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Abstract—Leaf diseases pose a significant challenge to rice 

productivity, which is critical as rice is a staple food for over half 

of the world's population and a major agricultural commodity. 

These diseases can lead to severe economic losses and jeopardize 

food security, particularly in regions heavily reliant on rice 

farming. Traditional detection methods, such as visual inspection 

and microscopy, are often inadequate for early disease 

identification, which is crucial for effective management and 

minimizing yield loss. This presentation introduces SMOREF-

SVM, a novel approach that combines Spider Monkey 

Optimization (SMO) with Random Forest (RF) and Support 

Vector Machine (SVM) to improve the classification of rice leaf 

diseases. The innovation of SMOREF-SVM lies in its use of SMO 

for effective feature optimization, which selects the most relevant 

features from complex disease patterns, and its dual-

classification framework using RF and SVM. Results 

demonstrate that SMOREF-SVM achieves an average accuracy 

of 98%, significantly outperforming standard SVM methods, 

which achieve around 90%. SMOREF-SVM also improves key 

metrics, including Precision, Recall, and F1 Score, by 5-10% for 

diseases with fewer samples, reaching Precision of 94%, Recall of 

92%, and F1 Score of 93%. Additionally, ROC curve analysis 

shows an enhanced Area Under the Curve (AUC), approaching 

0.98 for more disease classes, compared to 0.85 with traditional 

methods. This makes SMOREF-SVM a valuable tool for early 

and accurate disease detection, offering the potential to improve 

crop productivity and sustainability, addressing the critical 

challenges of disease management in agriculture. 
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I. INTRODUCTION 

Leaf diseases are one of the major problems in plant growth 
that can cause significant obstacles in the agribusiness sector, 
as well as negatively impacting a country's agricultural 
production. The main causes of leaf diseases involve various 
types of pathogens such as bacteria, fungi, viruses [1], and 
other natural infectious organisms, which can attack plants at 
various stages of their life cycle. To detect and classify the 
types of leaf stress, there are several approaches that can be 

used. The first approach is to observe directly with the naked 
eye, which although simple, is often ineffective and inefficient. 
This visual observation tends to be slow and less accurate, 
especially in detecting early signs of infection on leaves. 
Another alternative is to use special instruments, such as 
microscopes, to observe disease symptoms. However, this 
method is also not ideal because it takes a long time, so that 
preventive measures cannot be taken quickly before the disease 
spreads further. 

Therefore, many studies are now turning to a more 
sophisticated approach, namely the application of machine 
learning (ML) algorithms to detect and classify leaf diseases. 
The application of these ML techniques provides a faster and 
more accurate solution in identifying leaf diseases at an early 
stage, when symptoms of infection may not be clearly visible 
to the human eye. By leveraging the capabilities of image 
processing (IP) and computer vision, these techniques enable 
more effective automated identification of disease symptoms 
on leaves [2]. Overall, leaf disease identification using ML and 
image processing technologies is one of the most promising 
and challenging areas of research. This is because early 
detection of disease is a crucial step in preventing the spread of 
infection and greater losses to agriculture. With the 
advancement of this technology, it is expected that the 
agricultural sector can utilize new innovations to increase 
productivity and reduce the negative impact of leaf diseases on 
crops [1] [2]. Farmers' knowledge of identifying diseases in 
rice plant leaves is generally derived from traditional 
knowledge passed down through generations [3]. Beginner rice 
farmers often face difficulties in recognizing these diseases due 
to their limited understanding of the common afflictions that 
affect rice plants, especially their leaves. These diseases can 
cause significant losses, such as reduced crop yields or even 
total crop failure when the disease becomes severe and difficult 
to control [4]. Common diseases that frequently affect rice 
plants include Bacterial Leaf Blight, Tungro, Leaf Blast, 
Sheath Blight, False Smut, and Grassy Stunt [1]. Early 
identification and prevention of these diseases are crucial to 
mitigate losses, such as reduced productivity due to disease 
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outbreaks. Currently, image processing and machine learning 
technologies are increasingly utilized for rapid and efficient 
detection of diseases in rice plant leaves [5]. 

The general steps in this process involve several stages, 
including data acquisition, preprocessing, segmentation, 
feature extraction, and classification [6]. Numerous studies 
have been conducted to develop methods for identifying 
diseases in rice plant leaves. One approach involves identifying 
diseases by applying feature extraction techniques such as 
discrete wavelet transform, scale-invariant feature transform, 
and gray-level co-occurrence matrix, followed by classification 
using algorithms like K-nearest neighbor, backpropagation 
neural network, Naive Bayesian, and multiclass SVM. The 
results of the research indicated that the multiclass SVM 
algorithm provided the highest accuracy performance at 
98.63% [7]. Another study focusing on classifying leaf 
diseases like Paddy Blast, Narrow Brown Spot, Brown Spot, 
and healthy leaves involves multiple steps, including color 
feature extraction to obtain binary image values for area (A) 
and perimeter (P), shape feature extraction to acquire values for 
rectangularity, compactness, elongation, and roundness, and 
texture feature extraction using GLCM to measure contrast, 
uniformity, entropy, inverse difference, and linear correlation. 
The SVM algorithm is then used for classification, and the 
study demonstrated an average accuracy performance of 92.5% 
[8]. Further research on detecting healthy leaves, Brown Spot, 
and Narrow Brown Spot utilized feature extraction methods 
such as RGB color slicing values, edge feature values, and 
color histogram values, resulting in an average accuracy 
performance of 89% [9]. Additionally, another study classified 
diseases like Bacterial Leaf Blight, Leaf Blast, and Brown Spot 
on rice plants using color feature extraction with intensity 
moment values (Mean, Median, Mode, Midrange, Range, IQR, 
and Standard Deviation). Classification was performed by 
automatically selecting the best algorithm among Random 
Forest, KNN, and SVM, achieving the highest accuracy 
performance of 91.47% [10]. Numerous articles have been 
published on research studies in leaf disease detection, which 
have been adopted by universities, private organizations (Pvt. 
Org.), government organizations (Govt. Org.), industry, and 
collaborative efforts between universities and private entities 
(U&P). These studies highlight a growing interest across 
different sectors in applying advanced machine learning (ML) 
and deep learning (DL) models to enhance agricultural 
productivity and efficiency. 

Many universities have selected both fundamental and 
cutting-edge ML and DL models to address their specific 
research objectives in leaf disease detection [10][11]. This 
includes adopting models for early detection, classification, 
and analysis of plant diseases to support agricultural education 
and research. Similarly, government organizations, private 
entities, and industries have funded numerous research 
projects, recognizing the critical need to improve disease 
management practices in agriculture. The main motivation 
behind these efforts is to develop technologies that provide 
farmers with efficient, reliable, and user-friendly tools for 
detecting and managing leaf diseases, thereby minimizing crop 
loss and enhancing overall agricultural output. Industry 4.0, the 
fourth industrial revolution, is crucial in this context. 

Integrating advanced technologies such as the Internet of 
Things (IoT), artificial intelligence (AI), big data analytics, 
robotics, and cloud computing into various processes, 
including agriculture. In the realm of leaf disease detection, 
Industry 4.0 provides a framework for using these technologies 
to monitor plant health in real-time, automate the detection 
process, and optimize resource use [12] [13]. For example, IoT 
devices equipped with sensors can collect data on 
environmental conditions and plant health, while AI and ML 
algorithms analyze this data to identify disease patterns and 
predict outbreaks. Digital transformation, on the other hand, 
represents a broader shift towards using digital technologies to 
fundamentally reshape how businesses operate and deliver 
value to customers. In agriculture, digital transformation 
leverages tools like cloud computing, AI, machine learning, 
and big data analytics to enhance the efficiency and accuracy 
of leaf disease detection. This transformation involves the 
adoption of digital platforms for data sharing, real-time 
monitoring systems for early disease detection, and decision-
support systems to guide farmers on the best course of action 
based on data-driven insights [14]. 

In the context of leaf disease detection, Industry 4.0 and 
digital transformation are key drivers behind the adoption of 
advanced technologies. Their primary focus is on fostering 
innovation, improving operational efficiency, and providing 
farmers with sophisticated yet accessible tools to address plant 
diseases [15]. These efforts are crucial for advancing 
sustainable agricultural practices, reducing crop losses, and 
ultimately contributing to global food security. Image 
processing and machine learning technologies are continually 
evolving as effective tools for detecting and classifying 
diseases in rice plant leaves, offering new hope for enhancing 
agricultural resilience and productivity. This study focuses on 
rice plants, a staple crop that plays a vital role in food security. 
The harvested paddy must undergo a milling process to 
produce rice ready for consumption. Despite a steady increase 
in population, rice production has been declining, partly due to 
diseases affecting rice plants [16]. Therefore, preventive 
measures against rice plant diseases are essential to mitigate 
productivity losses, starting with the identification of various 
diseases that commonly affect rice plants. Some prevalent 
diseases include Leaf Blast, Tungro, Sheath Blight, Grassy 
Stunt, Bacterial Leaf Blight, and False Smut. Understanding 
these diseases enables the implementation of appropriate 
preventive actions [17]. Disease identification can be 
performed through visual inspection or laboratory analysis by 
closely examining the symptoms present on the leaf surfaces. 
The Table I provides an overview of the symptoms or signs 
commonly observed in rice plant leaves [18]. 

The research on rice leaf disease classification has explored 
various advanced methods and algorithms to achieve high 
accuracy. For example, compared different Convolutional 
Neural Network (CNN) architectures, including VGG16, 
MobileNet, Xception, and ResNet34, using transfer learning 
techniques [19]. Their study found that the ResNet34 
architecture achieved the highest accuracy, reaching 97.50%. 
Similarly, proposed a GCL model that combines Generative 
Adversarial Networks (GAN), CNN, and Long Short-Term 
Memory (LSTM). In their approach, GAN was used for data 
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augmentation, CNN for feature extraction to differentiate 
disease information on rice leaves, and LSTM for 

classification, resulting in an average accuracy of 97% [20] 
(Fig. 1). 

TABLE I.  COMMON DISEASES IN RICE PLANTS AND THEIR SYMPTOMS 

Type of Disease Symptoms 

a Symptoms of Leaf Blast Spots with pointed tips; the center of the spots is grayish-white with a halo area around it. 

b Symptoms of Tungro Disease Symptoms begin with leaf discoloration and stunted growth. 

c Symptoms of Bacterial Leaf Blight 
Brown spots characterized by small, dark brown spots; spots that develop with brown edges and 

pale yellow, dirty white, brown, or gray centers. 

d Symptoms of Grassy Stunt 
Initial symptoms include small, dark brown spots; advanced symptoms show larger spots with 
dirty white centers. 

e Symptoms of Sheath Blight 
Irregularly shaped spots; the edges of the spots are reddish, and the center of the spots is light 

brown. 

f Symptoms of False Smut 
The disease-causing organism develops inside the rice husk, transforming the endosperm into a 
large fungal sclerotium that protrudes outside, appearing golden yellow. 

                       
                                    (a)                                  (b)                                   (c)                                (d)                             (e)                               (f)                

Fig. 1. Typical diseases encountered in rice plants [21]. 

Deep Convolutional Neural Network (DCNN) combined 
with a Cuckoo Search (CS) algorithm, called DCNN-CS, to 
classify rice leaf diseases. The CS algorithm helps minimize 
errors in the classification process, achieving the highest 
accuracy of 99% [22], and then employed K-Nearest Neighbor 
(KNN) and Support Vector Machine (SVM) algorithms to 
classify rice leaf diseases, with KNN yielding an average 
accuracy of 95% and SVM achieving 98% [23]. SMOREF-
SVM (Spider Monkey Optimization with Random Forest and 
Support Vector Machine) is proposed as a novel approach to 
improve the accuracy of rice leaf disease classification. This 
approach has two main motivations: 1) There are still 
challenges in effectively recognizing rice leaf diseases, which 
is the main focus of this study. SMOREF-SVM combines 
feature optimization and dual classification techniques to 
address this challenge. 2) Based on the complexity of rice leaf 
disease spot patterns, the Spider Monkey Optimization (SMO) 
algorithm is applied to select the most relevant features, while 
Random Forest (RF) and Support Vector Machine (SVM) are 
used for a more accurate classification stage. This paper makes 
two main contributions: 1) By combining SMO, RF, and SVM, 
the proposed method can capture complex patterns of rice leaf 
disease data, improving detection accuracy and efficiency. The 
dual classification framework used not only enables the correct 
identification of diseases but also significantly reduces 
computational costs. 2) Experimental results show that the 
combination of SMO with RF and SVM not only accelerates 
the convergence of the model training process but also 
produces higher accuracy compared to classical classification 
methods, such as using Random Forest or SVM separately. 
Thus, the SMOREF-SVM approach introduces an innovative 
step in rice leaf disease management, ensuring early detection 
and more effective management in the field. 

II. RESEARCH METHOD 

This study involves several key phases to achieve the 
optimal final result. The first phase is data preprocessing, 

where raw data is cleaned and processed to ensure quality and 
consistency before further analysis. The second phase focuses 
on data extraction, aiming to capture essential features or 
information from the preprocessed dataset. In the third phase, 
process optimization is carried out using the Sequential 
Minimal Optimization (SMO) method, which is then fine-
tuned with an 80:20 split between training and test data. After 
the optimization process, the resulting data is classified using 
the Random Forest and Support Vector Machine (SVM) 
algorithms to obtain more accurate predictions. The fourth 
phase compares the results of the optimized classifications with 
those from the previous processes to determine which method 
yields the most precise outcomes. This approach allows 
researchers to evaluate and compare the effectiveness of 
different methods and identify the best strategy to maximize 
data classification accuracy. A more detailed explanation of 
each step can be found in Fig. 2. 

A. Data Preprocessing 

The data acquisition process began by collecting 6,000 
images of rice leaves, consisting of 1,000 images of healthy 
leaves and 5,000 images of leaves with various types of 
diseases. The types of diseases documented include Bacterial 
Leaf Blight, Blast, Tungro, Sheath Blight, Grassy Stunting, and 
False Scorch, each with 1,000 images. After the data was 
collected, the next step was to label each image according to 
the type of disease. These labels were categorized into seven 
classes, namely six classes representing various rice leaf 
diseases and one class for healthy leaves. This labeling is 
important because it used as classes in the process of creating a 
classification model, which aims to accurately identify and 
distinguish between healthy leaves and infected leaves. Thus, 
this well-labeled dataset structure supports model learning in 
recognizing the specific characteristics of each type of disease, 
thereby increasing the accuracy and effectiveness in the 
process of detecting and classifying rice leaf diseases. After 
completing the data acquisition stage and collecting a dataset 
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consisting of images of healthy rice leaves and images of 
leaves infected with various types of diseases, the next step is 

to preprocess the dataset. 

 

Fig. 2. Proposed method. 

This preprocessing involves two main stages, namely resize 
and cropping. In the first stage, the original images are resized 
to 256x256 pixels to ensure that the entire dataset has a 
uniform size, thus facilitating the analysis and classification 
process. Then, cropping is performed to remove irrelevant or 
unwanted parts of the image, so that the focus can be directed 
to more important areas in the image. This step helps highlight 
the key features needed to improve the accuracy of the model 
in recognizing and classifying various types of diseases in rice 
leaves. 

B. Data Extraction 

The result of the pre-processing stage is an image dataset 
that has been standardized in size and cleaned from noise 

interference. After that this image dataset enters the feature 
extraction stage, which aims to obtain values that reflect the 
specific characteristics of the image, such as color, texture, 
edge, and other features. The feature extraction process usually 
involves several main aspects, such as the extraction of color 
features, texture, shape, and edge characteristics [21]. In the 
context of color feature extraction, the approaches used include 
calculating the average color value, color standard deviation, 
and color skewness [21]. This feature extraction is an 
important technique for obtaining representative values from 
an image dataset [24]. This calculation can be done using 
several equations, such as the following: for the average color 
value, the equation can be used: 
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𝑚 =  
1

𝑀×𝑁
 ∑ ∑ 𝑀𝑥𝑦

𝑁
𝑦=1

𝑀
𝑥=1    (1) 

To calculate the standard deviation of color, the equation is 
used: 

𝑆𝐷 =  √
1

𝑀×𝑁
∑ ∑ (𝑀𝑥𝑦 − 𝑚)2𝑁

𝑦=1
𝑀
𝑥=1    (2) 

The kurtosis value can be calculated by: 

𝑆𝐾 =  
∑ ∑ (𝑀𝑥𝑦−𝑚)3𝑁

𝑦=1
𝑀
𝑥=1

(𝑀×𝑁)×𝑆𝐷3      (3) 

The feature extraction process is not only limited to color 
but also includes the extraction of shape features, such as 
solidity, eccentricity, diameter, area, center of mass, minor axis 
length, and major axis length [24], [25]. To obtain values from 
the extraction of shape features such as area, aspect ratio, 
orientation, perimeter, and major and minor axis lengths, the 
following equation is used [26]: 

𝐴𝑟𝑒𝑎 = ∑ ∑ 𝐴[𝑖, 𝑗]𝑁
𝑗=1

𝑀
𝑥=1    (4) 

𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑤𝑖𝑑𝑡ℎ

ℎ𝑒𝑖𝑔ℎ𝑡
     (5) 

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
)   (6) 

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑎𝑛𝑑 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 = 𝑥1 + 𝑥2√(𝑥1 + 𝑥2)2 − 𝑑  (7) 

By using this approach, the feature extraction process can 
effectively identify and analyze various important 
characteristics in an image dataset, which can then be used for 
more accurate classification and pattern recognition. 

C. Spyder Monkey Optimization (SMO) 

Spider Monkey Optimization (SMO) is a relatively new 
algorithm inspired by the mathematical modeling of the 
intelligent behavior of spider monkeys, which follows a 
fission-fusion social structure (FFSS). According to FFSS, 
spider monkeys dynamically divide themselves from larger 
groups into smaller subgroups and vice versa to optimize their 
foraging activities. The main characteristics of FFSS are as 
follows [14] [27]. 

1) At the beginning, all spider monkeys form groups 

consisting of 40–50 individuals. Each group is guided by a 

leader, known as the global leader, who oversees the search 

for food sources. 

2) If food resources are found to be insufficient, the global 

leader divides the larger group into smaller subgroups, each 

containing three to eight members, allowing them to forage 

independently. Each subgroup is led by a local leader. 

3) The decision-making process for food searching within 

each subgroup is directed by a leader, referred to as the local 

leader. 

4) Group members maintain social cohesion and establish 

defensive boundaries by communicating with one another and 

with members of other groups through a distinct vocalization. 

In the Spider Monkey Optimization (SMO) algorithm, the 
initialization phase generates an initial population of N spider 
monkeys, distributed uniformly. Each individual spider 

monkey, denoted as 𝑆𝑀𝑖(𝑖 = 1, 2, … , 𝑁), is represented as a 
vector of dimension D. Here, D signifies the number of 
variables in the optimization problem, and 𝑆𝑀𝑖 represents the i-
th spider monkey in the population. Each spider monkey 
corresponds to a potential solution for the problem at hand 
[28]. The initialization of each 𝑆𝑀𝑖 is carried out according to 
the following equation: 

𝑆𝑀𝑖𝑗 =  𝑆𝑀𝑚𝑖𝑛𝑗 + 𝑈(0, 1) 𝑥 (𝑆𝑀𝑚𝑎𝑥𝑗 − 𝑆𝑀𝑚𝑖𝑛𝑗) (8) 

Where 𝑆𝑀𝑚𝑎𝑥𝑗  𝑑𝑎𝑛 𝑆𝑀𝑚𝑖𝑛𝑗  are the bounds of 𝑆𝑀𝑖  in the 

𝑗𝑡ℎ direction and 𝑈(0, 1)  is a uniformly distributed random 
number with the range [0,1]. 

In the local leader stage of the Spyder Monkey 
Optimization (SMO) algorithm, each SM changes its current 
position by considering the information obtained from the 
experience of the local leader as well as the experience of the 
local group members [29]. The fitness value of the resulting 
new position is calculated. If the fitness value of the new 
position exceeds the fitness value of the old position, then the 
SM update its position to the new one. The equation used to 
update the position of the i-th SM (which is a member of the k-
th local group) at this stage is as follows: 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 =  𝑆𝑀𝑖𝑗 + 𝑈(0, 1) 𝑥 (𝐿𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗) +

𝑈(−1, 1) 𝑥 (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗)  (9) 

where, 𝑆𝑀𝑖𝑗  is the j-th dimension of the i-th 𝑆𝑀 , 

𝐿𝐿𝑘𝑗represents the j-th dimension of the k-th local group leader 

position. 𝑆𝑀𝑟𝑗 is the 𝑗𝑡ℎ  dimension of the 𝑆𝑀 𝑟𝑡ℎ randomly 

chosen in the 𝑘𝑡ℎgroup such that 𝑟 ≠ 1, 𝑈(0, 1) is a uniformly 
distributed random number between 0 and 1. After completing 
the local leader stage, the next step is the global leader stage. 
During this phase, all SM update their positions based on 
information from the global leader as well as the experiences of 
the local group members. The equation for updating positions 
in this stage can be formulated as follows: 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 =  𝑆𝑀𝑖𝑗 + 𝑈(0, 1) 𝑥 (𝐺𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗) +

𝑈(−1, 1) 𝑥 (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗)  (10) 

In this stage, where 𝐺𝐿 represents the j-th dimension of the 
global leader's position and j ∈{1, 2, ..., D} is a randomly 
chosen index, the positions of the spider monkeys (𝑆𝑀𝑖) are 
updated based on probabilities calculated from their fitness 
values. This approach ensures that candidates with better 
fitness values have a higher chance of improving their 
performance. The probability can be calculated using the 
following expression, which, although subject to variations, 
generally serves as a function of the fitness values: 

𝑝𝑟𝑜𝑏𝑖 = 0.9 𝑥  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

max _𝑓𝑖𝑡𝑛𝑒𝑠𝑠
+ 0.1  (11) 

Here, fitness refers to the fitness value of the i-th spider 
monkey SM, and max_fitness represents the maximum fitness 
value in the group. After updating the positions, the fitness of 
the newly generated positions is calculated and compared to 
the fitness of the previous positions. The spider monkeys then 
adopt the new positions if they exhibit better fitness values. 
This process involves recalculating and comparing the fitness 
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of the updated positions and selecting those that demonstrate 
improved performance [14][28]. 

At this stage, the global leader learning process is updated 
through the application of "greedy" selection within the 
population. This selection means that the Spider Monkey with 
the best fitness level in the population is selected as the new 
global leader. After the selection, an evaluation is carried out to 
determine whether the global leader position has changed. If 
there is no change, then the Global Limit Count value 
increased by one. Furthermore, the local leader position is also 
updated using "greedy" selection within each group. In this 
case, the Spider Monkey with the best fitness value in its group 
is selected as the new local leader. After the selection, the new 
local leader position is compared with the previous one, and if 
there is no change, the Local Limit Count value also be 
increased by one. If the local leader's decision is not updated 
by a certain limit known as the Local Leader Limit, then all 
members of the group update their positions. This update can 
be done in two ways: through random initialization or by 
utilizing the combined information of the global leader and the 
local leaders, according to the following equation: 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 =  𝑆𝑀𝑖𝑗 + 𝑈(0, 1) 𝑥 (𝐺𝐿𝑗 − 𝑆𝑀𝑖𝑗) +

𝑈(0, 1) 𝑥 (𝑆𝑀𝑖𝑗 − 𝐿𝐿𝑘𝑗)  (12) 

In this equation, the Spider Monkey position update tends 
to be closer to the global leader than the local leader. In the 
next stage, if the global leader position does not change for a 
specified number of iterations, known as the *Global Leader 
Limit*, then the global leader split the population into several 
smaller groups. Initially, the population is divided into two 
groups, then into three, and so on, until the maximum number 
of groups allowed is reached. A local leader selection process 
is then carried out to elect a local leader in each newly formed 
group. If the maximum number of groups has been reached and 
the global leader position remains unchanged, then the global 
leader merge all the groups back into a single group. In this 
way, the proposed algorithm imitates the functional structure 
and behavior of Spider Monkey, with the hope of achieving 
more optimal solutions in the search process. 

D. Random Forest 

Random Forest is one of the techniques in Ensemble 
Learning that utilizes a collection of decision trees to produce 
more accurate and reliable predictions. This algorithm is 
widely used in various data mining applications, which include 
two main classifications: descriptive and predictive. In 
Random Forest, each decision tree is generated from a subset 
of data taken randomly from the original dataset, with the aim 
of reducing overfitting and improving the generalization ability 
of the model. This approach combines the results of various 
decision trees to achieve a better final decision [10][30]. 
Mathematically, for a classification task, the final prediction 𝑦̂ 

is defined as: 

𝑦̂ =
1

𝐵
∑ ℎ𝑏(𝑥)𝐵

𝑏−1    (13) 

By using this approach, Random Forest can handle data 
with a large number of features, improve prediction accuracy, 
and reduce the risk of overfitting that often occurs in models 
based on only one decision tree. Its efficient implementation 

and reliable prediction results make Random Forest one of the 
methods widely used in various studies and practical 
applications in data mining [10][30]. 

E. Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is a method developed 
by Vapnik for binary classification [31]. The primary objective 
of SVM is to find an optimal hyperplane, expressed as 
𝑓(𝑤, 𝑥) = 𝑤. 𝑥 + 𝑏 , that separates two classes in a given 
dataset with features 𝑥 ∈ 𝑅𝑚 . During the learning process, 
SVM determines the parameters www by solving an 
optimization problem as defined in Equation (5): 

min
1

𝑝
𝑊𝑇𝑊 + C ∑ 𝑚𝑎𝑥

𝑝
𝑖=1 (0,1 − 𝑦′

𝑖
(𝑊𝑇𝑋𝑖 + 𝑏)) (14) 

Here, 𝑊𝑇𝑊 represents the Manhattan norm (also known as 
the L1 norm), and 𝐶 is the penalty parameter, which can either 
be set to an arbitrary value or determined using hyper-
parameter tuning. The term 𝑦′  refers to the actual label, while 
𝑊𝑇𝑋 + 𝑏 is the predictor function. This equation is known as 
L1-SVM, which uses the standard hinge loss function. The 
differentiable variant, L2-SVM (Eq 6), is often more stable in 
practice [31]. 

min
1

𝑝

‖𝑊‖2
2

2
+ C ∑ 𝑚𝑎𝑥

𝑝
𝑖=1 (0,1 − 𝑦′

𝑖
(𝑊𝑇𝑋𝑖 + 𝑏))2     (15) 

In this equation, ‖𝑊‖2denotes the Euclidean norm (also 
known as the L2 norm), and it uses the squared hinge loss. The 
L2-SVM is preferred in many cases because its differentiable 
nature provides more stable results. By using either L1-SVM 
or L2-SVM, SVM effectively identifies the optimal hyperplane 
for separating the two classes, providing robust performance 
for various classification tasks. 

III. RESULT 

The proposed method identifies diseases based on images 

using a state-of-the-art method consisting of four main phases. 

The first phase is Data Preprocessing, where the raw images 

are processed to remove noise, adjust the size, and separate 

relevant objects from the background. This process is essential 

to ensure optimal image quality before important features are 

extracted. In the second phase, key features of the image, such 

as color, texture, shape, and edges, are extracted to provide 

rich information about the characteristics of the described 

image. These features are then used as input for the 

classification process. The next phase is the third, the 

optimization and classification process is carried out. The 

Spyder Monkey Optimization (SMO) optimization method is 

used to improve the performance of the machine learning 

model, followed by the application of two classification 

algorithms, namely Random Forest and Support Vector 

Machine (SVM). The second algorithm is chosen because of 

its accuracy in handling complex data and providing reliable 

prediction results. Finally, the fourth phase is the evaluation of 

disease identification results, where the classification results 

are evaluated to assess the accuracy and effectiveness of the 

method used. This process aims to ensure that the applied 

method can accurately predict diseases based on the analyzed 

images (Fig. 3). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

540 | P a g e  

www.ijacsa.thesai.org 

      
                              (a)                                    (b)                                    (c)                                  (d)                                       (e)                                     (f)  

Fig. 3. Segmentation and feature extraction process for disease classification in rice leaves. 

Fig. 4 on the top left and right, Random Forest (RF) 

produces very high Area Under the Curve (AUC), with some 

disease classes such as Tungro Virus and Grassy Stunt Virus 

reaching AUC = 1.00, indicating that the model is very 

accurate in distinguishing between positive and negative 

classes. Other diseases such as Bacterial Leaf Blight have 

slightly lower AUC, at AUC = 0.92. In the graphs on the 

bottom left, SVM with All Extraction Data shows relatively 

high performance, although there are some sharper 

fluctuations in FPR at the beginning of the curve. AUC for 

some classes, such as Rice Blast and Healthy Rice Plant, are 

in the range of AUC = 0.75 to 1.00, indicating that SVM also 

produces good results, but may not be as good as Random 

Forest in some cases. Finally, in the graph at the bottom right, 

SVM with Hyperparameter Tuning shows an increase in 

performance compared to SVM without tuning, with several 

disease classes having higher AUC values, approaching the 

maximum value of AUC = 1.00, indicating that parameter 

tuning has a significant impact on model performance. 

  
                                                    RF All Extraction Data                                                                                              RF with SMO 

  
                                               SVM All Extraction Data                                                                 SVM and Hypertuning Parametric with All Extraction Data 

Fig. 4. The effect of using color and texture features in improving the performance of random forest and SVM (SMO) for classification of brown spot leaf 

disease in rice plants. 
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                                            (a)                                                                              (b)                                                                                      (c) 

      
                                                                     (d)                                                                                                            (e) 

 
(f) 

Fig. 5. Evaluation metrics for feature extraction methods in rice plant disease classification. 

The given figure shows several graphs showing evaluation 

metrics such as Precision, Recall, F1 Score, and Support for 

various feature extraction methods (Color, Texture, Shape, 

and Edge) using classification algorithms such as Random 

Forest (RF), Support Vector Machine (SVM), and SMOREF-

SVM. These graphs show the performance of various 

approaches in identifying rice plant diseases. From the results 

shown, it can be seen how the performance of these methods, 

both in individual feature processing and in combination, 

affects the model's ability to detect diseases accurately. In the 

Color feature extraction Fig. 5(a), the metrics for the RF and 

SVM algorithms show fluctuations between 10 and 25 on the 

y-axis. Precision and Recall for RF range between 10 and 25, 

with a peak between 3 and 5 on the x-axis. F1 Score follows a 

similar pattern. The SVM algorithm shows slightly lower 

performance, with metric values ranging from 10 to 20. From 

this, it can be seen that the Random Forest (RF) algorithm 

performs better than SVM in color feature extraction. The 

texture feature extraction in Fig. 5(b) shows a pattern similar 

to that of the color feature extraction. Precision for RF ranges 

from 10 to 25, with a peak around the 4th point on the x-axis. 

Recall for RF is slightly lower than Precision, but overall, it 

remains consistent. In the SVM algorithm, the Precision, 

Recall, and F1 Score metrics range from 10 to 20, which again 

shows that RF is superior to SVM in processing texture 

features. In the Shape feature extraction Fig. 5(c), the graph 

compares the performance of several rice diseases. Diseases 

such as Rice Blast, Tungro Virus, Bacterial Leaf Blight, and 

even Healthy Rice Plants all show peaks around the 25th value 

on the y-axis, with the highest point being around the 8th point 

on the x-axis. This shows that shape-based features provide 

very consistent results for various diseases, with very little 

variation in the evaluation metrics. 
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IV. DISCUSSION 

Meanwhile, in the Edge feature extraction Fig. 5(d), the 

results show greater variation. Edge RF Recall ranges from 

0.02 to 0.06 on the x-axis, and F1 Score ranges in the same 

range. However, the SVM algorithm in edge feature extraction 

has a lower Recall value, ranging from 0.01 to 0.04. This 

indicates that edge-based extraction does not provide 

consistent results, and the results achieved are lower than 

color, texture, or shape feature extraction, with RF tending to 

perform better than SVM. Fig illustrated combining data from 

all extraction methods Fig. 5(e) shows a pattern of peak values 

for diseases such as Rice Blast, Tungro Virus, and Bacterial 

Leaf Blight, all of which are in the range of 20 to 25. This 

graph shows that when the extraction methods are combined, 

the evaluation metrics become more stable and show reliable 

performance for various rice diseases. In the scatter plot 

combining the RF, SVM, and SMOREF-SVM algorithms 

Fig. 5(f), the Recall and Support metrics for each algorithm 

are shown. RF Recall mostly clusters between 0.02 and 0.06 

on the x-axis, with Support values varying between 15 and 25. 

The SVM algorithm shows a more spread-out distribution, 

with some points falling below 0.02. Meanwhile, SMOREF-

SVM shows a similar clustering pattern to RF, although there 

are some lower variations on the x-axis (Table II). 

TABLE II.  COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD WITH PREVIOUS STUDIES 

Similarities Research Year Methods Used Other Similarities Result Performance 

[7] 2019 

- Image Acquisition, Pre-processing, Segmentation, 

Classification 
- Hybrid method: Discrete Wavelet Transform (DWT), 

Scale Invariant Feature Transform (SIFT), Grayscale Co-

occurrence Matrix (GLCM) 
- Classifiers: KNN, BPNN, Naïve Bayes, Multiclass SVM 

- Focus on rice disease 
detection using image 

processing and 

classification. 

98.63% 

[8] 2019 

- Image Acquisition 

- Preprocessing (Grayscale conversion, segmentation) 
- Neural Network (Pattern Recognition) 

- Detection of rice diseases 

with artificial neural 
networks. 

92.5% 

[9] 2021 
- Image Acquisition, Pre-processing, Thresholding, Edge 
Detection, Color Slicing 

- RBG Calculation for Classification 

- Focus on color techniques 

to detect rice leaf diseases, 
especially Brown Spot and 

Narrow Brown Spot. 

89% 

[10] 2021 

- Image Acquisition 

- Preprocessing 

- Random Forest Decision Tree Classifier 
- Feature extraction with Intensity Moments 

- Detection of rice diseases 

using Random Forest with 
classification of three main 

types of diseases (Blight, 

Blast, Spot). 

91.47% 

Proposed method 2024 

- Spider Monkey Optimization (SMO) for Feature 

Optimization 

- Random Forest (RF) for Initial Classification 
- Support Vector Machine (SVM) for Final Classification 

- ROC Curve Analysis 

- Performance Metrics: Precision, Recall, F1 Score 

- Combination of Random 

Forest and SVM with 

feature optimization using 
SMO. Focus on improving 

disease classification 

accuracy. 

98% (AUC = 0.98, 

Precision = 94%, Recall = 

92%, F1 Score = 93%) 

This study offers a more comprehensive picture of model 

performance compared to [7]. While both models have high 

accuracy rates—with [7] reaching 98.63% and this study 

reaching 98%—this study stands out in providing more in-

depth evaluation metrics, such as Precision, Recall, and F1 

Score. With Precision reaching 94%, Recall 92%, and F1 

Score 93%, this study provides a more balanced view of the 

model’s ability to consistently classify data and capture 

relevant patterns. Coupled with an AUC approaching 0.98, the 

SMOREF-SVM model used in this study not only excels in 

terms of accuracy but is also more effective in handling 

datasets that may have uneven class distributions. In contrast, 

while [7] shows high accuracy rates, the lack of additional 

metrics such as Precision, Recall, and F1 Score makes it 

difficult to comprehensively evaluate the model’s performance 

across situations. Therefore, this study excels in providing a 

holistic assessment of model performance, especially in the 

context of real-world use cases where successful predictions 

on the minority class are as important as overall accuracy. 

V. CONCLUSIONS 

The results show that the SMOREF-SVM method 
significantly overcomes the shortcomings faced by traditional 
classification methods. Although Random Forest (RF) is 
generally superior to Support Vector Machine (SVM), 
SMOREF-SVM demonstrates clear advantages, particularly in 
handling complex features such as edges. The method not only 
enhances model performance on imbalanced datasets, but also 
improves key evaluation metrics such as Precision, Recall, and 
F1 Score by up to 10% compared to standard SVM, 
particularly for diseases with limited sample sizes. 
Additionally, the ROC curves of SMOREF-SVM show an 
increase in the Area Under the Curve (AUC), approaching 1.00 
for more disease classes, indicating superior accuracy in 
disease detection. However, there are still several areas that 
require further investigation. First, while SMOREF-SVM 
improves performance in certain areas, future research should 
explore its limitations, such as potential overfitting when 
applied to small datasets or specific disease types. 
Additionally, this study does not address the computational 
complexity of SMOREF-SVM, which may pose challenges in 
real-time or large-scale applications.
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For future research, it is recommended to investigate how the 
method can be combined with advanced deep learning 
techniques to enhance detection accuracy and efficiency. 
Research could also focus on the use of larger and more 
diverse datasets to train the model, as well as the integration of 
emerging technologies like the Internet of Things (IoT) for 
real-time monitoring and decision-making. Lastly, future 
studies should evaluate SMOREF-SVM’s application in other 
plant diseases and under different environmental conditions to 
further broaden its practical usability and effectiveness. 
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