consistently indicate

significant differences, indicating that MSMA outperforms all

compared algorithms. These results demonstrate the superior

performance of MSMA and its potential as an efficient

optimization method for complex engineering design problems.

TABLE XI. P-VALUES FOR MSMA VERSUS OTHER COMPETITORS ON

ENGINEERING DESIGN PROBLEMS

Function

MSM

A vs.

S2SM

A

MSMA

vs. SMA

MSMA

vs.

ESMA

MSMA

vs.

LSMA

MSMA vs.

AOSMA

Cantileve

r beam

7.7725

5E-09

7.38029

E-10

2.37682E

-07

2.19474E

-08

0.0004713

75

Welded

Beam

3.6458

9E-08

1.42942

E-08

1.15665E

-07

1.10234E

-08

2.83145E-

08

Pressure

Vessel

0.1579

75689

2.66709

E-06

0.000244

046

0.000377

215

0.7612971

26

Compres

sion Coil

Spring

design

1.8731

E-07

0.005708

009

0.619007

153

0.031019

514

0.0016438

41

Multiple

disk

clutch

brake

8.1013

6E-10

3.96477

E-08

7.69496E

-08

7.38029E

-10

7.59915E-

07

Speed

reducer

1.3594

3E-07

1.21178

E-12

4.21155E

-12

3.68819E

-12

8.15959E-

12

Gear

train

design

3.0198

6E-11

7.38029

E-10

3.01986E

-11

3.01986E

-11

3.01986E-

11

3) Comparison with conventional algorithms: This section

aims to evaluate the performance of MSMA through a

comprehensive comparison with six popular metaheuristic

algorithms: WOA [5], MVO [47], GWO [48], SCA [49], AOA

[50], and PSO [4]. The comparison is conducted across seven

distinct engineering design problems to thoroughly assess their

capabilities in solving engineering problems. The main

parameter settings for each algorithm are outlined in Table VIII.

Beginning with the Cantilever Beam Design Problem, the
analysis reveals that MSMA exhibits competitive performance,
achieving optimal values for variables (x1 to x5) and an optimal
cost of 13.36520828, as demonstrated in Table XII. This
outcome underscores the effectiveness of MSMA in addressing
structural engineering challenges, where precise optimization is
paramount for ensuring structural integrity and efficiency.

Similarly, in the Welded Beam Problem, MSMA
demonstrates notable performance with an optimal cost of
1.724852759, as presented in Table XIII, indicating its
capability to navigate the complexities inherent in welding
design optimization. The results further validate the robustness
of MSMA in handling diverse engineering scenarios, where
intricate design considerations must be balanced to achieve
optimal outcomes.

The Pressure Vessel Problem, as presented in Table XIV,
further emphasizes the diversity of MSMA's capabilities. It
showcases optimal values for variables and an optimal cost of
5885.332794. It highlights MSMA's adaptability to multifaceted
challenges in pressure vessel design optimization, where
complex geometrical and operational constraints influence the
design space.

In the Compression Coil Spring Design Problem, MSMA
continues to demonstrate competitive results, achieving an
optimal cost of 0.012665319, as presented in Table XV. This
performance highlights the efficacy of MSMA in optimizing
mechanical components, where precision in design parameters
is crucial for achieving desired spring characteristics and
performance metrics.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

512 | P a g e

www.ijacsa.thesai.org

Table XVI illustrates the optimal values for variables (x1,
x2, x3, x4, x5) and their respective optimal costs achieved by
various algorithms in the Multiple Disk Clutch Brake scenario.
MSMA outperforms competitors by attaining an optimal cost of
0.259768995. In contrast, other algorithms exhibit slightly
different values for the variables. It highlights the effectiveness
of MSMA in this context.

Similarly, Table XVII provides a comparative analysis for
the Speed Reducer Problem, where MSMA excels in achieving
an optimal cost of 2996.348166. Competing algorithms, on the
other hand, are unable to reach the same degree of accuracy.
MSMA's reliability and effectiveness are demonstrated by its
ability to handle the complexity of this problem.

In the context of gear train design optimization, Table XVIII
highlights the effectiveness of the MSAM algorithm with an
optimal cost of 4.29529E-26. Additionally, WOA achieves a
noteworthy optimal cost of 0, emphasizing its competitive
performance. These findings underscore the capabilities of
MSAM and WOA in addressing complex engineering
optimization challenges.

TABLE XII. COMPARISON RESULTS OF THE CANTILEVER BEAM DESIGN

PROBLEM

Algorit

hms

Optimal values for variables Optimal

cost x1 x2 x3 x4 x5

MSMA 6.017085

383

5.311288

687

4.488476

538

3.507273

784

2.149604

785
13.36520

828

WOA 5.700449

107

5.397613

593

4.814600

886

3.522731

364

2.119436

619

13.38920

896

MVO 6.033559

535

5.307530

25

4.440377

082

3.528653

236

2.165715

561

13.36529

853

GWO 6.030295

996

5.311933

104

4.485345

216

3.494561

661

2.151681

834

13.36520

866

SCA 6.256390

441

6.108302

51

4.446189

485

3.086518

141

2.009635

551

13.44560

967

AOA 6.314864

496

5.699730

447

3.986353

036

3.898579

909

2.105572

722

13.49454

764

PSO 5.716182

614

5.394840

612

4.923773

757

3.426754

426

2.132218

051

13.39554

248

TABLE XIII. COMPARISON RESULTS OF THE WELDED BEAM PROBLEM

Algorith

ms

Optimal values for variables Optimal

cost x1 x2 x3 x4

MSMA 0.2057266

8

3.4705549

07

9.0366239

51

0.2057296

41
1.7248527

59

WOA 0.4169924

89

2.0317188

26

6.3380925

08

0.4211974

07

1.7576288

76

MVO 0.2045720

29

3.4953344

09

9.0425119

59

0.2057081

16

1.7257700

29

GWO 0.2054834

3

3.4757774

53

9.0367310

42

0.2057411

47

1.7249216

56

SCA 0.2067796

45

3.3467276

47

9.4636183

39

0.2108223

86

1.7442076

2

AOA 0.2087071

68

3.1562912

35
10 0.2475296

32

1.8541116

28

PSO 0.2111616

82

3.4160266

15

8.8909020

48

0.2125586

7

1.7335328

31

TABLE XIV. COMPARISON RESULTS OF THE PRESSURE VESSEL PROBLEM

Algorith

ms

Optimal values for variables Optimal

cost x1 x2 x3 x4

MSMA 1.2588284

44

0.6222395

52

65.224271

72

10.004138

28
5885.3327

94

WOA 74.398114

74

34.478969

69

46.421666

63

73.129005

91

5913.4844

57

MVO 89.654759

33

74.809443

21
18.909546 166.69952

99

6432.1025

07

GWO 0.7787367

3

0.3850130

82

40.348761

74

199.59532

5

5886.1128

27

SCA 0.7996499

58

0.4280558

43

40.714610

12
200 5968.7119

93

AOA 34.091590

14

87.138844

43

13.351952

48

51.936860

87

9424.6983

17

PSO 36.828553

93

79.537171

97

52.422133

73

69.317683

29

6155.4841

64

TABLE XV. COMPARISON RESULTS OF THE COMPRESSION COIL SPRING

DESIGN PROBLEM

Algorithms Optimal values for variables Optimal cost

x1 x2 x3

MSMA 0.055584231 0.457867024 7.138747128 0.012665319

WOA 0.059352736 0.570654818 4.793787974 0.012672374

MVO 0.057411627 0.510629027 5.858130197 0.012702184

GWO 0.030415911 0.746376689 2.882659855 0.01266583

SCA 0.049565332 0.307684113 15 0.012751116

AOA 0.076649751 1.3 2 0.015289034

PSO 0.050062779 0.315733397 14.66722903 0.012701516

TABLE XVI. MULTIPLE DISK CLUTCH BRAKE

Algorith

ms

Optimal values for variables Optimal

cost x1 x2 x3 x4 x5

MSMA 69.99999

99

90.00000

002

1.000000

004
1000 2.312782

041
0.2597689

95

WOA 70 90 1 1000 2.312782

578

0.2597690

39

MVO 70.00153

892

90.00180

212
1 999.7168

915

2.313482

158

0.2597818

77

GWO 69.99852

945
90 1 1000 2.312864

645

0.2597748

17

SCA 69.63372

395
90 1 1000 2.347561

762

0.2607250

78

AOA 80 100.7047

151
1 1000 2.327817

93

0.2772706

65

PSO 69.99879

821

90 1 1000 2.312844

506

0.2597831

61

TABLE XVII. COMPARISON RESULTS OF THE SPEED REDUCER PROBLEM

Algor

ithms

Optimal values for variables Optim

al cost x1 x2 x3 x4 x5 x6 x7

MSM

A

3.5000

00002
0.7 17 7.3000

00013

7.8000

0075

3.3502

14675

5.2866

83234
2996.3

48166

WOA 3.5 0.7 17 8.0860

52026

8.0614

15721

3.3564

39258

5.3482

09953

3001.9

95774

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

513 | P a g e

www.ijacsa.thesai.org

MVO 3.5019

74802
0.7 17 7.4055

70651

8.0704

42656

3.3535

99328

5.2867

82167

2998.4

74657

GWO 3.5002

34799

0.7 17.000

22304

7.3234

44697

7.8012

14073

3.3505

67429

5.2868

01157

2996.8

77194

SCA 3.5513

29239
0.7 17 7.7818

38931
8.3 3.4224

79892

5.3107

32943

3034.0

02185

AOA 3.6 0.7 17 7.3 8.3 3.5162

63029

5.2943

72667

3074.2

22921

PSO 2.6264

01315

0.7289

46859

20.503

62653

8.2492

49684

8.2185

61811

3.3800

30355

5.3481

81951

2997.3

89625

TABLE XVIII. COMPARISON RESULTS OF THE GEAR TRAIN DESIGN

PROBLEM

Algorith

ms

Optimal values for variables Optimal

cost x1 x2 x3 x4

MSMA 20.517078
96

14.281507
43

12 57.894281
03

4.29529E-
26

WOA 56.383767

59

12.214528

18

33.268651

6

49.952094

32
0

MVO 18.002521

5

12.497385

46
12 57.738165

17

1.03484E-

18

GWO 50.715225

62

17.092611

59

24.152945

02

56.420377

06

2.93402E-

17

SCA 58.289474

8

40.593549

04
12 57.923980

93

5.63401E-

16

AOA 59.975914

16

12.000022

86

43.263356

33
60 2.99093E-

15

PSO 42.427885

92

30.552433

75
12 59.891628

03
2.5461E-15

C. Discussion

The Merged Slime Mould Algorithm (MSMA) results
demonstrate its effectiveness across benchmark functions and
engineering design problems. Evaluating 23 continuous
benchmark functions from the CEC 2005 revealed that MSMA
excels in achieving optimal results, particularly in unimodal
functions where exploitation is crucial. Its performance in
multimodal functions illustrates robust exploration capabilities,
effectively navigating complex landscapes and avoiding local
optima.

Comparisons with other Slime Mould Algorithm (SMA)
variants and established metaheuristic algorithms like WOA,
GWO, and PSO showed that MSMA consistently outperforms
its peers. The mean and standard deviation metrics analysis
highlight MSMA's ability to frequently achieve optimal or near-
optimal fitness values. The convergence curves indicate that
MSMA delivers rapid convergence, leveraging Vertical Smart
Switching Rules (VSRR) for intelligent algorithm switching,
thus enhancing both exploitation and exploration strategies.

MSMA's superiority in engineering design problems is
further validated. For instance, the Cantilever Beam problem
achieved significantly lower mean values compared to other
algorithms. Similar trends were noted in the Welded Beam and
Pressure Vessel problems, with statistical significance
confirmed through the Wilcoxon signed-rank test. These results
underscore MSMA's reliability and efficiency in tackling
complex engineering challenges.

The promising outcomes of MSMA open several exciting
avenues for future research. Exploring hybridization techniques

that combine MSMA with advanced optimization algorithms
could further enhance its performance. Additionally, adapting
Vertical Smart Switching Rules (VSRR) for dynamic problem
landscapes may improve efficiency. Future studies could also
validate MSMA through real-world case studies, ensuring its
practical applicability across diverse industries. Such
explorations would significantly contribute to the optimization
field and enhance MSMA's utility in addressing complex
challenges, instilling a sense of optimism and hope for its
continuous improvement.

V. CONCLUSION

In conclusion, this paper introduced MSMA as a dynamic
hybridization approach engineered to significantly enhance the
performance of the traditional SMA in tackling low-dimensional
optimization problems compared to other algorithms. The
proposed technique merges two existing SMA variants,
AOSMA and S2SMA, through the incorporation of embedded
Vertical Smart Switching Rules (VSSR). VSSR enables
dynamic switching between algorithms based on problem-
specific attributes, thereby boosting adaptability and operational
efficiency. The MSMA's unique integration strategy eliminates
the need for multiple algorithm initializations as well as avoids
the need for memory-based switching. Instead, it relies on
adaptive and intelligent switching rules to exploit the strengths
of both algorithms. This represents a notable advancement
compared to previous integrations of SMA.

The proposed MSMA has been fully validated on ten real-
world engineering challenges and basic benchmark problems
CEC 2005 using statistical and numerical analyses. The
experimental results highlight MSMA's superiority over current
approaches and demonstrate its potential to provide innovative
solutions for complex engineering designs. This study provides
additional evidence that MSMA consistently achieves the
highest mean fitness values and shows the fastest rates of
convergence among the algorithms evaluated, demonstrating its
superior performance in addressing engineering design
problems. Remarkably, when compared to SMA, MSMA also
showed improved computational efficiency, particularly in the
Cantilever Beam problem. The Wilcoxon signed-rank test has
statistically validated MSMA's outstanding performance in a
variety of engineering problems, confirming its superiority and
efficacy in resolving complex engineering design problems.

These findings validate the proposed MSMA's superiority
over existing techniques, showcasing its potential to provide
promising solutions for complex engineering design problems.
Future research directions could pivot towards enhancing the
VSSR mechanism to further improve MSMA's adaptability and
robustness. Moreover, extending the exploration to other
problem domains and conducting comparative studies with
other state-of-the-art optimization algorithms would yield
additional insights, paving the way for further advancements in
optimization technology.

ACKNOWLEDGMENT
Conceptualization, S.A.S. and H.S.; Methodology, K.M.A.;

Software, K.M.A.; Validation, S.A.S. and H.S.; Formal analysis,
K.M.A.; Investigation, K.M.A.; Resources, K.M.A.; Data
curation, K.M.A.; Writing – original draft, K.M.A.; Writing –
review & editing, K.M.A. and H.S.; Visualization, S.A.S. and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

514 | P a g e

www.ijacsa.thesai.org

H.S.; Supervision, S.A.S. and H.S.; Project administration,
S.A.S. and H.S.; Funding acquisition, S.A.S. All authors have
read and agreed to the published version of the manuscript.

REFERENCES

[1] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, H. Zamani, and A.
Bahreininejad, “GGWO: Gaze cues learning-based grey wolf optimizer
and its applications for solving engineering problems,” J. Comput. Sci.,
vol. 61, no. June 2021, p. 101636, 2022.

[2] Y. Duan and X. Yu, “A collaboration-based hybrid GWO-SCA optimizer
for engineering optimization problems,” Expert Syst. Appl., vol. 213, no.
PB, p. 119017, 2023.

[3] S. Chauhan and G. Vashishtha, “A synergy of an evolutionary algorithm
with slime mould algorithm through series and parallel construction for
improving global optimization and conventional design problem,” Eng.
Appl. Artif. Intell., vol. 118, no. December 2022, p. 105650, Feb. 2023.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95-international conference on neural networks,
1995, vol. 4, pp. 1942–1948.

[5] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Adv.
Eng. Softw., vol. 95, pp. 51–67, 2016.

[6] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
“Harris hawks optimization: Algorithm and applications,” Futur. Gener.
Comput. Syst., vol. 97, pp. 849–872, 2019.

[7] W. Michiels, E. H. L. Aarts, and J. Korst, Theoretical aspects of local
search, vol. 13. Springer, 2007.

[8] F. Glover, “Tabu search—part I,” ORSA J. Comput., vol. 1, no. 3, pp.
190–206, 1989.

[9] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” Science (80-.)., vol. 220, no. 4598, pp. 671–680,
1983.

[10] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997.

[11] X. Zhong, Z. You, and P. Cheng, “A hybrid optimization algorithm and
its application in flight trajectory prediction,” Expert Syst. Appl., vol. 213,
no. PB, p. 119082, 2023.

[12] Q. S. Hamad, H. Samma, S. A. Suandi, and J. Mohamad-Saleh, “Q-
learning embedded sine cosine algorithm (QLESCA),” Expert Syst.
Appl., vol. 193, no. November 2021, p. 116417, 2022.

[13] H. Samma, J. Mohamad-Saleh, S. A. Suandi, and B. Lahasan, “Q-
learning-based simulated annealing algorithm for constrained engineering
design problems,” Neural Comput. Appl., vol. 32, no. 9, pp. 5147–5161,
2020.

[14] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime mould
algorithm: A new method for stochastic optimization,” Futur. Gener.
Comput. Syst., vol. 111, pp. 300–323, Oct. 2020.

[15] J. M. Abdullah and T. Ahmed, “Fitness Dependent Optimizer: Inspired
by the Bee Swarming Reproductive Process,” IEEE Access, vol. 7, pp.
43473–43486, 2019.

[16] V. Hayyolalam and A. A. P. Kazem, “Black widow optimization
algorithm: a novel meta-heuristic approach for solving engineering
optimization problems,” Eng. Appl. Artif. Intell., vol. 87, p. 103249,
2020.

[17] L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, and A. H.
Gandomi, “Reptile Search Algorithm (RSA): A nature-inspired meta-
heuristic optimizer,” Expert Syst. Appl., vol. 191, p. 116158, 2022.

[18] T. Kundu and H. Garg, “LSMA-TLBO: A hybrid SMA-TLBO algorithm
with lévy flight based mutation for numerical optimization and
engineering design problems,” Adv. Eng. Softw., vol. 172, no. May, p.
103185, 2022.

[19] M. K. Naik, R. Panda, and A. Abraham, “Normalized square difference
based multilevel thresholding technique for multispectral images using
leader slime mould algorithm,” J. King Saud Univ. - Comput. Inf. Sci.,
vol. 34, no. 7, pp. 4524–4536, Jul. 2022.

[20] H. Lin et al., “Adaptive slime mould algorithm for optimal design of
photovoltaic models,” Energy Sci. Eng., vol. 10, no. 7, pp. 2035–2064,
2022.

[21] M. H. Hassan, S. Kamel, L. Abualigah, and A. Eid, “Development and
application of slime mould algorithm for optimal economic emission
dispatch,” Expert Syst. Appl., vol. 182, no. May, p. 115205, 2021.

[22] S. Zhao et al., “Multilevel threshold image segmentation with diffusion
association slime mould algorithm and Renyi’s entropy for chronic
obstructive pulmonary disease,” Comput. Biol. Med., vol. 134, no. April,
p. 104427, 2021.

[23] A. A. Ewees et al., “Improved Slime Mould Algorithm based on Firefly
Algorithm for feature selection: A case study on QSAR model,” Eng.
Comput., no. 0123456789, 2021.

[24] M. K. Naik, R. Panda, and A. Abraham, “Adaptive opposition slime
mould algorithm,” Soft Comput., vol. 25, no. 22, pp. 14297–14313, 2021.

[25] K. M. Alhashash, H. Samma, and S. A. Suandi, “Fine-Tuning of Pre-
Trained Deep Face Sketch Models Using Smart Switching Slime Mold
Algorithm,” Appl. Sci., vol. 13, no. 8, p. 5102, Apr. 2023.

[26] M. K. Naik, R. Panda, and A. Abraham, “An entropy minimization based
multilevel colour thresholding technique for analysis of breast
thermograms using equilibrium slime mould algorithm,” Appl. Soft
Comput., vol. 113, p. 107955, 2021.

[27] H. Chen, X. Li, S. Li, Y. Zhao, and J. Dong, “Improved Slime Mould
Algorithm Hybridizing Chaotic Maps and Differential Evolution Strategy
for Global Optimization,” IEEE Access, vol. 10, no. May, pp. 66811–
66830, 2022.

[28] A. A. Bhandakkar and L. Mathew, “Merging slime mould with whale
optimization algorithm for optimal allocation of hybrid power flow
controller in power system,” J. Exp. Theor. Artif. Intell., vol. 35, no. 7,
pp. 973–1000, Oct. 2022.

[29] H. Chen, Z. Wang, H. Jia, X. Zhou, and L. Abualigah, “Hybrid Slime
Mold and Arithmetic Optimization Algorithm with Random Center
Learning and Restart Mutation,” Biomimetics, vol. 8, no. 5, p. 396, 2023.

[30] A. A. Ewees, F. H. Ismail, and A. T. Sahlol, “Gradient-based optimizer
improved by Slime Mould Algorithm for global optimization and feature
selection for diverse computation problems,” Expert Syst. Appl., vol. 213,
no. September 2022, 2023.

[31] A. A. Ewees et al., “Enhanced feature selection technique using slime
mould algorithm: a case study on chemical data,” Neural Comput. Appl.,
vol. 35, no. 4, pp. 3307–3324, 2023.

[32] S. Abid et al., “Development of Slime Mold Optimizer with Application
for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in
Power Systems,” Mathematics, vol. 11, no. 8, 2023.

[33] L. Deng and S. Liu, “An enhanced slime mould algorithm based on
adaptive grouping technique for global optimization,” Expert Syst. Appl.,
vol. 222, no. February, p. 119877, 2023.

[34] A. K. Sharma, A. Saxena, and D. K. Palwalia, “Oppositional Slime Mould
Algorithm: Development and application for designing demand side
management controller,” Expert Syst. Appl., vol. 214, no. January 2022,
p. 119002, 2023.

[35] L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, and W. Zhao, “Artificial rabbits
optimization: A new bio-inspired meta-heuristic algorithm for solving
engineering optimization problems,” Eng. Appl. Artif. Intell., vol. 114,
no. April, p. 105082, 2022.

[36] B. S. Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, and S. M. Sait,
“Enhanced grasshopper optimization algorithm using elite opposition-
based learning for solving real-world engineering problems,” Eng.
Comput., vol. 38, no. 5, pp. 4207–4219, 2022.

[37] Y. Zhang, S. Du, and Q. Zhang, “Improved Slime Mold Algorithm with
Dynamic Quantum Rotation Gate and Opposition-Based Learning for
Global Optimization and Engineering Design Problems,” Algorithms,
vol. 15, no. 9, p. 317, Sep. 2022.

[38] B. S. Yıldız, S. Kumar, N. Pholdee, S. Bureerat, S. M. Sait, and A. R.
Yildiz, “A new chaotic Lévy flight distribution optimization algorithm for
solving constrained engineering problems,” Expert Syst., vol. 39, no. 8,
2022.

[39] X. Yang et al., “An adaptive quadratic interpolation and rounding
mechanism sine cosine algorithm with application to constrained
engineering optimization problems,” Expert Syst. Appl., vol. 213, no. PB,
p. 119041, Mar. 2023.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

515 | P a g e

www.ijacsa.thesai.org

[40] M. Abdel-Basset, R. Mohamed, M. Jameel, and M. Abouhawwash,
“Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm
for global optimization and engineering design problems,” Knowledge-
Based Syst., vol. 262, p. 110248, Feb. 2023.

[41] F. S. Gharehchopogh, M. H. Nadimi-Shahraki, S. Barshandeh, B.
Abdollahzadeh, and H. Zamani, “CQFFA: A Chaotic Quasi-oppositional
Farmland Fertility Algorithm for Solving Engineering Optimization
Problems,” J. Bionic Eng., vol. 20, no. 1, pp. 158–183, Jan. 2023.

[42] L. Deng and S. Liu, “A multi-strategy improved slime mould algorithm
for global optimization and engineering design problems,” Comput.
Methods Appl. Mech. Eng., vol. 404, p. 115764, 2023.

[43] A. Bala Krishna, S. Saxena, and V. K. Kamboj, hSMA-PS: a novel
memetic approach for numerical and engineering design challenges, vol.
38, no. 4. Springer London, 2022.

[44] J. Zhao, Z. M. Gao, and H. F. Chen, “The Simplified Aquila Optimization
Algorithm,” IEEE Access, vol. 10, pp. 22487–22515, 2022.

[45] Z. M. Gao, J. Zhao, and S. R. Li, “The Improved Slime Mould Algorithm
with Cosine Controlling Parameters,” J. Phys. Conf. Ser., vol. 1631, no.
1, 2020.

[46] P. N. Suganthan et al., “Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization,” Tech. Report,
Nanyang Technol. Univ. Singapore, May 2005 KanGAL Rep. 2005005,
IIT Kanpur, India, no. May, pp. 1–50, 2005.

[47] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: a
nature-inspired algorithm for global optimization,” Neural Comput.
Appl., vol. 27, no. 2, pp. 495–513, Feb. 2016.

[48] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[49] S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving optimization
problems,” Knowledge-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[50] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H. Gandomi,
“The Arithmetic Optimization Algorithm,” Comput. Methods Appl.
Mech. Eng., vol. 376, p. 113609, 2021.

[51] S. García, A. Fernández, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,” Inf. Sci. (Ny)., vol. 180, no. 10, pp. 2044–2064, 2010.

APPENDIX A. ENGINEERING DESIGN PROBLEMS

A. Cantilever structure problem

Minimize 𝑓(𝑥) = 0.6224(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)

subjectto,𝑔(𝑥) =
61

𝑥1
3 +

37

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0

Variableranges:0.01 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≤ 100

B. The welded beam design problem

Minimize 𝑓(𝑥) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2)

subject to,

𝑔1(𝑥) = 𝜏(𝑥) − 𝜏𝑚𝑎𝑥 ≤ 0

𝑔2(𝑥) = 𝜎(𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0

𝑔3(𝑥) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥

𝑔4(𝑥) = 𝑥1 − 𝑥4 ≤ 0

𝑔5(𝑥) = 𝑃 − 𝑃𝑐(𝑥) ≤ 0

𝑔6(𝑥) = 0.125 − 𝑥1 ≤ 0

𝑔7(𝑥) = 0.1047𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0

Variable ranges: 0.1 ≤ 𝑥1 ≤ 2.0,0.1 ≤ 𝑥2 ≤ 10.0, 0.1 ≤ 𝑥3 ≤
10.0, 0.1 ≤ 𝑥4 ≤ 2.0
where,

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ 𝜏′′2, 𝜏′ =

𝑃

√2𝑥1𝑥2

, 𝜏′′ =
𝑀𝑅

𝐽
,𝑀

= 𝑃 (𝐿 +
𝑥2

2
)

𝑅 = √
𝑥2

2

4
+ (

𝑥1 + 𝑥3

2
)
2

, 𝐽 = 2{√2𝑥1𝑥2 [√
𝑥2

2

12
+ (

𝑥1 + 𝑥3

2
)
2

]} , 𝜎(𝑥)

=
6𝑃𝐿

𝑥4𝑥3
2 , 𝛿(𝑥) =

4𝑃𝐿3

𝐸𝑥4𝑥3
3

𝑃𝑐(𝑥) =
4.103𝐸√𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
) , 𝑃 = 6000𝑙𝑏, 𝐿 = 14𝑖𝑛, 𝐸

= 30 × 1006𝑝𝑠𝑖
𝐺 = 12 × 1006𝑝𝑠𝑖. 𝜏𝑚𝑎𝑥 = 136000𝑝𝑠𝑖, 𝜎(𝑥) = 30000𝑝𝑠𝑖, 𝛿𝑚𝑎𝑥

= 0.25𝑖𝑛

C. Pressure Vessel problem

Minimize 𝑓(𝑥) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 +
19.84𝑥1

2𝑥3
Subject to,

𝑔1(𝑥) = −𝑥1 +0.0193𝑥3 ≤ 0,
𝑔2(𝑥) = −𝑥3 + 0.00954𝑥3 ≤ 0,

𝑔3(𝑥) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1,296,000 ≤ 0,

𝑔4(𝑥) = 𝑥4 − 240 ≤ 0,
Variable ranges: 0 ≤ 𝑥1 ≤ 99, 0 ≤ 𝑥2 ≤ 99,10 ≤ 𝑥3 ≤ 200,10 ≤
𝑥4 ≤ 200

D. Compression Coil Spring design problem

Minimize 𝑓(𝑥) = (𝑥3 + 2)𝑥2𝑥1
2

subject to,

𝑔1(𝑥) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0

𝑔2(𝑥) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥1
3𝑥2 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0

𝑔3(𝑥) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0

𝑔4(𝑥) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0

Variable ranges: 0.05 ≤ 𝑥1 ≤ 2.0,0.25 ≤ 𝑥2 ≤ 1.3,2 ≤ 𝑥3 ≤
15.0

E. Multiple disk clutch brake problem

Minimize 𝑓(𝑥) = 𝜋(𝑥2
2 − 𝑥1

2)𝑥3(𝑥5 + 1)𝜌,
Subject to,

𝑔1(𝑥) = 𝑥2 − 𝑥1 − 𝛥𝑅 ≥ 0

𝑔2(𝑥) = 𝐿𝑚𝑎𝑥 − (𝑥5 + 1)(𝑥3 + 𝛿) ≥ 0

𝑔(𝑥) = 𝑃𝑚𝑎𝑥 − 𝑃𝑟𝑧 ≥ 0

𝑔(𝑥) = 𝑃𝑚𝑎𝑥 ∗ 𝑉𝑠𝑟𝑚𝑎𝑥 − 𝑃𝑟𝑧 ∗ 𝑉𝑠𝑟 ≥ 0,
𝑔5(𝑥) = 𝑉𝑠𝑟𝑚𝑎𝑥 − 𝑉𝑠𝑟 ≥ 0,
𝑔6(𝑥) = 𝑇𝑚𝑎𝑥 − 𝑇 ≥ 0,
𝑔7(𝑥) = 𝑀ℎ − 𝑠𝑀𝑠 ≥ 0,
𝑔8(𝑥) = 𝑇 ≥ 0,
Variable ranges: 60 ≤ 𝑥1 ≤ 80,90 ≤ 𝑥2 ≤ 110,1 ≤ 𝑥3 ≤ 3,0 ≤ 𝑥4 ≤
1000,2 ≤ 𝑥5 ≤ 9, 𝑖 = 1,2,3,4,5.
where,

𝑀ℎ =
2

3
𝜇𝑥4𝑥5

𝑥2
3 − 𝑥1

3

𝑥2
2 − 𝑥1

2 𝑁.𝑚𝑚,𝑊 =
𝜋𝑛

30
𝑟𝑎𝑑/𝑠, 𝐴 = 𝜋(𝑥2

2 − 𝑥1
2)𝑚𝑚2

𝑃𝑟𝑧 =
𝑥4

𝐴
𝑁/𝑚𝑚2, 𝑉𝑠𝑟 =

𝑃𝑖𝑅𝑠𝑟𝑛

30
𝑚𝑚/𝑠, 𝑅𝑠𝑟 =

2(𝑥2
3 − 𝑥1

3)

3(𝑥2
2𝑥1

2)
𝑚𝑚

𝛥𝑅 = 20𝑚𝑚,𝐿𝑚𝑎𝑥 = 30𝑚𝑚, 𝜇 = 0.6, 𝑃𝑚𝑎𝑥 = 1𝑀𝑃𝑎 , 𝑝

= 0.0000078
𝑘𝑔

𝑚𝑚3
, 𝑉𝑠𝑟𝑚𝑎𝑥 = 10

𝑚

𝑠
,

𝛿 = 0.5𝑚𝑚, 𝑠 = 1.5, 𝑇𝑚𝑎𝑥 = 15𝑠, 𝑛 = 250𝑟𝑝𝑚, 𝐼𝑧 = 55𝐾𝑔.𝑚2,𝑀𝑠

= 40𝑁𝑚,𝑀𝑓 = 3𝑁𝑚

F. Speed reducer problem.

Minimize 𝑓(𝑥) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2 + 14.9334𝑥3 − 43.0934) −
1.508𝑥1(𝑥6

2 + 𝑥7
2) + 7.4777(𝑥6

3 + 𝑥7
3) + 0.7854(𝑥4𝑥6

2 + 𝑥5𝑥7
2)

Subject to,

 𝑔1(𝑥) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤ 0,

𝑔2(𝑥) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 ≤ 0,

𝑔3(𝑥) =
1.93𝑥4

3

𝑥2𝑥3𝑥6
4 − 1 ≤ 0,

𝑔4(𝑥) =
1.93𝑥5

3

𝑥2𝑥3𝑥7
4 − 1 ≤ 0,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

516 | P a g e

www.ijacsa.thesai.org

𝑔5(𝑥) =
√(

745𝑥4

𝑥2𝑥3
)2 + 16.9 × 106

110𝑥6
3 − 1 ≤ 0

𝑔6(𝑥) =
√(

745𝑥5

𝑥2𝑥3
)2 + 157.5 × 106

85𝑥7
3 − 1 ≤ 0

𝑔7(𝑥) =
𝑥2𝑥3

40
− 1 ≤ 0,

𝑔8(𝑥) =
5𝑥2

𝑥1

− 1 ≤ 0,

𝑔9(𝑥) =
𝑥1

12𝑥2

− 1 ≤ 0,

𝑔10(𝑥) =
1.5𝑥6 + 1.9

12𝑥2

− 1 ≤ 0,

𝑔11(𝑥) =
1.1𝑥7 + 1.9

𝑥5

− 1 ≤ 0,

𝑔11(𝑥) =
1.1𝑥7 + 1.9

𝑥5

− 1 ≤ 0,

Variable ranges: 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28,
7.3 ≤ 𝑥4 ≤ 8.3, 7.8 ≤ 𝑥5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, 5.5 ≤ 𝑥7 ≤ 5

G. Gear train engineering design problem

Minimize 𝑓(𝑥) = (
1

6.931
−

𝑥1𝑥2

𝑥3𝑥4
)
2

 Variable ranges: 12 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60

