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Abstract—The Slime Mould Algorithm (SMA) has effectively 

solved various real-world problems such as image segmentation, 

solar photovoltaic cell parameter estimation, and economic 

emission dispatch. However, SMA and its variants still face 

limitations when dealing with low-dimensional optimization 

problems, including slow convergence and local optima traps. This 

study aims to develop an optimized algorithm, the Merged Slime 

Mould Algorithm (MSMA), to overcome these limitations and 

improve performance in low-dimensional optimization tasks. 

Additionally, MSMA introduces a novel approach by merging the 

Adaptive Opposition Slime Mould Algorithm (AOSMA) and the 

Smart Switching Slime Mould Algorithm (S2SMA), simplifying 

the hybridization process and enhancing optimization 

performance. MSMA eliminates the need for multiple 

initializations, avoids memory-switching requirements, and 

employs adaptive and smart switching rules to harness the 

strengths of both algorithms. The performance of MSMA is 

evaluated using the CEC 2005 benchmark and ten real-world 

applications. The Wilcoxon rank-sum test verifies the effectiveness 

of the proposed approach, with results compared to various SMA 

variations and related optimization methods. Numerical findings 

demonstrate superior fitness values achieved by the proposed 

strategy, while statistical results indicate MSMA's 

outperformance with a rapid convergence curve. 

Keywords—Slime mould algorithm; engineering design 

problems; metaheuristic; optimization 

I. INTRODUCTION 

Metaheuristic algorithms (MAs) offer valuable tools for 
solving complex engineering problems in a reasonable time [1]. 
These algorithms provide a flexible and efficient approach to 
optimization, enabling engineers to find near-optimal solutions 
in diverse domains. MAs have two main elements: exploration 
and exploitation abilities [2]. Exploration capability is the ability 
to converge to a possible global optimum with increasing 
solution space and randomness. On the other hand, exploitation 
capability refers to the ability to search more precisely in the 
region that the algorithm's exploration phase has identified. 
There are two categories of metaheuristics: population-based 
and single-solution-based metaheuristics [3]. Population-based 
approaches involve utilizing a collection of solutions, referred to 
as a population, to generate and substitute candidate solutions 
throughout the optimization procedure. Some of the popular 
population-based metaheuristic approaches are Particle Swarm 
Optimization (PSO) [4], whale optimization algorithm (WOA) 
[5], and Harris Hawk Optimizer (HHO) [6]. In contrast, 

metaheuristics that rely on a single solution-based approach 
involve generating a set of potential solutions derived from the 
current solution. Subsequently, the current solution is 
substituted with one of the candidate solutions during each 
iteration. This category involves the local search (LS)[7], Tabu 
search (TS)[8], and simulated annealing (SA) [9]. 

Single-based and population-based algorithms have benefits 
and are widely utilized to address various issues. Nevertheless, 
no single approach can solve all optimization problems [10]. 
Developing an optimization algorithm to address these issues is 
necessary, but researchers have found it challenging to design 
new optimization algorithms from scratch. In this direction, 
hybridizing meta-heuristic algorithms is the most common and 
successful technique. For example, on hybridizing meta-
heuristic algorithms [11]–[13]. 

In the literature, several optimizers have emerged recently, 
such as SMA [14], Fitness Dependent Optimizer (FDO) [15], 
Black Widow Optimization Algorithm (BWO) [16], and Reptile 
Search Algorithm (RSA) [17]. SMA has captured considerable 
attention due to its smooth structure, limited parameter 
requirements, robustness, and flexibility in implementation. It 
presents itself as a valuable and efficient approach for 
addressing a wide range of real-world optimization problems 
[18], such as image segmentation [19], estimation of solar 
photovoltaic cell parameters [20], and economic emission 
dispatch [21]. Nevertheless, similar to other metaheuristic 
algorithms, SMA encounters challenges related to local 
optimality and premature convergence in some optimization 
problems [22], [23]. Moreover, Utilizing two random search 
agents from the entire population to determine the future 
displacement and direction based on the best search agents 
restricts SMA's exploitation and exploration capabilities [24]. 
Researchers suggested hybridized and modified variants of 
SMA to address these limitations. 

This research article presents the hybridization of two 
variants of SMA, namely S2SMA [25] and AOSMA [24]. The 
integration involves incorporating a set of vertical smart 
switching rules to govern the transition process between 
AOSMA and S2SM. The two algorithms were combined 
intelligently, where the invocation procedure exclusively occurs 
during the update of slime locations. This merger is unique and 
distinct from SAM's previous integration due to the following 
three advantages: no necessity for multiple initializations for 
different algorithms, no memory-switching needs, and 
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employing adaptive and intelligent switching rules to leverage 
the strengths of both algorithms. The main contributions of this 
work are outlined as follows: 

 MSMA introduces a novel optimization approach by 
intelligently merging AOSMA and S2SMA, setting it 
apart from previous SMA integrations through its 
streamlined operational framework, which simplifies the 
algorithm hybridization process. 

 The MSMA eliminates the necessity for multiple 
initializations and memory-switching, significantly 
enhancing computational efficiency. This innovation 
reduces the algorithm's complexity and resource 
consumption, facilitating a more seamless optimization 
experience. 

 Incorporating Vertical Smart Switching Rules (VSSR) 
enables MSMA to facilitate dynamic algorithmic 
switches based on problem-specific attributes, 
amplifying adaptability and operational efficiency. 
VSSR represents a critical innovation, ensuring effective 
navigation through complex problem spaces and 
significantly improving optimization performance. 

 The MSMA has been rigorously validated through 
extensive experiments and numerical studies, 
demonstrating its superiority in solving optimization 
problems. 

This paper's remaining sections are organized as follows. 
The pertinent studies on SMA and engineering design problems 
are summarized in Section II. Section III illustrates the slime 
mould algorithm and the proposed work in detail. Section IV 
presents the numerical experiment and statistical analysis. This 
paper's conclusion is given in Section V. 

II. RELATED WORK 

As mentioned previously, SMA can be categorized into 
hybridized and modified forms of SMA. Many studies have 
investigated the idea of hybridizing SMA with other 
metaheuristic algorithms [26]–[30]. Among these 
advancements, Naik et al. [26] introduced the Equilibrium Slime 
Mould Algorithm (ESMA), merging the Slime Mould 
Algorithm (SMA) with the Equilibrium Optimizer (EO) for 
enhanced multilevel thresholding in breast thermogram images. 
ESMA aims to reduce entropic dependencies between image 
classes, showing improved exploration capability and efficient 
analysis over other optimization methods. Although it 
outperforms in breast thermogram analysis, suggesting potential 
benefits for medical diagnostics, ESMA faces challenges in 
specific clinical contexts and broader medical imaging 
applications. Further contributing to the field, Chen et al. [27] 
introduced CHDESMA, an improved Slime Mould Algorithm 
(SMA) using chaotic maps and Differential Evolution (DE). 
CHDESMA mitigates SMA's local optima and population 
diversity issues by integrating chaotic maps for initialization and 
DE strategies for enhanced search. Evaluations against 
benchmarks and real-world problems show CHDESMA's 
competitive performance against advanced algorithms and DE 
variants, emphasizing its effectiveness and contributions in 
diverse scenarios. Moreover, Bhandakkar and Mathew [28] 

proposed using Integrated Slime Mould Algorithm (ISMA) for 
optimal placement of a Hybrid Power Flow Controller (HPFC). 
ISMA combines the Slime Mould Algorithm (SMA) with WOA 
for enhanced searching behavior. This optimization aims to 
minimize system power loss and generation cost by determining 
optimal locations for Unified Power Flow Controllers (UPFCs) 
and their capacities while considering system stability 
constraints. Chen et al. [29] presented RCLSMAOA, merging 
SMA and AOA to improve optimization. Through extensive 
testing, it effectively combines global exploration and local 
exploitation strategies. Despite the success, challenges persist in 
high-dimensional spaces and convergence accuracy. Future 
work aims to refine RCLSMAOA's performance in practical 
engineering problems and high dimensions, potentially 
exploring a binary version of the algorithm for further 
enhancement. Finally, Ewees et al. [30] introduced GBOSMA, 
a hybrid method merging Gradient-Based Optimizer (GBO) and 
Slime Mould Algorithm (SMA) to improve global optimization 
and feature selection. GBOSMA enhances exploration by using 
SMA as a local search within GBO, achieving better 
performance than standard GBO, SMA, and recent algorithms 
in both speed and accuracy across diverse benchmarks. The 
results showcase GBOSMA's superiority, achieving top fitness 
values in 66% of global optimization functions and the highest 
accuracy in 93% of feature selection benchmarks. This approach 
holds potential for various applications like medical imaging, 
object detection, and weather prediction tasks. 

In many investigations, modified SMA methods were 
presented [24], [25], [31]–[34]. The Adaptive Opposition Slime 
Mould Algorithm (AOSMA), as introduced by Naik et al. [24], 
represents an advancement in the Slime Mould Algorithm 
(SMA) through the integration of adaptive opposition-based 
learning. This enhancement significantly boosts the algorithm's 
exploration and exploitation capabilities, making it a powerful 
tool for solving complex problems. However, AOSMA is not 
without its limitations. It shows a marked reliance on specific 
problem types, indicating that its effectiveness may be 
constrained to particular domains. Additionally, there is a noted 
requirement for further validation to confirm its broader 
applicability across a wider range of problem scenarios. 
Alhashash et al. [25] introduced an enhanced optimizer named 
Smart Switching Slime Mould Algorithm (S2SMA) that 
enhances the accuracy of face sketch recognition by fine-tuning 
pre-trained deep learning models, which is challenging due to 
limited sketch datasets. S2SMA simultaneously fine-tunes 
multiple deep learning models and uses embedded rules and 
search operations for adaptive switching between search 
operations during execution. The proposed algorithm was 
evaluated on CEC's 2010 large-scale benchmark and two face 
sketch databases and outperformed other optimization 
techniques with a faster convergence rate. The outcomes 
revealed the superiority of S2SMA in the majority of 
experiments. Ewees et al. [31] presented a modified version of 
the slime mould algorithm (SMA) called SMAMPA, which 
incorporates the Marine Predators Algorithm (MPA) operators 
as a local search strategy. The proposed feature selection 
technique was evaluated on twenty UCI datasets and compared 
with other state-of-the-art FS methods, showing superior 
performance in terms of efficiency and performance metrics. 
The SMAMPA method was also applied to real-world problems, 
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such as QSAR modeling and chemometrics, with promising 
results. Future work includes investigating SMAMPA in more 
complicated problems, such as multi-optimization problems and 
big data mining. Abid et al. [32] proposed an enhanced slime 
mould optimization algorithm (ESMOA) to optimize tuning 
parameters for a cascaded proportional derivative-proportional 
integral (PD-PI) controller in order to solve frequency stability 
problems (FSP) in multi-area power systems (MAPSs) with 
two-area non-reheat thermal systems. ESMOA surpassed 
current PID and PI controllers. Cascaded PD-PI controller 
designs are more reliable than GSO and CO algorithms due to 
ESMOA's chaotic dynamic and elite group. In time domain 
simulations, ESMOA beat both GSO and CO. Deng and Liu 
[33] proposed AGSMA, an improved variant of the slime mould 
algorithm, to address limitations such as insufficient 
exploration, slow convergence, and an imbalance between 
diversity and convergence. AGSMA achieved a balance 
between convergence and diversity through adaptive grouping, 
a new search mechanism, and an efficient learning operator. 
Experiments demonstrated that it outperformed other methods 
and is able to solve complex nonlinear problems. However, 
premature convergence in some multimodal problems needs 
additional study. Sharma et al. [34] presented modifications to 
the Slime Mould Algorithm (SMA) to make it more effective for 
engineering design tasks, including opposition theory and a sine 
cosine-based position update mechanism. These modifications 
were found to significantly enhance the performance of SMA on 
standard benchmark functions and make it suitable for demand-
side management tasks. 

In the evolving field of metaheuristic algorithms, recent 
studies have made significant strides in addressing complex 
engineering design problems. Samma et al. [13] pioneered the 
Q-learning-based Simulated Annealing (QLSA) algorithm, 
setting a precedent for dynamic parameter control and 
adaptability, albeit with scalability and exploration scope 
limitations. Building on this, Nadimi-Shahraki et al. [1] 
introduced the Gaze Cues Learning-based Grey Wolf Optimizer 
(GGWO), which incorporated novel search strategies inspired 
by wolf behavior, showing promise despite challenges in 
selective pressure optimization. Further contributions, such as 
Wang et al. [35]'s Artificial Rabbits Optimization (ARO) and 
Yildiz et al. [36]'s Elite Opposition-Based Learning 
Grasshopper Optimization (EOBL-GOA), demonstrated the 
algorithms' strengths in diverse engineering problems but also 
highlighted the need for domain-specific adaptability. Zhang et 
al. [37] and Yıldız et al. [38] proposed enhancements to the 
Slime Mould Algorithm (SMA) and introduced the Chaotic 
Lévy flight distribution (CLFD) algorithm, respectively, 
achieving improved solution quality and exploration-
exploitation balance. Recent developments saw Yang et al. [39] 
focus on the ARSCA algorithm, addressing computational 
complexity while improving convergence accuracy. Abdel-
Basset et al. [40] applied the Nutcracker Optimization 
Algorithm (NOA) to engineering problems, demonstrating the 
ease of implementation and high convergence speed but facing 
challenges in exploration-exploitation balance. Gharehchopogh 
et al. [41] introduced the Chaotic Quasi-oppositional Farmland 
Fertility Algorithm (CQFFA), which enhanced exploration and 
convergence via chaotic maps and the Quasi-Oppositional 
Binary Leader strategy, albeit with hybridization challenges. 

Deng and Liu [42] showcased the Multi-strategy Improved 
Slime Mould Algorithm (MSMA), signaling a need for 
enhancements in multi-objective optimization and broader 
domain adaptability. 

Despite significant advancements in developing SMA 
variants, current methods still face challenges in broader 
applicability and often struggle with slow convergence and local 
optima traps in low-dimensional optimization problems. This 
gap highlights the need for improved solutions that can 
overcome these limitations. The proposed approach addresses 
these challenges by integrating SMA variants with adaptive 
mechanisms, enhancing computational efficiency, reducing the 
reliance on multiple initializations, and simplifying the 
hybridization process, offering a more robust and effective 
solution for complex optimization tasks. 

III. PROPOSED SMA-BASED METHOD 

A. The original Slime Mould Algorithm (SMA) 

Li et al. [14] introduced the SMA as an innovative 
optimization mechanism for global optimization. SMA focuses 
on the behavior and morphological changes that the slime mould 
Physarum polycephalum undergoes during nutrient acquisition. 
Approaching, wrapping, and grabbing food are the three stages 
of SMA. 

1) Approaching food: The concentration of odor in the air 

is essential for a slime mould to approach food. This contraction 

pattern when nearing food is defined by Eq. (1): 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
𝑋𝑏(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑣𝑏⃗⃗⃗⃗ ∙ (𝑊⃗⃗⃗ ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) , 𝑟2 < 𝑝

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟2 ≥ 𝑝
 

where the parameter 𝑣𝑏⃗⃗⃗⃗   takes values within the range of [-
a, a], while 𝑣𝑐⃗⃗⃗⃗  gradually decreases from one to zero in a linearly. 

The position  𝑋𝑏
⃗⃗ ⃗⃗   refers to the current location of an individual 

with the highest concentration of odor detected. 𝑋  represents the 

current location of slime mould. 𝑋𝐴
⃗⃗ ⃗⃗  and 𝑋𝐵

⃗⃗ ⃗⃗   denote two 
randomly selected individuals from a population of size n. The 
variables 𝑡 and 𝑟2  indicate the current iteration number and a 
random value between 0 and 1, respectively. The weight of 

slime mould is represented by 𝑊⃗⃗⃗ . The parameter p is computed 
using Eq. (2): 

𝑝 = 𝑡𝑎𝑛ℎ|𝑆(𝑖) − 𝐷𝐹| 

where i ∈ 1,2, … , n. The fitness of the current location X⃗⃗  is 
denoted by S(i) , while DF  denotes the best fitness achieved 

across all iterations. The formula for computing vb⃗⃗⃗⃗  can be found 
in Eq. (3), and the value of 𝑎 is provided in Eq. (4). 

𝑣𝑏⃗⃗⃗⃗ = [−𝑎, 𝑎]) 

𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ⁡(−(
𝑡

𝑚𝑎𝑥_𝑡
) + 1) 

Here, 𝑚𝑎𝑥_𝑡 refers to the maximum number of iterations. 

The formula for calculating 𝑊⃗⃗⃗  is presented in Eq. (5), while its 
𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 is defined in Eq. (6). 
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𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

{
1 + 𝑟3 ∙ 𝑙𝑜𝑔 (

𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⁡⁡

1 − 𝑟3 ∙ 𝑙𝑜𝑔 (
𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠




𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆)⁡ 

where, condition represents that S(i) must be ranked within 
the top fifty percent of the entire population. The variable r3  
denotes a random value ranging from 0 to 1. The best fitness 
value achieved during the current iteration process is represented 
as 𝑏𝐹 , while the worst fitness value is denoted as 𝑤𝐹 . 
SmellIndex  corresponds to the sequence of fitness values 
arranged in ascending order. 

2) Wrapping food: Updates to the position of slime mould 

can be calculated using the formula given in Eq. (7): 

𝑋∗(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {

𝑟4 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟1 < 𝑧

𝑋𝑏(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑣𝑏⃗⃗⃗⃗ ∙ (𝑊 ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) , 𝑟2 < 𝑝⁡⁡𝑎𝑛𝑑⁡𝑟1 ≥ 𝑧⁡

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟2 ≥ 𝑝⁡⁡𝑎𝑛𝑑⁡𝑟1 ≥ 𝑧⁡⁡⁡

 

where, 𝑟1, r2 and r4 are randomly selected from the interval 
[0,1]. 𝐵 and 𝑈𝐵 represent the lower and upper bounds of the 
search range, respectively. The 𝑝 value signifies the probability 
associated with the presence of slime mould, while 𝑧  is a 
parameter with a constant value of 0.03. 

3) Grabbling food: To represent the slime mould venous 

width changes, SMA utilizes the vectors 𝑊⃗⃗⃗ , 𝑣𝑏⃗⃗⃗⃗ , and 𝑣𝑐⃗⃗⃗⃗ . 𝑊⃗⃗⃗  
reflects the oscillating frequency of slime mould, which is 

determined by analyzing the quality of the food source. It helps 

update the speed of movement towards the food source, aiding 

the slime mould in selecting the most suitable food source. 

The values of 𝑣𝑏⃗⃗⃗⃗  and 𝑣𝑐⃗⃗⃗⃗  undergo random oscillations within 

specific ranges. The vector 𝑣𝑏⃗⃗⃗⃗   ranges from -𝑎 to 𝑎, while  𝑣𝑐⃗⃗⃗⃗  
ranges from -1 to 1. As the iterative process progresses, these 
vectors converge towards zero. 

The variation in 𝑣𝑏⃗⃗⃗⃗   replicates the slime mould's behaviour 
when it encounters a new food source. Even if an improved food 
supply has been identified, the slime mould continues to explore 
other locations by separating some organic matter. This 
behaviour increases the chances of finding higher-quality food 
sources and improves the optimization of local problems. For 
further details on the SMA, refer to the study conducted by Li et 
al. [14]. 

B. The Proposed Merged Slime Mould Algorithm 

MSMA is a novel optimization method that combines two 
variants SMA: AOSMA and S2SMA. This merger distinguishes 
itself from previous integrations by providing three primary 
advantages: the elimination of the necessity for multiple 
initializations for different algorithms, avoidance of memory-
switching requirements, and the incorporation of adaptive and 
intelligent switching rules, known as the Vertical Smart 
Switching Rules (VSSR). 

The formulation of VSSR involves incorporating four 
embedded vertical smart switching rules to control the recall 
ratio between AOSMA and S2SMA during slime position 
updates. The activation of VSSR is dependent on the occurrence 
of specific events, comprising seven parameters: 𝐴𝑂𝑆𝑀𝐴_𝐸𝑁 
parameter, 𝑆2𝑆𝑀𝐴_𝐸𝑁⁡ parameter, EVAL_C parameter, 
𝐴𝑂𝑆𝑀𝐴_𝐶  parameter, 𝑆2𝑆𝑀𝐴_𝐶⁡ parameter, 
𝑉𝐸𝑅_𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝐿𝐸𝐴𝐷𝐸𝑅 parameter, and 𝑝𝑒𝑟. The first parameter 
is 𝐴𝑂𝑆𝑀𝐴_𝐸𝑁. It will take either zero or one. If AOSMA is 
chosen to update slime positions, it will be one; otherwise, it will 
be zero. The second parameter is 𝑆2𝑆𝑀𝐴_𝐸𝑁. It will take either 
zero or one. If S2SMA is chosen to update slime positions, it will 
be one; otherwise, it will be zero. The third parameter, EVAL_C, 
evaluation counter represents the number of iterations required 
to evaluate the performance of the two algorithms and is 
computed using Eq. (8). The fourth and fifth parameters, 
𝐴𝑂𝑆𝑀𝐴_𝐶  and 𝑆2𝑆𝑀𝐴_𝐶 , respectively, count the number of 
times each algorithm successfully finds a new leader within 
𝐸𝑉𝐴𝐿_𝑃  iterations when used to update slime positions. The 
sixth parameter, 𝑉𝐸𝑅_𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝐿𝐸𝐴𝐷𝐸𝑅 , assumes one value if 
any methods can find a new leader and zero otherwise. The final 
parameter, 𝑝𝑒𝑟, takes on a value within the range of [0,1], and 
its value depends on the rules to be applied, which will be further 
expounded in the ensuing section. 

𝐸𝑉𝐴𝐿_𝑃 = ϵ ∗ 𝑚𝑎𝑥_𝑡 

where, ϵ  is a constant parameter of 0.02, its value is 
affordable, which was selected to ensure timely switching. 
However, increasing this value would result in slower switching, 
perhaps introducing bias. Conversely, decreasing the value 
would lead to faster switching, hence increasing complexity. 
Moreover, this parameter is adjustable based on the nature of a 
given problem. 

The first and second rules are depicted in Fig. 1 and Fig. 2 
respectively. They were developed to update the value of 
𝐴𝑂𝑆𝑀𝐴_𝐶  and 𝑆2𝑆𝑀𝐴_𝐶 , which indicates the number of 
successes for each approach during the process of finding a new 
leader. Both rules will be checked in every iteration. The first 
rule will apply if AOSMA is called while updating the slime 
position and a new leader is found. Thus, 𝐴𝑂𝑆𝑀𝐴_𝐶  will be 
updated. The second rule will apply if S2SMA is called while 
updating the slime position and a new leader is found. Thus, 
𝑆2𝑆𝑀𝐴_𝐶 will be updated. It should be noted that the proposed 
method will give AOSMA and S2SMA equal priority to change 
slime positions during the first 𝐸𝑉𝐴𝐿_𝑃. During the process, the 
values of both 𝐴𝑂𝑆𝑀𝐴_𝐶  and 𝑆2𝑆𝑀𝐴_𝐶  will be updated as 
explained in Rule1 and Rule2. 

 
Fig. 1. RULE 1 To count the number of times AOSMA was successful 

during a given period. 

 
Fig. 2. RULE 2 To count the number of times S2SMA was successful during 

a given period. 

The third and fourth rules are shown in Fig. 3 and Fig. 4, 
respectively. They are formulated to calculate 𝑝𝑒𝑟, which is the 
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ratio of AOSMA and S2SMA calling to update slime positions 
during the subsequent 𝐸𝑉𝐴𝐿_𝑃 . This value depends on the 
values of 𝐴𝑂𝑆𝑀𝐴_𝐶 and 𝑆2𝑆𝑀𝐴_𝐶, as explained in Rule1 and 
Rule2. If AOSMA and S2SMA cannot find a new leader during 
the current 𝐸𝑉𝐴𝐿_𝑃 , both methods will be given an equal 
chance over the subsequent 𝐸𝑉𝐴𝐿_𝑃; otherwise, the third and 
fourth rules will be applied. The third rule is applied if the value 
of 𝐴𝑂𝑆𝑀𝐴_𝐶  is greater than 𝑆2𝑆𝑀𝐴_𝐶; otherwise, the fourth 
rule will be applied. 

 
Fig. 3. RULE 3 to compute the probability of AOSMA being called within 

the specified period. 

 
Fig. 4. RULE 4 to compute the probability of S2SMA being called within 

the specified period. 

In the SMA algorithm, the arctanh function is utilized to 
calculate the value of parameter 𝑎 in Eq. (4). However, it has 
been observed that the arctanh function can lead to programming 
warnings/errors [43]-[45]. To enhance the performance and 
stability of the standard SMA algorithm and achieve faster 
convergence with reduced warnings/errors during program 
execution, alternative controlling equations, such as the cosine 
function, have been proposed as viable solutions [44]. In this 
study, the value of parameter 𝑎 was computed using Eq. (9), 
which was directly obtained from [45]. 

𝑎 = 1 + 𝑐𝑜𝑠⁡(
𝑡

𝑚𝑎𝑥_𝑡
⁡ ∙ 𝜋) 

where 𝑚𝑎𝑥_𝑡 is the maximum number of iterations and t is 
the current iteration. 

Fig. 5 depicts the complete stages of the proposed MSMA 
algorithm. 

 
Fig. 5. Flow chart of the proposed MSMA algorithm. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this analysis section, several experiments were conducted 
to demonstrate MSMA's efficacy. Three case studies were 
investigated, comprising basic benchmark problems CEC 2005 
[46] and seven engineering designs. 

A. Evaluation on Basic Benchmark Functions 

In this section, a total of 23 CEC 2005 [46] continuous 
benchmarks were used, categorized into seven unimodal (F1-
F7), six multimodal (F8-F13), and ten fixed-dimensional 
multimodal functions (F14-F23), as illustrated in Table I, Table 
II, and Table III. Unimodal functions assess exploitation 
efficiency with one global optimum, while multimodal functions 
(F8-F13) evaluate exploration and local optima avoidance. 
Fixed-dimensional tests (F14-F23) provide a middle ground 
with fewer local optima, gauging the algorithm's balance 
between exploitation and exploration. 

TABLE I.  DESCRIPTION OF UNIMODAL BENCHMARK FUNCTIONS 

Function Description Dim Range 𝒇𝒎𝒊𝒏 

𝐹1(𝑋) = ⁡⁡∑⁡⁡𝑥𝑗
2

𝐷

𝑗=1

 

Sphere 30 [-100,100] 0 

𝐹2(𝑋) = ∑|𝑥𝑗| + ∏|𝑥𝑗|

𝐷

𝑗=0

𝐷

𝑗=0

 

Schwefel 

2.22 
30 [-10,10] 0 

𝐹3(𝑋) = ∑(∑𝑥𝑘)

𝑗

𝑘=1

2
𝐷

𝑗=1

 

Schwefel 

1.2 
30 [-100,100] 0 

𝐹4(𝑋) = 𝑚𝑎𝑥𝑗{|𝑥𝑗|,1 ≤ 𝑗 ≤ 𝐷} Schwefel 

2.21 
30 [-100,100] 0 

𝐹5(𝑋) = ∑[

𝐷−1

𝑗=1

⁡100(𝑥𝑗+1 −⁡𝑥𝑗
2)2

+ (𝑥𝑗 − 1)2] 

Rosenbrock 30 [-30,30] 0 

𝐹6(𝑋) = ∑([𝑥𝑗 + 0.5])2

𝐷

𝑗=1

 

Step 30 [-100,100] 0 

𝐹7(𝑋) = ∑𝑗𝑥𝑗
4

𝐷

𝑗=0

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1] 
Quartic 30 [-128,128] 0 

TABLE II.  DESCRIPTION OF MULTIMODAL BENCHMARK FUNCTIONS 

Function Descripti

on 

Di

m 

Range 𝒇𝒎𝒊𝒏 

𝐹8(𝑋) = ⁡⁡∑⁡−𝑥𝑗sin⁡(√|𝑥𝑗|)

𝐷

𝑗=1

 

Schwefel 30 [-500,500] −418.98

29 ∗n 

𝐹9(𝑋) = ∑[𝑥𝑗
2 − 10 cos(2𝜋𝑥𝑗)

𝐷

𝑗=1

+ 10] 

Rastrigin 30 [−5.12,5.1

2] 
0 

𝐹10(𝑋)

= −20 exp(−0.2√
1

𝐷
∑𝑥𝑗

2

𝐷

𝑗=1

)

− exp(
1

𝐷
∑cos⁡(2𝜋𝑥𝑗)

𝐷

𝑗=1

) + 20

+ 𝑒 

Ackley 30 [-32,32] 0 
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Function Descripti

on 

Di

m 

Range 𝒇𝒎𝒊𝒏 

𝐹11(𝑋)

=
1

4000
∑𝑥𝑗

2

𝐷

𝑗=1

− ∏cos(
𝑥𝑗

√𝑗
) + 1

𝐷

𝑗=1

 

Griewank 30 [-600,600] 0 

𝐹12(𝑋)

=
𝜋

𝐷
{10 sin(𝜋𝑦1)

+ ∑(𝑦𝑗 − 1)2[1

𝐷−1

𝑗=1

+ 10𝑠𝑖𝑛2(𝜋𝑦𝑗+1)] + (𝑦𝐷 − 1)2}

+ ∑𝑢(𝑥𝑗 , 10,100,4)

𝐷

𝑗=1

 

𝑦𝑗 = 1 +
𝑥𝑗 + 1

4
 

𝑢(𝑥𝑗 , 𝑎, 𝑘,𝑚)

= {

𝑘(𝑥𝑗 − 𝑎)
𝑚
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑗 > 𝑎

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ − 𝑎⁡ < 𝑥𝑗 ⁡< 𝑎

𝑘(−𝑥𝑗 − 𝑎)
𝑚
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑗 < 𝑎

 

Penalized 30 [-50,50] 0 

𝐹13(𝑋)

= 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1)

+ ∑(𝑥𝑗 − 1)
2

𝐷

𝑗=1

[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑗

+ 1)] + (𝑥𝐷 − 1)2[1

+ 𝑠𝑖𝑛2(2𝜋𝑥𝐷)]}

+ ∑𝑢(𝑥𝑗 , 5,100,4)

𝐷

𝑗=1

 

Penalize 2 30 [-50,50] 0 

TABLE III.  DESCRIPTION OF FIXED-DIMENSION MULTIMODAL 

BENCHMARK FUNCTIONS 

Function Description Dim Range 𝒇𝒎𝒊𝒏 

𝐹14(𝑋)

= ⁡ (
1

500

+ ∑
1

𝑗 + ∑ (𝑥𝑘 − 𝑎𝑘𝑗)
62

𝑘=1

25

𝑗=1

)−1 

Foxholes 2 [-

65,65] 
1 

𝐹15(𝑋)

= ∑[𝑎𝑗 −
𝑥1(𝑏𝑗

2 − 𝑏𝑗𝑥2)

𝑏𝑗
2 + 𝑏𝑗𝑥3 + 𝑥4

]2
11

𝑗=1

 

Kowalik 4 [−5,5] 0.0003 

𝐹16(𝑋) = 4𝑥1
2 − 2.1𝑥1

2 +
1

3
𝑥1

6

+ 𝑥1𝑥2

− 4𝑥2
2

+ 4𝑥2
4 

Six-hump 

Camel-

Back 

2 [-5,5] -1.0316 

𝐹17(𝑋)

= (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)2

+ 10(1 −
1

8𝜋
)𝑐𝑜𝑠⁡𝑥1 + 10 

Branin 2 [-5,5] 0.398 

Function Description Dim Range 𝒇𝒎𝒊𝒏 

𝐹18(𝑋)
= [1 + (𝑥1 + 𝑥2 + 1)2(19
− 14𝑥1 + 3𝑥1

2 − 14𝑥2

+ 6𝑥1𝑥2 + 3𝑥2
2)] ∗ [30

+ (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1

+ 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2

+ 27𝑥2
2)] 

 

Goldstein-

Price 
2 [-2,2] 3 

𝐹19(𝑋)

= −∑𝑐𝑗 ⁡exp⁡(−∑𝑎𝑗𝑘(𝑥𝑘

3

𝑘=1

4

𝑗=1

− 𝑝𝑗𝑘)
2) 

Hartman 3 3 [1,3] -3.86 

𝐹20(𝑋)

= −∑𝑐𝑗 ⁡exp⁡(−∑𝑎𝑗𝑘(𝑥𝑘

6

𝑘=1

4

𝑗=1

− 𝑝𝑗𝑘)
2) 

Hartman 6 6 [0,1] -3.32 

𝐹21(𝑋) = −∑[(𝑋 − 𝑎𝑗)(𝑋

5

𝑗=1

− 𝑎𝑗)
𝑇

+ 𝑐𝑗]
−1 

Shekel 5 4 [0,10] -10.1532 

𝐹22(𝑋) = −∑[(𝑋 − 𝑎𝑗)(𝑋

7

𝑗=1

− 𝑎𝑗)
𝑇

+ 𝑐𝑗]
−1 

Shekel 7 4 [0,10] -10.4028 

𝐹23(𝑋) = −∑[(𝑋 − 𝑎𝑗)(𝑋

10

𝑗=1

− 𝑎𝑗)
𝑇

+ 𝑐𝑗]
−1 

Shekel 10 4 [0,10] -10.5363 

1) Comparison with SMA and SMA variants: 

a) Performance analysis: This section compares the 

efficacy of MSMA to that of SMA [14] and SMA variants. 

Specifically, S2SMA [25], ESMA [26], LSMA [19], and 

AOSMA [24] are executed based on the parameters shown in 

Table IV. The mean, and standard deviation of MSMA and 

other algorithms are reported in Table V. The ranking was 

determined by using an average of 30 runs. MSMA achieved 

the optimal value, zero, or the best result in most functions 

relative to other algorithms. This is due to the application of 

rules that aid in selecting the optimal algorithm, which in turn 

enables the achievement of optimal results. However, the 

outcomes were not satisfactory due to the nature of the 

functions F5, F6, F7, F19, and F20. 

TABLE IV.  CONFIGURATION PARAMETERS FOR THE EXAMINED 

ALGORITHMS 

Method Population  

size 

The 

maximum 

number 

 of iterations 

Other parameters 

MSMA 

(Proposed) 

30 103 𝑧  = 0.03,  𝜇  =0.5, 

ϵ⁡=0.02,  α = 5 and 𝛽 
=3/2 

SMA [14] 30 103 𝑧 = 0.03 

LSMA [19] 30 103 𝑧 = 0.03 
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AOSMA [24] 30 103 𝑧 = 0.03 

ESMA [26] 30 103 𝑧 = 0.03 

TABLE V.  RESULTS OF CEC 2005 FUNCTIONS 

Funct

ion 

Fitn

ess 

Algorithm 

MSMA 
S2SM

A 
SMA ESMA LSMA AOSMA 

F1 

Mea

n 

0.000E+0

0 

6.525

E-06 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

Std 
0.000E+0

0 

2.863

E-06 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

F2 

Mea

n 

0.000E+0

0 

2.250

E-03 

1.233E-

196 

2.988E-

227 

0.000E+

00 

0.000E+

00 

Std 
0.000E+0

0 

8.600

E-04 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

F3 

Mea

n 

0.000E+0

0 

7.737

E-04 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

Std 
0.000E+0

0 

3.599

E-04 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

F4 

Mea

n 

0.000E+0

0 

9.313

E-02 

6.527E-

201 

2.532E-

295 

0.000E+

00 

0.000E+

00 

Std 
0.000E+0

0 

7.777

E-02 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

F5 

Mea

n 
3.129E-02 

8.328

E-01 

1.174E+

00 

9.674E-

01 
1.866E-

02 

2.254E-

02 

Std 1.165E-01 
4.461

E+00 

4.931E+

00 

4.676E+

00 

1.451E-

02 

6.369E-

02 

F6 

Mea

n 
4.397E-06 

3.152

E-05 

9.883E-

04 

5.087E-

04 

1.710E-

04 
3.987E-

06 

Std 2.498E-06 
1.238

E-05 

4.196E-

04 

2.147E-

04 

6.327E-

05 

1.589E-

06 

F7 

Mea

n 
4.950E-05 

3.833

E-03 

7.968E-

05 

7.292E-

05 

5.945E-

05 
2.761E-

05 

Std 6.893E-05 
4.007

E-03 

7.901E-

05 

7.692E-

05 

6.367E-

05 

2.676E-

05 

F8 

Mea

n 

-

1.257E+0

4 

-

1.257
E+04 

-

1.257E+
04 

-

1.257E+
04 

-

1.257E+
04 

-

1.257E+
04 

Std 1.563E-04 
1.724

E-04 

8.373E-

02 

2.321E-

02 

4.497E-

03 

1.784E-

04 

F9 

Mea

n 

0.000E+0

0 

3.574

E-06 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

Std 
0.000E+0

0 

1.111

E-06 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

F10 

Mea

n 
8.882E-16 

6.185

E-04 

8.882E-

16 

8.882E-

16 

8.882E-

16 

8.882E-

16 

Std 
0.000E+0

0 

1.318

E-04 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

F11 

Mea

n 

0.000E+0

0 

5.694

E-03 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

Std 
0.000E+0

0 

1.168

E-02 

0.000E+

00 

0.000E+

00 

0.000E+

00 

0.000E+

00 

F12 

Mea

n 
1.193E-06 

7.800

E-07 

8.589E-

04 

4.542E-

04 

3.119E-

05 

3.051E-

05 

Std 7.749E-07 
3.096

E-07 

1.335E-

03 

5.612E-

04 

1.612E-

05 

1.576E-

04 

F13 

Mea

n 
9.972E-06 

1.106

E-05 

7.211E-

04 

4.259E-

04 

2.254E-

04 

1.110E-

03 

Std 5.603E-06 
4.735

E-06 

4.926E-

04 

2.342E-

04 

1.175E-

04 

3.352E-

03 

F14 
Mea

n 
9.980E-01 

9.980

E-01 

9.980E-

01 

9.980E-

01 

9.980E-

01 

9.980E-

01 

Funct

ion 

Fitn

ess 

Algorithm 

MSMA 
S2SM

A 
SMA ESMA LSMA AOSMA 

Std 1.526E-15 
1.517

E-15 

1.508E-

13 

8.343E-

14 

2.859E-

13 

6.661E-

14 

F15 

Mea

n 
3.448E-04 

4.613

E-04 

5.015E-

04 

4.679E-

04 

5.629E-

04 

5.246E-

04 

Std 8.868E-05 
3.506

E-04 

2.224E-

04 

1.964E-

04 

2.814E-

04 

3.570E-

04 

F16 

Mea

n 

-

1.032E+0

0 

-

1.032

E+00 

-

1.032E+

00 

-

1.032E+

00 

-

1.032E+

00 

-

1.032E+

00 

Std 6.421E-13 
2.593

E-11 

1.878E-

10 

3.863E-

10 

1.630E-

09 

5.656E-

12 

F17 

Mea

n 
3.979E-01 

3.979

E-01 

3.979E-

01 

3.979E-

01 

3.979E-

01 

3.979E-

01 

Std 2.171E-09 
1.531

E-07 

3.122E-

08 

4.086E-

08 

7.897E-

08 

5.215E-

09 

F18 

Mea

n 

3.000E+0

0 

3.000

E+00 

3.000E+

00 

3.000E+

00 

3.000E+

00 

3.000E+

00 

Std 3.720E-10 
1.187

E-09 

6.592E-

12 

9.030E-

13 

7.936E-

08 

7.377E-

10 

F19 

Mea

n 

-

3.863E+0

0 

-

3.863

E+00 

-

3.863E

+00 

-

3.863E+

00 

-

3.863E+

00 

-

3.863E+

00 

Std 3.073E-06 
1.824

E-05 

3.073E-

08 

8.330E-

07 

2.485E-

06 

9.483E-

07 

F20 

Mea

n 

-

3.254E+0
0 

-

3.230
E+00 

-

3.239E+
00 

-

3.231E+
00 

-

3.237E+
00 

-

3.270E

+00 

Std 6.014E-02 
5.138

E-02 

5.543E-

02 

5.133E-

02 

5.636E-

02 

6.038E-

02 

F21 

Mea

n 

-

1.015E+0

1 

-

1.015
E+01 

-

1.015E+
01 

-

1.015E+
01 

-

1.015E+
01 

-

1.015E+
01 

Std 5.139E-07 
9.000

E-05 

9.021E-

05 

1.180E-

04 

3.903E-

05 

5.340E-

06 

F22 

Mea

n 

-

1.040E+0

1 

-

1.040
E+01 

-

1.040E+
01 

-

1.040E+
01 

-

1.040E+
01 

-

1.040E+
01 

Std 7.056E-07 
7.015

E-05 

9.711E-

05 

1.015E-

04 

3.713E-

05 

6.514E-

06 

F23 

Mea

n 

-

1.054E+0

1 

-

1.054
E+01 

-

1.054E+
01 

-

1.054E+
01 

-

1.054E+
01 

-

1.054E+
01 

Std 1.544E-07 
7.791

E-05 

1.054E-

04 

1.122E-

04 

4.224E-

05 

6.612E-

06 

b) Analysis of execution time: The computer's software 

and hardware specifications used to conduct the investigations 

in this study are elaborated on in Table VI. Table VII displays 

the computational time (in seconds) for three different 

algorithms: MSMA, SMA, and AOSMA. According to Table 

VIII, the SMA algorithm achieved a computation time of 

0.51318182 seconds, while the AOSMA algorithm recorded a 

shorter time at 0.260618 seconds. As a result of hybridizing 

AOSMA and S2SMA, MSMA achieved a computation time of 

0.380505 seconds and thus outperformed the original SMA 

algorithm. These results indicate that MSMA shows promise in 

improving task-specific computational time compared to the 

traditional SMA approach. Notably, the programming 

language, programmer proficiency, and machine configuration 

influence the CPU time utilized by each method. 
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TABLE VI.  SETTING INFORMATION FOR HARDWARE AND SOFTWARE 

Item Component Setting 

Hardware CPU Intel(R) Core (TM) i7-10700 

Frequency 2.9 GHz 

RAM 16GB 

GPU Nvidia GeForce GTX 1660 Super 

SSD 256 GB 

Hard Drive 2 TB 

Software Operating system Windows 10 

Language MATLAB R2021a 

TABLE VII.  COMPUTATIONAL TIME ANALYSIS 

 MSMA (Proposed) SMA AOSMA 

Time (Second) 0.380505 0.51318182 0.260618 

2) Comparison with conventional algorithms: 

a) Performance analysis: This section compares the 

performance of the MSMA algorithm with six popular 

metaheuristic algorithms: WOA [5], Multi-Verse Optimizer 

(MVO) [47], Grey Wolf Optimizer (GWO) [48], Sine Cosine 

Algorithm (SCA) [49], Arithmetic Optimization Algorithm 

(AOA) [50], and PSO [4] across unimodal and multimodal 

functions (F1-F13). The primary parameter configurations of 

these algorithms are displayed in Table VIII below. It has been 

demonstrated that the MSMA variant outperforms the original 

SMA and other SMA variants. Therefore, the upcoming 

comparative experiment will not include SMA for comparison. 

According to Table IX, MSMA's ability to achieve highly 
competitive best fitness values frequently converges to zero or 
near-zero fitness on unimodal functions such as F1 and F2, 
emphasizing its exceptional exploitation efficiency. Moreover, 
on multimodal functions like F13, MSMA exhibits worthy 
exploration capabilities, navigating intricate landscapes and 
converging to optimal solutions. These findings collectively 
highlight MSMA as an effective metaheuristic algorithm with 
the potential for solving real-world problems in various 
domains. 

TABLE VIII.  THE SETTING OF ALGORITHMS’ PARAMETERS 

Method Population 

size 

The 

maximum 

number of 

iterations 

Other parameters 

MSMA 

(Proposed) 
30 103 𝑧  = 0.03,  𝜇 

=0.5,⁡ϵ⁡⁡=0.02,  α = 5 and 

𝛽 =3/2 

(WOA) [5] 30 103 𝑎1⁡ = 2–0; ⁡𝑎2⁡
= −1–−2; ⁡𝑏⁡ = ⁡1 

(MVO) [47] 30 103 Wormhole Existence 

Probability WEPMax = 1; 

WEPMin = 0.2; 

(GWO) [48] 30 103 𝑎: 2– 1 

(SCA) [49] 30 103 𝑎⁡ = ⁡2 

AOA [50] 30 103 𝜇 =0.5 and 𝛼⁡= 5 

(PSO) [4] 30 103 c1 = 2.5 – 0.5, c2 = 

0.5–2.5, w = 0.9–0.5. 

TABLE IX.  COMPARISON MSMA WITH CONVENTIONAL ALGORITHMS 

Functi

on 

Fitne

ss 

Algorithm 

MSMA WOA MO GWO SCA AOA PSO 

F1 

Mea

n 0 

6.9E-

153 

0.3133

23 

1.81E-

58 

0.0785

75 

2.23E-

32 

5866.4

22 

Std 
0 

3.3E-

152 

0.0982

9 

7.72E-

58 

0.2370

2 

1.22E-

31 

1311.9

36 

F2 

Mea

n 0 

4E-

104 

0.4200

4 

8.46E-

35 

3.22E-

05 0 

48.397

58 

Std 
0 

1.9E-

103 

0.0939

26 

1.14E-

34 

6.67E-

05 0 

10.435

52 

F3 

Mea

n 0 

23143.

08 

44.965

97 

1.64E-

15 

3319.7

78 

0.0047

37 

24646.

9 

Std 
0 

9726.5

87 

20.691

63 

6.89E-

15 

2581.6

94 

0.0090

56 

5292.9

21 

F4 

Mea

n 0 

41.815

78 

0.8991

34 

2.87E-

14 

21.890

53 

0.0248

24 

37.873

62 

Std 
0 

31.173

43 

0.2833

96 

1.05E-

13 

12.177

32 

0.0209

85 

3.2951

81 

F5 

Mea

n 
0.8544

5 

27.214

63 

204.32

83 

26.776

13 

184.42

34 

28.262

49 

27351

75 

Std 
4.5647

21 

0.5535

41 

224.41

48 

0.8295

96 

300.52

98 

0.4065

2 

11673

78 

F6 

Mea

n 
5.59E-

06 

0.0939

81 

0.3152

47 

0.5554

92 

4.8135

4 

2.7785

31 

6032.9

4 

Std 
5.29E-

06 

0.1166

12 

0.0795

13 

0.3291

67 

0.7832

88 

0.2791

5 

1379.1

02 

F7 

Mea

n 

9.38E-

05 

0.0020

88 

0.0213

31 

0.0009

15 

0.0353

31 
3.45E-

05 

2.1572

3 

Std 
8.94E-

05 

0.0017

7 

0.0085

88 

0.0005

62 

0.0307

23 

3.86E-

05 

0.7982

18 

F8 

Mea

n 

-

12569.

5 

-

11210.

8 

-

7972.4

8 

-

6055.2

5 

-

3921.0

6 

-

5738.8

8 

-

3277.0

7 

Std 
0.0001

5 

1489.6

77 

621.05

26 

956.90

94 

261.20

19 

492.38

83 

419.03

1 

F9 

Mea

n 0 

1.89E-

15 

109.10

13 

0.8487

48 

25.832

91 0 

267.11

43 

Std 
0 

1.04E-

14 

30.770

91 

2.4142

91 

37.673

91 0 

19.378

47 

F10 

Mea

n 
8.88E-

16 

4.56E-

15 

1.2783

01 

1.6E-

14 

13.021

86 
8.88E-

16 

13.728

74 

Std 
0 

2.38E-

15 

0.9685

8 

2.79E-

15 

8.5105

19 0 

0.8710

03 

F11 

Mea

n 0 0 

0.5682

99 

0.0010

77 

0.1771

92 

0.0905

59 

57.979

14 

Std 
0 0 

0.0915

16 

0.0033

14 

0.2046

52 

0.0673

12 

11.144

15 

F12 

Mea

n 
1.19E-

06 

0.0058

29 

1.5578

51 

0.0405

31 

2.3137

04 

0.4145

41 

65308

0.9 

Std 
6.37E-

07 0.0047 

1.2982

17 

0.0198

03 

3.7307

89 

0.0497

7 

63619

2.7 

F13 

Mea

n 
3.09E-

05 

0.1926

08 

0.0730

73 

0.5214

47 

12.552

31 

2.7881

5 

51196

19 

Std 
0.0001

1 

0.1158

27 

0.0378

76 

0.2082

39 

35.923

83 

0.0954

86 

35073

65 
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b) Convergence curve: In this section, Fig. 6 shows the 

convergence curves of MSMA compared to WOA [5], MVO 

[47], GWO [48], SCA [49], AOA [50], and PSO [4]. Fig. 6 

displays convergence curves derived from the average best 

objective function value achieved over 30 runs, as detailed in 

Table IX. The x-axis represents 1000 iterations, while the y-

axis represents the maximum score achieved. The results show 

that MSAM is superior to its competitors in most of the 

unimodal functions (1–7), and this reflects its high ability in the 

exploitation phase. Furthermore, MSAM's exploratory 

capabilities were showcased in multimodal functions (8–13), 

highlighting its superiority in all functions. Overall, it 

demonstrates that the convergence of MSMA is significantly 

superior to that of other algorithms across most functions. This 

is due to VSRR, which intelligently switches between 

algorithms in MSMA to take advantage of its exploitation and 

exploration capabilities. 
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F11 

 

F12 

 

F13 

Fig. 6. The convergence curves for unimodal and multimodal functions. 

B. Experimental Results on Constraints Problems 

(Engineering Design Problems) 

The performance of MSMA was assessed by applying the 
method to solve various engineering design problems. These 
included a cantilever beam problem, a welded beam design 
problem, a pressure vessel problem, a compression coil spring 
design problem, a multiple disc clutch brake problem, a speed 
reducer problem, and a gear train design problem. The 
mathematical formulas relating to these problems are provided 
in "Appendix A". These validations evaluated the effectiveness 
and suitability of MSMA in tackling different design challenges. 

This experiment standardized the parameters for all 
optimization techniques to ensure a fair comparison. The 
maximum number of function iterations was set to 10,000, and 
the population size was set to 30. For statistically reliable results, 
each method underwent 30 runs independently. 

1) Performance analysis: This section compares the 

efficacy of MSMA to that of SMA [14] and SMA variants 

(S2SMA [25], LSMA [36], AOSMA [24], and ESMA [26]). 

Table X shows performance metrics for MSMA and the other 

algorithms on Engineering design problems, including the 

mean, and the standard deviation. 

Based on the obtained results, in the problem of Cantilever 
Beam analysis, MSMA, boasting a mean of 13.36523309, 
clearly outperforms its counterparts. ESMA, LSMA, and SMA 
yield closely clustered means of 13.36532, 13.36531551, and 
13.36536, respectively, while AOSMA displays a slightly 
elevated average. This highlights MSMA's superior 
effectiveness. Likewise, in Welded Beam problem assessments, 
MSMA's mean of 1.724885178 is notably superior to its peers. 
ESMA closely trails with a mean of 1.724979, while other 
algorithms register marginally higher averages, underscoring the 
unmistakable dominance of MSMA in this context. 
Transitioning to the Pressure Vessel problem, MSMA stands out 
as the top-performing algorithm. Its mean of 6766.643344 
significantly outperforms SMA, ESMA, and LSMA, all of 
which yield notably higher means. This underscores MSMA's 
exceptional suitability for this specific problem. In the 
Compression Coil Spring Design problem, MSMA's mean of 
0.01284604 distinctly outshines alternative algorithms, which 
yield significantly higher averages. This glaring disparity 
underscores the exceptional performance of MSMA in this 
scenario. 

Moreover, in the Multiple Disk Clutch Brake problem, 
MSMA, SMA, and ESMA exhibit closely aligned means, with 
MSMA marginally leading. While LSMA and AOSMA register 
slightly higher values, MSMA's marginal lead implies superior 
efficacy for this problem. In the Speed Reducer problem, 
MSMA, ESMA, and AOSMA stand out with proximate mean 
values, with MSMA in the lead. In contrast, SMA and LSMA 
yield substantially higher averages, reinforcing the notable 
performance of MSMA. Lastly, in the Gear Train Design 
problem, MSMA's mean value of 3.25763E-20 is strikingly 
lower than those of alternative algorithms, which produce 
considerably higher means, unequivocally solidifying its 
unparalleled suitability for this specific function. These results 
demonstrate MSMA's superior performance across various 
engineering problems, affirming its pivotal role in optimization 
endeavours. 
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TABLE X.  STATISTICAL RESULTS OF ENGINEERING DESIGN PROBLEMS 

Function 
Fitn

ess 

Algorithm 

MSM

A 

S2SM

A 
SMA 

ESM

A 

LSM

A 

AOS

MA 

Cantilever beam 

Mea

n 
13.36

523 

13.36

534 

13.36

536 

13.36

532 

13.36

532 

13.36

526 

Std 
2.23E
-05 

0.000
1 

7.36E
-05 

9.2E-
05 

5.69E
-05 

3.74E
-05 

Cantilever beam 

Mea

n 
1.724

885 

1.725

027 

1.725

076 

1.724

979 

1.725

094 

1.725

079 

Std 
7.13E
-05 

0.000
174 

0.000
276 

0.000
113 

0.000
21 

0.000
229 

Pressure Vessel 

Mea

n 
6766.

643 

6861.

241 

7818

1.51 

6880

8.52 

7491

9.22 

3755

4.12 

Std 
565.1
678 501.2 

4022
6.18 

4486
6.76 

4230
2.85 

4491
2.3 

Compression Coil 

Spring design 

Mea

n 
0.012

846 

0.013

245 

5000

0.01 

4000

0.01 

5333

3.34 

5666

6.67 

Std 
0.000
151 

0.000
301 

5085
4.76 

4982
7.28 

5074
1.62 

5040
0.69 

Multiple disk clutch 

brake 

Mea

n 

0.259

77 

0.259

784 

0.259

774 

0.259

774 

0.259

785 

0.259

771 

Std 
3.18E
-06 

1.26E
-05 

2.98E
-06 

4.5E-
06 

1.47E
-05 

1.34E
-06 

Speed reducer 

Mea

n 
2996.

351 

2996.

352 

1000

00 

9676

6.54 

9353

3.09 

9676

6.54 

Std 
0.009
292 

0.003
918 

0 
1771
0.36 

2461
0.61 

1771
0.36 

Gear train design 

Mea

n 
3.26E

-20 

2E-

14 

3.74E

-14 

4.35E

-14 

3.13E

-14 

5.45E

-15 

Std 
8E-

20 

2.84E

-14 

1.31E

-13 

1.08E

-13 

6.49E

-14 

1.44E

-14 

2) Statistical analysis: To statistically evaluate the 

performance of MSMA and the compared algorithms, including 

SMA [14] S and SMA variants (S2SMA [25], LSMA [36], 

AOSMA [24], and ESMA [26]), on various engineering design 

problems. Calculating the p-value of the Wilcoxon signed-rank 

test [51]. Each value greater than 0.05 is displayed in bold font, 

indicating that the difference is not statistically significant. The 

calculated p-values indicate substantial evidence of 

differentiation, as shown in Table XI MSMA's p-values are 

smaller than 0.05 in the majority of cases, indicating significant 

differences. Notably, the "Pressure Vessel" problem exhibits a 

relatively large p-value (approximately 0.76) when comparing 

MSMA to AOSMA, indicating that the difference with 

AOSMA is not statistically significant. In contrast, for the 

"Gear train design" problem, the p-values consistently indicate 

significant differences, indicating that MSMA outperforms all 

compared algorithms. These results demonstrate the superior 

performance of MSMA and its potential as an efficient 

optimization method for complex engineering design problems. 

TABLE XI.  P-VALUES FOR MSMA VERSUS OTHER COMPETITORS ON 

ENGINEERING DESIGN PROBLEMS 

Function 

MSM

A vs. 

S2SM

A 

MSMA 

vs. SMA 

MSMA 

vs. 

ESMA 

MSMA 

vs. 

LSMA 

MSMA vs. 

AOSMA 

Cantileve

r beam 

7.7725

5E-09 

7.38029

E-10 

2.37682E

-07 

2.19474E

-08 

0.0004713

75 

Welded 

Beam 

3.6458

9E-08 

1.42942

E-08 

1.15665E

-07 

1.10234E

-08 

2.83145E-

08 

Pressure 

Vessel 

0.1579

75689 

2.66709

E-06 

0.000244

046 

0.000377

215 

0.7612971

26 

Compres

sion Coil 

Spring 

design 

1.8731

E-07 

0.005708

009 

0.619007

153 

0.031019

514 

0.0016438

41 

Multiple 

disk 

clutch 

brake 

8.1013

6E-10 

3.96477

E-08 

7.69496E

-08 

7.38029E

-10 

7.59915E-

07 

Speed 

reducer 

1.3594

3E-07 

1.21178

E-12 

4.21155E

-12 

3.68819E

-12 

8.15959E-

12 

Gear 

train 

design 

3.0198

6E-11 

7.38029

E-10 

3.01986E

-11 

3.01986E

-11 

3.01986E-

11 

3) Comparison with conventional algorithms: This section 

aims to evaluate the performance of MSMA through a 

comprehensive comparison with six popular metaheuristic 

algorithms: WOA [5], MVO [47], GWO [48], SCA [49], AOA 

[50], and PSO [4]. The comparison is conducted across seven 

distinct engineering design problems to thoroughly assess their 

capabilities in solving engineering problems. The main 

parameter settings for each algorithm are outlined in Table VIII. 

Beginning with the Cantilever Beam Design Problem, the 
analysis reveals that MSMA exhibits competitive performance, 
achieving optimal values for variables (x1 to x5) and an optimal 
cost of 13.36520828, as demonstrated in Table XII. This 
outcome underscores the effectiveness of MSMA in addressing 
structural engineering challenges, where precise optimization is 
paramount for ensuring structural integrity and efficiency. 

Similarly, in the Welded Beam Problem, MSMA 
demonstrates notable performance with an optimal cost of 
1.724852759, as presented in Table XIII, indicating its 
capability to navigate the complexities inherent in welding 
design optimization. The results further validate the robustness 
of MSMA in handling diverse engineering scenarios, where 
intricate design considerations must be balanced to achieve 
optimal outcomes. 

The Pressure Vessel Problem, as presented in Table XIV, 
further emphasizes the diversity of MSMA's capabilities. It 
showcases optimal values for variables and an optimal cost of 
5885.332794. It highlights MSMA's adaptability to multifaceted 
challenges in pressure vessel design optimization, where 
complex geometrical and operational constraints influence the 
design space. 

In the Compression Coil Spring Design Problem, MSMA 
continues to demonstrate competitive results, achieving an 
optimal cost of 0.012665319, as presented in Table XV. This 
performance highlights the efficacy of MSMA in optimizing 
mechanical components, where precision in design parameters 
is crucial for achieving desired spring characteristics and 
performance metrics. 
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Table XVI illustrates the optimal values for variables (x1, 
x2, x3, x4, x5) and their respective optimal costs achieved by 
various algorithms in the Multiple Disk Clutch Brake scenario. 
MSMA outperforms competitors by attaining an optimal cost of 
0.259768995. In contrast, other algorithms exhibit slightly 
different values for the variables. It highlights the effectiveness 
of MSMA in this context. 

Similarly, Table XVII provides a comparative analysis for 
the Speed Reducer Problem, where MSMA excels in achieving 
an optimal cost of 2996.348166. Competing algorithms, on the 
other hand, are unable to reach the same degree of accuracy. 
MSMA's reliability and effectiveness are demonstrated by its 
ability to handle the complexity of this problem. 

In the context of gear train design optimization, Table XVIII 
highlights the effectiveness of the MSAM algorithm with an 
optimal cost of 4.29529E-26. Additionally, WOA achieves a 
noteworthy optimal cost of 0, emphasizing its competitive 
performance. These findings underscore the capabilities of 
MSAM and WOA in addressing complex engineering 
optimization challenges. 

TABLE XII.  COMPARISON RESULTS OF THE CANTILEVER BEAM DESIGN 

PROBLEM 

Algorit

hms 

Optimal values for variables Optimal 

cost x1 x2 x3 x4 x5 

MSMA 6.017085

383 

5.311288

687 

4.488476

538 

3.507273

784 

2.149604

785 
13.36520

828 

WOA 5.700449

107 

5.397613

593 

4.814600

886 

3.522731

364 

2.119436

619 

13.38920

896 

MVO 6.033559

535 

5.307530

25 

4.440377

082 

3.528653

236 

2.165715

561 

13.36529

853 

GWO 6.030295

996 

5.311933

104 

4.485345

216 

3.494561

661 

2.151681

834 

13.36520

866 

SCA 6.256390

441 

6.108302

51 

4.446189

485 

3.086518

141 

2.009635

551 

13.44560

967 

AOA 6.314864

496 

5.699730

447 

3.986353

036 

3.898579

909 

2.105572

722 

13.49454

764 

PSO 5.716182

614 

5.394840

612 

4.923773

757 

3.426754

426 

2.132218

051 

13.39554

248 

TABLE XIII.  COMPARISON RESULTS OF THE WELDED BEAM PROBLEM 

Algorith

ms 

Optimal values for variables Optimal 

cost x1 x2 x3 x4 

MSMA 0.2057266

8 

3.4705549

07 

9.0366239

51 

0.2057296

41 
1.7248527

59 

WOA 0.4169924

89 

2.0317188

26 

6.3380925

08 

0.4211974

07 

1.7576288

76 

MVO 0.2045720

29 

3.4953344

09 

9.0425119

59 

0.2057081

16 

1.7257700

29 

GWO 0.2054834

3 

3.4757774

53 

9.0367310

42 

0.2057411

47 

1.7249216

56 

SCA 0.2067796

45 

3.3467276

47 

9.4636183

39 

0.2108223

86 

1.7442076

2 

AOA 0.2087071

68 

3.1562912

35 
10 0.2475296

32 

1.8541116

28 

PSO 0.2111616

82 

3.4160266

15 

8.8909020

48 

0.2125586

7 

1.7335328

31 

TABLE XIV.  COMPARISON RESULTS OF THE PRESSURE VESSEL PROBLEM 

Algorith

ms 

Optimal values for variables Optimal 

cost x1 x2 x3 x4 

MSMA 1.2588284

44 

0.6222395

52 

65.224271

72 

10.004138

28 
5885.3327

94 

WOA 74.398114

74 

34.478969

69 

46.421666

63 

73.129005

91 

5913.4844

57 

MVO 89.654759

33 

74.809443

21 
18.909546 166.69952

99 

6432.1025

07 

GWO 0.7787367

3 

0.3850130

82 

40.348761

74 

199.59532

5 

5886.1128

27 

SCA 0.7996499

58 

0.4280558

43 

40.714610

12 
200 5968.7119

93 

AOA 34.091590

14 

87.138844

43 

13.351952

48 

51.936860

87 

9424.6983

17 

PSO 36.828553

93 

79.537171

97 

52.422133

73 

69.317683

29 

6155.4841

64 

TABLE XV.  COMPARISON RESULTS OF THE COMPRESSION COIL SPRING 

DESIGN PROBLEM 

Algorithms Optimal values for variables Optimal cost 

x1 x2 x3 

MSMA 0.055584231 0.457867024 7.138747128 0.012665319 

WOA 0.059352736 0.570654818 4.793787974 0.012672374 

MVO 0.057411627 0.510629027 5.858130197 0.012702184 

GWO 0.030415911 0.746376689 2.882659855 0.01266583 

SCA 0.049565332 0.307684113 15 0.012751116 

AOA 0.076649751 1.3 2 0.015289034 

PSO 0.050062779 0.315733397 14.66722903 0.012701516 

TABLE XVI.  MULTIPLE DISK CLUTCH BRAKE 

Algorith

ms 

Optimal values for variables Optimal 

cost x1 x2 x3 x4 x5 

MSMA 69.99999

99 

90.00000

002 

1.000000

004 
1000 2.312782

041 
0.2597689

95 

WOA 70 90 1 1000 2.312782

578 

0.2597690

39 

MVO 70.00153

892 

90.00180

212 
1 999.7168

915 

2.313482

158 

0.2597818

77 

GWO 69.99852

945 
90 1 1000 2.312864

645 

0.2597748

17 

SCA 69.63372

395 
90 1 1000 2.347561

762 

0.2607250

78 

AOA 80 100.7047

151 
1 1000 2.327817

93 

0.2772706

65 

PSO 69.99879

821 

90 1 1000 2.312844

506 

0.2597831

61 

TABLE XVII.  COMPARISON RESULTS OF THE SPEED REDUCER PROBLEM 

Algor

ithms 

Optimal values for variables Optim

al cost x1 x2 x3 x4 x5 x6 x7 

MSM

A 

3.5000

00002 
0.7 17 7.3000

00013 

7.8000

0075 

3.3502

14675 

5.2866

83234 
2996.3

48166 

WOA 3.5 0.7 17 8.0860

52026 

8.0614

15721 

3.3564

39258 

5.3482

09953 

3001.9

95774 
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MVO 3.5019

74802 
0.7 17 7.4055

70651 

8.0704

42656 

3.3535

99328 

5.2867

82167 

2998.4

74657 

GWO 3.5002

34799 

0.7 17.000

22304 

7.3234

44697 

7.8012

14073 

3.3505

67429 

5.2868

01157 

2996.8

77194 

SCA 3.5513

29239 
0.7 17 7.7818

38931 
8.3 3.4224

79892 

5.3107

32943 

3034.0

02185 

AOA 3.6 0.7 17 7.3 8.3 3.5162

63029 

5.2943

72667 

3074.2

22921 

PSO 2.6264

01315 

0.7289

46859 

20.503

62653 

8.2492

49684 

8.2185

61811 

3.3800

30355 

5.3481

81951 

2997.3

89625 

TABLE XVIII.  COMPARISON RESULTS OF THE GEAR TRAIN DESIGN 

PROBLEM 

Algorith

ms 

Optimal values for variables Optimal 

cost x1 x2 x3 x4 

MSMA 20.517078
96 

14.281507
43 

12 57.894281
03 

4.29529E-
26 

WOA 56.383767

59 

12.214528

18 

33.268651

6 

49.952094

32 
0 

MVO 18.002521

5 

12.497385

46 
12 57.738165

17 

1.03484E-

18 

GWO 50.715225

62 

17.092611

59 

24.152945

02 

56.420377

06 

2.93402E-

17 

SCA 58.289474

8 

40.593549

04 
12 57.923980

93 

5.63401E-

16 

AOA 59.975914

16 

12.000022

86 

43.263356

33 
60 2.99093E-

15 

PSO 42.427885

92 

30.552433

75 
12 59.891628

03 
2.5461E-15 

C. Discussion 

The Merged Slime Mould Algorithm (MSMA) results 
demonstrate its effectiveness across benchmark functions and 
engineering design problems. Evaluating 23 continuous 
benchmark functions from the CEC 2005 revealed that MSMA 
excels in achieving optimal results, particularly in unimodal 
functions where exploitation is crucial. Its performance in 
multimodal functions illustrates robust exploration capabilities, 
effectively navigating complex landscapes and avoiding local 
optima. 

Comparisons with other Slime Mould Algorithm (SMA) 
variants and established metaheuristic algorithms like WOA, 
GWO, and PSO showed that MSMA consistently outperforms 
its peers. The mean and standard deviation metrics analysis 
highlight MSMA's ability to frequently achieve optimal or near-
optimal fitness values. The convergence curves indicate that 
MSMA delivers rapid convergence, leveraging Vertical Smart 
Switching Rules (VSRR) for intelligent algorithm switching, 
thus enhancing both exploitation and exploration strategies. 

MSMA's superiority in engineering design problems is 
further validated. For instance, the Cantilever Beam problem 
achieved significantly lower mean values compared to other 
algorithms. Similar trends were noted in the Welded Beam and 
Pressure Vessel problems, with statistical significance 
confirmed through the Wilcoxon signed-rank test. These results 
underscore MSMA's reliability and efficiency in tackling 
complex engineering challenges. 

The promising outcomes of MSMA open several exciting 
avenues for future research. Exploring hybridization techniques 

that combine MSMA with advanced optimization algorithms 
could further enhance its performance. Additionally, adapting 
Vertical Smart Switching Rules (VSRR) for dynamic problem 
landscapes may improve efficiency. Future studies could also 
validate MSMA through real-world case studies, ensuring its 
practical applicability across diverse industries. Such 
explorations would significantly contribute to the optimization 
field and enhance MSMA's utility in addressing complex 
challenges, instilling a sense of optimism and hope for its 
continuous improvement. 

V. CONCLUSION 

In conclusion, this paper introduced MSMA as a dynamic 
hybridization approach engineered to significantly enhance the 
performance of the traditional SMA in tackling low-dimensional 
optimization problems compared to other algorithms. The 
proposed technique merges two existing SMA variants, 
AOSMA and S2SMA, through the incorporation of embedded 
Vertical Smart Switching Rules (VSSR). VSSR enables 
dynamic switching between algorithms based on problem-
specific attributes, thereby boosting adaptability and operational 
efficiency. The MSMA's unique integration strategy eliminates 
the need for multiple algorithm initializations as well as avoids 
the need for memory-based switching. Instead, it relies on 
adaptive and intelligent switching rules to exploit the strengths 
of both algorithms. This represents a notable advancement 
compared to previous integrations of SMA. 

The proposed MSMA has been fully validated on ten real-
world engineering challenges and basic benchmark problems 
CEC 2005 using statistical and numerical analyses. The 
experimental results highlight MSMA's superiority over current 
approaches and demonstrate its potential to provide innovative 
solutions for complex engineering designs. This study provides 
additional evidence that MSMA consistently achieves the 
highest mean fitness values and shows the fastest rates of 
convergence among the algorithms evaluated, demonstrating its 
superior performance in addressing engineering design 
problems. Remarkably, when compared to SMA, MSMA also 
showed improved computational efficiency, particularly in the 
Cantilever Beam problem. The Wilcoxon signed-rank test has 
statistically validated MSMA's outstanding performance in a 
variety of engineering problems, confirming its superiority and 
efficacy in resolving complex engineering design problems. 

These findings validate the proposed MSMA's superiority 
over existing techniques, showcasing its potential to provide 
promising solutions for complex engineering design problems. 
Future research directions could pivot towards enhancing the 
VSSR mechanism to further improve MSMA's adaptability and 
robustness. Moreover, extending the exploration to other 
problem domains and conducting comparative studies with 
other state-of-the-art optimization algorithms would yield 
additional insights, paving the way for further advancements in 
optimization technology. 
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APPENDIX A. ENGINEERING DESIGN PROBLEMS 

A.  Cantilever structure problem 

Minimize 𝑓(𝑥) = 0.6224(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5) 

subject⁡to,⁡⁡𝑔(𝑥) =
61

𝑥1
3 +

37

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0 

Variable⁡ranges:⁡0.01 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≤ 100 

B. The welded beam design problem 

Minimize 𝑓(𝑥 ) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) 

subject to, 

𝑔1(𝑥 ) = 𝜏(𝑥 ) − 𝜏𝑚𝑎𝑥 ≤ 0 

𝑔2(𝑥 ) = 𝜎(𝑥 ) − 𝜎𝑚𝑎𝑥 ≤ 0 

𝑔3(𝑥 ) = 𝛿(𝑥 ) − 𝛿𝑚𝑎𝑥 

𝑔4(𝑥 ) = 𝑥1 − 𝑥4 ≤ 0 

𝑔5(𝑥 ) = 𝑃 − 𝑃𝑐(𝑥) ≤ 0 

𝑔6(𝑥 ) = 0.125 − 𝑥1 ≤ 0 

𝑔7(𝑥 ) = 0.1047𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0 

Variable ranges: 0.1 ≤ 𝑥1 ≤ 2.0,⁡⁡⁡0.1 ≤ 𝑥2 ≤ 10.0, 0.1 ≤ 𝑥3 ≤
10.0, 0.1 ≤ 𝑥4 ≤ 2.0 
where, 

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ 𝜏′′2, 𝜏′ =

𝑃

√2𝑥1𝑥2

, 𝜏′′ =
𝑀𝑅

𝐽
,𝑀

= 𝑃 (𝐿 +
𝑥2

2
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𝑅 = √
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2

4
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𝑥1 + 𝑥3

2
)
2

, 𝐽 = 2{√2𝑥1𝑥2 [√
𝑥2

2

12
+ (

𝑥1 + 𝑥3

2
)
2

]} , 𝜎(𝑥)

=
6𝑃𝐿

𝑥4𝑥3
2 , 𝛿(𝑥) =

4𝑃𝐿3

𝐸𝑥4𝑥3
3 

𝑃𝑐(𝑥) =
4.103𝐸√𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
) , 𝑃 = 6000𝑙𝑏, 𝐿 = 14𝑖𝑛, 𝐸

= 30 × 1006𝑝𝑠𝑖 
𝐺 = 12 × 1006𝑝𝑠𝑖. 𝜏𝑚𝑎𝑥 = 136000𝑝𝑠𝑖, 𝜎(𝑥) = 30000𝑝𝑠𝑖, 𝛿𝑚𝑎𝑥

= 0.25𝑖𝑛 

C. Pressure Vessel problem 

Minimize 𝑓(𝑥 ) = 0.6224𝑥1𝑥3𝑥4 + ⁡1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 +
⁡19.84𝑥1

2𝑥3  
Subject to, 

⁡𝑔1(𝑥 ) = −𝑥1 +⁡0.0193𝑥3 ≤ 0, 
𝑔2(𝑥 ) = −𝑥3 + ⁡0.00954𝑥3 ≤ 0, 

𝑔3(𝑥 ) = −𝜋𝑥3
2𝑥4 −⁡

4

3
𝜋𝑥3

3 + 1,296,000 ≤ 0, 

𝑔4(𝑥 ) = 𝑥4 − 240 ≤ 0, 
Variable ranges: 0 ≤ 𝑥1 ≤ 99, 0 ≤ 𝑥2 ≤ 99,10 ≤ 𝑥3 ≤ 200,10 ≤
𝑥4 ≤ 200 

D. Compression Coil Spring design problem 

Minimize 𝑓(𝑥 ) = (𝑥3 + 2)𝑥2𝑥1
2 

subject to, 

𝑔1(𝑥 ) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0 

𝑔2(𝑥 ) =
4𝑥2

2 − 𝑥1𝑥2
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𝑔3(𝑥 ) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 

𝑔4(𝑥 ) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0 

Variable ranges: 0.05 ≤ 𝑥1 ≤ 2.0,⁡⁡⁡⁡⁡0.25 ≤ 𝑥2 ≤ 1.3,⁡⁡⁡⁡⁡2 ≤ 𝑥3 ≤
15.0 

E. Multiple disk clutch brake problem 

Minimize 𝑓(𝑥 ) = 𝜋(𝑥2
2 − 𝑥1

2)𝑥3(𝑥5 + 1)𝜌, 
Subject to, 

𝑔1(𝑥) = 𝑥2 − 𝑥1 − 𝛥𝑅 ≥ 0 

𝑔2(𝑥) = 𝐿𝑚𝑎𝑥 − (𝑥5 + 1)(𝑥3 + 𝛿) ≥ 0 

𝑔(𝑥) = 𝑃𝑚𝑎𝑥 − 𝑃𝑟𝑧 ≥ 0 

𝑔(𝑥) = 𝑃𝑚𝑎𝑥 ∗ 𝑉𝑠𝑟𝑚𝑎𝑥 − 𝑃𝑟𝑧 ∗ 𝑉𝑠𝑟 ≥ 0, 
𝑔5(𝑥) = 𝑉𝑠𝑟𝑚𝑎𝑥 − 𝑉𝑠𝑟 ≥ 0, 
𝑔6(𝑥) = 𝑇𝑚𝑎𝑥 − 𝑇 ≥ 0, 
𝑔7(𝑥) = 𝑀ℎ − 𝑠𝑀𝑠 ≥ 0, 
𝑔8(𝑥) = 𝑇 ≥ 0, 
Variable ranges: 60 ≤ 𝑥1 ≤ 80,90 ≤ 𝑥2 ≤ 110,1 ≤ 𝑥3 ≤ 3,0 ≤ 𝑥4 ≤
1000,2 ≤ 𝑥5 ≤ 9, 𝑖 = 1,2,3,4,5. 
where, 

𝑀ℎ =
2

3
𝜇𝑥4𝑥5

𝑥2
3 − 𝑥1

3

𝑥2
2 − 𝑥1

2 𝑁.𝑚𝑚,𝑊 =
𝜋𝑛

30
𝑟𝑎𝑑/𝑠⁡, 𝐴 = 𝜋(𝑥2

2 − 𝑥1
2)𝑚𝑚2 

𝑃𝑟𝑧 =
𝑥4

𝐴
𝑁/𝑚𝑚2, 𝑉𝑠𝑟 =

𝑃𝑖𝑅𝑠𝑟𝑛

30
𝑚𝑚/𝑠, 𝑅𝑠𝑟 =

2(𝑥2
3 − 𝑥1

3)

3(𝑥2
2𝑥1

2)
𝑚𝑚 

𝛥𝑅 = 20𝑚𝑚,𝐿𝑚𝑎𝑥 = 30𝑚𝑚, 𝜇 = 0.6, 𝑃𝑚𝑎𝑥 = 1𝑀𝑃𝑎 , 𝑝

= 0.0000078
𝑘𝑔

𝑚𝑚3
, 𝑉𝑠𝑟𝑚𝑎𝑥 = 10

𝑚

𝑠
, 

𝛿 = 0.5𝑚𝑚, 𝑠 = 1.5, 𝑇𝑚𝑎𝑥 = 15𝑠, 𝑛 = 250𝑟𝑝𝑚, 𝐼𝑧 = 55𝐾𝑔.𝑚2,𝑀𝑠

= 40𝑁𝑚,𝑀𝑓 = 3𝑁𝑚 

F. Speed reducer problem. 

Minimize 𝑓(𝑥 ) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2 + 14.9334𝑥3 − 43.0934) −
1.508𝑥1(𝑥6

2 + 𝑥7
2) + 7.4777(𝑥6

3 + 𝑥7
3) + 0.7854(𝑥4𝑥6

2 + 𝑥5𝑥7
2) 

Subject to, 

 𝑔1(𝑥 ) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤ 0, 

𝑔2(𝑥 ) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 ≤ 0, 

𝑔3(𝑥 ) =
1.93𝑥4

3

𝑥2𝑥3𝑥6
4 − 1 ≤ 0, 

𝑔4(𝑥 ) =
1.93𝑥5

3

𝑥2𝑥3𝑥7
4 − 1 ≤ 0, 
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𝑔5(𝑥 ) =
√(

745𝑥4

𝑥2𝑥3
)2 + 16.9 × 106

110𝑥6
3 − 1 ≤ 0 

𝑔6(𝑥 ) =
√(

745𝑥5

𝑥2𝑥3
)2 + 157.5 × 106

85𝑥7
3 − 1 ≤ 0 

𝑔7(𝑥 ) =
𝑥2𝑥3

40
− 1 ≤ 0, 

𝑔8(𝑥 ) =
5𝑥2

𝑥1

− 1 ≤ 0, 

𝑔9(𝑥 ) =
𝑥1

12𝑥2

− 1 ≤ 0, 

𝑔10(𝑥 ) =
1.5𝑥6 + 1.9

12𝑥2

− 1 ≤ 0, 

𝑔11(𝑥 ) =
1.1𝑥7 + 1.9

𝑥5

− 1 ≤ 0, 

𝑔11(𝑥 ) =
1.1𝑥7 + 1.9

𝑥5

− 1 ≤ 0, 

Variable ranges: 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 
7.3 ≤ 𝑥4 ≤ 8.3,  7.8 ≤ 𝑥5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, 5.5 ≤ 𝑥7 ≤ 5 

G. Gear train engineering design problem 

Minimize 𝑓(𝑥 ) = (
1

6.931
−

𝑥1𝑥2

𝑥3𝑥4
)
2

 

 Variable ranges: 12 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60 


