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Abstract—Machine learning operations (MLOps) achieves 

faster model development, deliver higher machine learning 

models quality, and faster deployment cycle. Unfortunately, 

MLOps is still an uncertain concept with ambiguous research 

implications. Professionals and academics have focused only on 

creating machine learning models, rather than using 

sophisticated machine learning systems in practical situations. 

Furthermore, the monitoring system must have a comprehensive 

view over the system interactions. The need for a strong efficient 

monitoring system increases when it comes to use the multi 

container services. Therefore, this research provides a new 

proposed model called Multi Containers Monitoring (MCM) 

Model, based on multi container service and machine learning 

approaches which are bidirectional long short-term memory (BI-

LSTM) and state-action-reward-state-action (SARSA). The 

proposed MCM model enables MLOps systems to be scaled and 

monitored efficiently. The proposed MCM model realizes and 

interprets the interactions between the containers. The proposed 

MCM model enhances the performance of the software release 

and increases the number of software deployments across 

different types of environments. Moreover, this research 

proposes four routines for each layer of the proposed MCM 

model that illustrates how each layer is going to be developed. 

This research also illustrates how the proposed MCM model 

achieves improvements ratio in software deployment cycles by 

using MLOps up to 24.55% and in build duration cycle up to 

13%. 

Keywords—Machine learning; MLOps; monitoring; container; 

model 

I. INTRODUCTION 

The fast and increasing popularity of machine learning 
(ML) applications has led to growing attention in Machine 
Learning Operations (MLOps), that is, the practice of 
continuous integration and deployment (CI/CD) of ML-
enabled systems [1]. Since changes may not affect only the 
code but also the ML model parameters and the data 
themselves, the automation of traditional CI/CD needs to be 
extended to outspread to monitor model retraining in 
production [1]. ML has become a significant technique to 
leverage the potential of data and allows businesses to be more 
innovative, efficient, and sustainable [2] [3] [4] [5]. However, 
the success of many ML applications in the real world doesn't 
meet expectations as the ML community has focused 
extensively on the building of ML models not on building 
production-ready ML products and providing the necessary 
coordination of the resulting [2] [6] [7] [8]. Besides that, these 

applications started to produce and maintain a huge amount of 
data from their operations. Those new developments require 
monitoring the operations of applications in real-time [9]. If 
MLOps model selection and training are not closely and 
carefully monitored, applications may lose value in the market 
and organizations might be at risk of losing money, but the 
worst is to lose their reputation [10] [11] [12]. 

This research proposes a multi-container monitoring 
(MCM) model to monitor the communication and all 
containers' behavior for the software deployment cycles to 
help in more frequent releases and reduce production issues. 
Further, discusses the MLOps practice to effectively handle 
the issue of creating and monitoring effective ML. 
Furthermore, adopts a broad viewpoint to provide 
comprehension of the relevant principles, responsibilities, and 
architectural structures. 

This research makes a significant contribution to the 
software industry by: 

 Review all the previous studies in monitoring 
containerized software. 

 Delineate what kind of problems MLOps practices may 
be best suited to apply, to help in reducing the re-
developing and re-deploying. 

 Monitor software performance at a finer granularity 
level. 

 Monitor DevOps and MLOps pipelines and system 
infrastructure behavior. 

 Reduce the build time of software systems. 

 Improve the deployment rates of existing methods in 
software systems. 

This research applies a new machine learning technique to 
monitor and learn more ML model features based on different 
software systems. 

The remainder of this research is structured as follows. 
Section II presents the background. Section III illustrates the 
necessary definitions and related work in the field. Section IV, 
presents an overview of the utilized methodology and the 
proposed MCM model. It also presents the MCM model 
challenges and limitations. Section V and VI presents model 
dataset and model configuration. Results and discussion is 
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given in Section VII and Section VIII respectively. Finally, 
Section VI, concludes the work with a summary. 

II. BACKGROUND 

There are a variety of software process models and 
development methodologies used in software engineering such 
as waterfall and the agile manifesto. Those methodologies 
have similar objectives, which are to deliver production-ready 
software applications [2] [13] [14]. Recently software 
development teams have moved away from the traditional 
waterfall methodology to DevOps as the traditional life cycle 
is not suited for dynamic projects as needed in the ML 
development process, as shown in Fig. 1. 

 
Fig. 1. Waterfall, DevOps SDLC, and the manual ML pipeline [15]. 

DevOps refers to the modern software deployment model 
that combines software development (Dev) and IT operations 
(Ops) [16]. DevOps aims to enable automation, continuous 
integration, continuous deployment, monitoring, and team 
collaboration of software applications in fast and small 
releases [17] [18]. The two primary DevOps practices are 
Continuous Integration and Continuous Delivery. 

Continuous integration (CI) is a software practice that 
concentrates on automating the creation and integration of 
code from many developers. To enable quicker development 
cycles and enhance quality, developers are demanded to 
merge their code into the primary repository more frequently 
in this procedure. Version control systems (VCS), automated 
software development, and testing procedures are the key 
elements of this practice [15] [19]. 

Continuous delivery (CD) core purpose is to deliver newly 
created features to the end user as rapidly as possible by 
building the software in a way that is constantly in a 
production-ready state to ensure that code updates might be 
released on demand fast and safely [15] [20] [21]. 

Continuous deployment (CDE), which is frequently 
confused with CD, is a different technique. Continuous 
deployment is a technique where every software modification 
is automatically pushed to production. Even so, some 
businesses have procedures in place for obtaining outside 
approval before releasing new application’s version to users. 
Thus, continuous delivery is considered necessary in certain 

circumstances; however, continuous deployment is optional 
and can be skipped [15] [19] as shown in Fig. 2. 

 
Fig. 2. Deployment pipelines [18]. 

Continuous monitoring is an automated procedure that 
uses cloud services to assess a deployed application's 
operational functionality against business criteria as it is being 
used [18] [22]. 

The DevOps pipeline, also known as the CI/CD pipeline, 
enables greater support for the deployment of applications to 
the cloud and utilizing a wide range of tools [15] [17] [23]. 

ML pipeline is defined as an automation of the ML life 
cycle by minimizing human interaction in routine processes 
[24]. 

MLOps refers to the complete vision of best practices and 
procedures from the design of the training data through the 
final deployment lifecycle [16] as shown in Fig. 3. MLOps 
can alternatively be considered as the integration of DevOps 
with machine learning techniques [25]. By another word, 
MLOps is the artificial intelligence (AI) equivalent of DevOps 
[16]. Furthermore, MLOps places a strong emphasis on 
automation while monitoring each step of the machine 
learning process, much like DevOps [26]. 

 

Fig. 3. High-level process perspective of MLOps [24]. 
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MLOps phases are typically related to various roles and 
concepts, such as containerization and dockerizing [24] [27]. 
Containerization has become a standard approach for 
environments, which support on-demand, short-lived 
execution of computational tasks such as Function-as-a-
Service (FaaS) platforms [28] [29]. 

Running applications in containers enables automatic 
orchestration and agile DevOps practices, in cloud-native 
platforms, the design of container and objects in software 
object-oriented programming (OOP) is similar: each container 
has a particular duty to carry out effectively [30] [31]. Cloud-
native containers are easier to grow horizontally and replace, 
reuse, and update transparently [31], this has been termed the 
“Single Concern Principle” [32]. 

Dockerizing facilitates the hosting and execution of any 
kind of software applications, platforms, middleware, 
databases, packaged, in-house, and custom-built software. 
Moreover, the quicker maturation and reliability of the Docker 
platform have made it much easier to develop, distribute, 
deliver, and deploy software [33]. Furthermore, dockerizing 
offers a simple approach to isolate the network and restrict 
how much resource the containers can use [34]. 

There is another design concept that helps in monitoring 
the ML projects if it had been used during the project 
development phase which is the “Microservices” design rather 
than the monolithic design. Microservice architecture (MSA) 
is suggested to divide single-component applications into 
numerous loosely linked and independent microservice 
components [35] [36].  Microservices are applications broken 
down into their core functionalities.  Each function operates as 
its own "service" inside a container and interacts with other 
containers across the network [37]. Microservices have several 
benefits over monolithic applications, such as autonomous 
update cycles, fine-grained resource control, and high 
elasticity [37]. The monolithic design is only appropriate for 
small-scale systems with straightforward internal structures 
since these monolithic applications adhere to an all-in-one 
architecture in which all functional modules are created and 
configured into precisely one deployment unit, namely, one 
container [38]. 

III. RELATED WORK 

Raúl Minin, et al., introduced a tool named Pangea that 
generates adequate execution settings for deploying analytic 
pipelines automatically. These pipelines are broken down into 
several stages so that each can be executed in the edge, fog, 
cloud, or on-premises environment which will minimize 
latency and make the best use of available hardware and 
software resources. Pangea is focused on achieving three 
specific goals: (1) creating the required infrastructure if it 
doesn’t already exist; (2) providing it with the components 
needed to run the pipelines (i.e., configuring each host 
operating system and software, installing dependencies, and 
downloading the executable code); and (3) deploying the 
pipelines [39]. Raúl introduced a complex tool that takes a lot 
of work to conceptualize and build. Although the first version 
of the tool is sufficiently developed to demonstrate some of its 
potential advantages, further use cases and technology and 
connection compatibility must be added before it can be used 

in more situations. The web client requires to be improved to 
assist the management of users, pipelines, and infrastructure 
since Pangea isn’t built to support the description and 
deployment of analytical pipelines in the training stage. 
Moreover, Pangea doesn’t support monitoring pipelines and 
infrastructure behavior. 

Matteo Testi, et al., provided a literature review on MLOps 
to illustrate the present difficulties in developing and 
sustaining an ML system in a production context. The 
literature review revealed that the utilization of MLOps in the 
workplace and the application of DevOps principles to 
machine learning are still under-discussed issues in academia. 
Furthermore, organizations will need to conduct experimental 
work to test the ML pipeline as they attempt to apply an ML 
approach to an end-to-end use case, going through each step 
and demonstrating what results if certain phases are skipped 
[40]. 

Sergio Moreschini, et al., offered a better illustration of 
MLOps by integrating ML development stages into the 
established DevOps practices. The research suggested a 
MLOps pipeline that concentrated on the duality between 
software engineers and machine learning developers and their 
roles [41]. Sergio’s roadmap increased adoption of ML-based 
software generated a demand for ML developers who need to 
perform tasks in parallel to software developers and produced 
two extra loops for both the ML and software sides. 

Pinchen Cui focused on providing security for 
containerization through secure monitoring of containerized 
applications to give better simulation of actual application 
behaviors and greater coverage of attacks with extended 
feature space [35]. Pinchen’s research has not been put 
through an online evaluation. The elements of the security 
monitoring target must be enhanced to allow the framework to 
automatically determine what to monitor in an unsupervised 
manner. Meanwhile, the framework did not support scaling 
the dataset with various application architectures, such as 
multi-container applications, where a service is composed of 
several containers, and Docker Swarm's distributed 
monitoring. 

Holger Gantikow, et al., suggested integrating 
containerized environments with rule-based security 
monitoring. The suitability of the method is investigated for 
both (1) a variety of undesirable behaviors that may point to 
abuse and attacks of workloads running inside a container and 
(2) misconfigurations and attempts to increase privileges and 
weaken isolation safeguards at the container runtime level 
[36]. The article does not cover the security monitoring of 
distributed workloads because shared workloads interact 
strongly across host borders. 

While recent studies cover a variety of specific MLOps 
topics, a comprehensive conception, generalization, and 
explanation of ML systems monitor are still lacking. Different 
interpretations of the phrase "MLOps" may result in 
misconceptions, which may result in setup errors for the entire 
ML system. MCM model will work on the monitoring of the 
development for the multi-container “distributed” ML systems 
resulting in the ability to improve the software build and 
deployment cycles in real-world settings. 
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IV. THE MCM PROPOSED MODEL 

The proposed Multi Container Monitoring (MCM) Model 
consists of four different layers as shown in Fig. 4. The 

MCM’s model layers are the "Development layer, MLOps and 
container layer, and Monitoring layer with the support of 
different tools in the Tools and Automation layer".

Fig. 4. Multi Containers Monitoring (MCM) model. 

The MCM Model starts from the developer's commitment 
of a specific piece of code and ends with its deployment and 
monitoring on various environments. The next sub-sections 
will introduce a detailed description of the MCM’s model 
layers and describe the components of the MCM model. 

A. Development Layer 

The initial part of the proposed MCM model is the 
development layer, which is further separated into two main 
sublayers: the application structure layer (microservices) and 
the code lifecycles layer. The microservice layer focuses on 
designing a good structure between each part of the 
application. The microservice layer seems to be as a pre-
requisite for the code lifecycles. The development layer 
focuses on managing code changes and adopting CI principles 
to minimize code conflicts. 

The code lifecycle layer consists of four steps. The first 
step verifies that the code is versioned correctly and that a 
stable version of the code has always been kept up to date in 
the main repository after the appropriate tagging. Developing 
a stable version of the code is the second step. The third step 
involves executing multiple test scenarios, starts after the 
build step is being successful. At this point, it is confirmed 
that the code satisfies the necessary functional and needed 
requirements. When the system's artifact is prepared for 
release, the last step in the build and validation software 
process is called "artifact preparation" This involves gathering 
the output required for the next release and deployment 
phases. 

Routine 1 discusses the high-level routine for the code 
lifecycle sublayer. 

Routine 1: Implement CI/CD Pipeline 

Notations: SW // Software, VCS // Version control system, Repo // 
Repository, VAL // Validation, PR // Pull request, CONF // 
Confirmation, CI // Continuous integration, PL // Pipeline, TC // Test 
cases, Pkg // Package, Exec // Execute, CD // Continuous deployment 
Input: SW code, Different types of TCs 
Output: Deploy the succeeded container images to the target env 
Steps:  

1) Select VCS 
2) Repo VAL 
3) Code merge 

    If (PR= Yes) then 

 While (review = accepted) do 

  For (every merge CONF) do 

  1) Push code 

  2) Run CI PL 

                    3) Exec unit TCs 
4) Pkg the build artifact 
5) Exec extra TCs 
6) If (build pkg = accepted) then 

 Pkg the container image  
End 

  7) If (CD env>=1) then 

          deploy pkg   

  End 

  End 

  End  

 End 
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The procedures of this layer are concentrated on giving 
code and tests a transparent control structure. Selecting the 
most appropriate VCS is the initial stage, followed by defining 
the structure of the repository and its validation guidelines. 
Then get ready to create the different test cases required to get 
the CI/CD pipeline started. Finally, store the tested package 
and make it available for usage in deployment. 

B. MLOps and Container Layer 

The second layer of the MCM model is MLOps and 
Container layer. The MLOps and container layer is divided 
into two primary sublayers: the layer of MLOps comes first, 
and the layer of containers comes second. 

MLOps layer includes the development of the MCM 
model, the pipelines construction, test preparation, configuring 
and adding some security gates throughout the MCM model. 

Container layer, container as a service (CaaS), is the 
framework that relies on the idea of multiple containers. 
Therefore, each container in this layer will go through the 
same steps. The steps include container orchestration, cluster 
management, container security, image repository, routing 
services, and microservices mesh. The container's network 
configuration, security, and resource allocation are among the 
processes in this process, along with deployment, auto-scaling, 
health monitoring, migration, and load balancing. 

The high-level routine for the MLOps layer is discussed in 
Routine 2. Routine 3 presents the container layer. 

Routine 2: Implement MLOps Pipeline 

Notations: DAQ // Data acquisition, DS // Data source, PL // Pipeline, 
DA // Data analysis, KPI // Key performance indicators, PERF // 
Performance, OP // Operational 

Input: Model Data 
Output: Deploy the succeeded ML model to the target env 
Steps:  

 While (Business understanding = true) do 

  For each (DAQ) do 

  Define DS 

  Define PL 

  Define deployment env 

                    Exploration and cleaning 
End 

  Model Security  

  Model deployment 

  For each (Model training) do 

          Exploratory DA  

  Define feature engineering 

  Model training 

  End 

  For each (Model evaluation) do  

   Model KPIs (PERF and OP)  

   Model retrain  

   End  

  Model logging  

  End  
 

The MLOps layer consists of seven steps and the 
development of the MLOps pipeline is the main objective at 
this layer. The identification of the application type is the most 
crucial step because it serves as the base for the subsequent 
steps. The second step is understanding the application type 
which enables the identification and analysis of the received 
data. The data transformation step is the third step and begins 
after the data is received. The fourth step is setting up some 
security validation over the model pipeline and configuring all 
necessary deployment environments for the pipeline. The fifth 
step is the MCM’s model training phase. The sixth step is the 
validation step. Depending on the outcomes of the MCM 
model validation step, the last step at MLOps layer which is 
the retraining step. The retraining step begins with some 
modifications to the MCM model and/or data to maximize the 
benefits. Furthermore, this step depends on the data in the 
MCM’s model log file to keep track of the used data to be able 
to take the necessary action. 

Routine 3: Implement Container Structure 

Notations: STRTG // Strategy, CONFIG // Configuration, SP // 
Security policies, DR // Disaster recovery, HA // High availability, RS 
// Routing services 

Input: Container STRTG 
Output: CONFIG container architecture 
Steps:  

 Container orchestration 

 CONFIG the container registry  

  For each (Container) do 

  Set container SP 

  Define PL 

  End 

  Push container image  
 

Along with the MLOps layer, the container layer which 
contains three steps starts. The first step is establishing the 
rules for container’s interaction with the other containers. This 
process is known as container management and orchestration. 
The identification of the deployment strategy for the 
containers is the second step. The last step is defining all the 
image registries that depend on the various deployment 
environments. 

C. Monitor Layer 

The third layer of the MCM model is monitor layer. This 
layer includes MCM’s model-based event logging, step-by-
step monitoring, and the creation of dashboards for convenient 
monitoring to aid in decision-making on enhancements. The 
high-level routine for this layer is discussed in Routine 4 and 
it has been highlighted also in Routine 2 steps 6 and 7. 

Routine 4: Monitoring 

Notations: INIT: Initialize, PL // Pipeline, ML // Machine learning, 
REC // Record, CONFIG // Configuration 

Input: Monitoring matrices 
Output: Monitor PL, container, and ML model 
Steps:  

 INIT monitoring 

 While (Logging = true) do 

  For each (PL, container, and ML model) do 
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    REC external logs 

    REC internal logs 

                    End 

  End  

CONFIG dashboards  
cc 

In order to validate, enhance, and maintain any abnormal 
behavior over MCM’s model layers, the monitoring layer 
contains various dashboards to represent multiple perspectives 
at various stages. The monitor layer saved external logs that 
record which data the MCM model is applied to, and internal 
logs that check the inner workings of the ML pipeline and 
debug problems. The monitoring layer makes it easier to 
understand and identify any failures, and act quickly to keep 
everything under control and in good condition. Moreover, the 
monitoring layer would guarantee a system with fewer 
development, deployment, and monitoring issues. 

D. Tools and Automation Layer 

The fourth layer of the MCM model is the Tools and 
Automation layer. This layer is necessary to support the 
MCM’s model layers with one or more different tools to 
obtain reliable statistics and facilitate the transition from one 
step to another. Specifically, for provisioning and container 
cataloging, this layer uses a set of open-source and 
development automation tools to help in all MCM’s model 
building and monitoring. 

V. MCM MODEL DATASET 

The dataset used in the of the proposed MCM model 
consists of 286 pipelines. The pipelines are divided to 
continuous integration, continuous testing, and continuous 
delivery pipelines that use 100 microservices. The pipelines 
serve over seven million users and run on Windows and Linux 
operating systems. The dataset contains 122 production 
environments, seven test and pre-production environments and 
158 attributes spread across each layer of the suggested MCM 
model. Therefore, the size of the dataset is sufficient to 
validate the proposed MCM model and to investigate possible 
future enhancements. The dataset used by the MCM model 
collects and stores unstructured data from a variety of sources, 
including emails, business papers, source control software, 
and software engineers' feedback. A sample of the dataset is 
shown in Fig. 5 and a sample of the dataset and docker file are 
shown in Fig. 6. 

 
Fig. 5. Example of the dataset representation. 

 
Fig. 6. Example of the docker file. 

VI. MCM MODEL CONFIGURATION 

Every stage of the MCM's model preparation phase is 
covered in this section. This process consists of two primary 
preparation steps: building the application is the first main 
step, and setting up the ML model is the second. 

A. Application Build 

The migration phase and the automation phase are the two 
major stages of the application build process. The process 
depends on separating the application's functionality into 
discrete services according to their use cases or modules, and 
integration the DevOps with MLOps pipelines. Furthermore, 
the process focuses on using the containerization concept 
which makes it easier to manage and scale the system and 
makes it easier to automate the deployment of new features. 

 Migration Phase from Monolithic Application to 
Containerized-Microservices Application  

The goal of the migration process is to have a new, well-
structured application to benefit from containers and DevOps 
tools in the next automation phase. Furthermore, the migration 
process identifies methods that will assist with securing the 
daily operation of the IT and reduce costs. Five primary stages 
made up the migration process, some of which had the 
subsequent sub-stages: 

1) Evaluating the legacy application: The components of 

the MCM model were chosen with the need to address issues 

such as performance bottlenecks and reduce build and 

deployment durations. 

2) Select a migration method: The Lift-and-Shift and 

Refactoring migration methods were chosen for the proposed 

MCM model. 

3) Get the Legacy Application Ready for the Migration. 
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4) Data on migration: the GitOps tools, orchestration 

platform command-line interface (CLI), or orchestration 

platform web console can all be used to carry out deployment 

on the platform after migrating the application data. RedHat- 

OpenShift, and Kubernetes were chosen as the orchestration 

platforms for the proposed MCM model to scale resources for 

microservices and even to simply enable autoscaling. The 

platform CLI and Azure pipelines were used for the 

deployment execution. 

5) Evaluate and deploy: once the application deployed on 

an orchestration platform, careful testing is also essential to 

confirm that the application performs as intended. The 

application can be launched to production if the testing is 

successful, which will complete the migration process. 

 Automation Phase 

This stage demonstrates how the refactored code 
"microservices" that were previously developed during the 
migration phase was built automatically based on Docker as 
shown in Fig. 7. One of the objectives of moving to 
microservices is to achieve the most benefit of the automated 
CI/CD pipeline, which enables a very seamless release 
process. In the case of an issue, the CI/CD pipeline system can 
initiate a fix or revert to an earlier version. Define checks at 
each stage using security scans, service level objectives 
(SLOs), service level indicators (SLIs), and service level 
agreements (SLAs). 

Automate the changes between continuous integration, 
testing, delivery, and deployment. 

 

Fig. 7. Creation of container application and push the image to the registry. 

The automation procedure was broken down into the 
following nine major phases: 

1) Select a source control (SC) system. Git was the best 

SC system that met the requirements after several SC system 

types were compared. 

2) Produce Docker files that specify each microservice's 

container contents. 

3) Make a PR request. 

4) Build and package every microservice, for Java 

projects, that have been developed and coded with Spring 

Boot and for .Net applications, which was created and 

developed with the .net framework versions 4.8.0, 4.8.1, and 

6. 

5) Build and produce Docker container images and verify 

if the image was locally created and accessible. 

6) Launch the Docker containers and verify to see if the 

application within the container is operating properly. 

7) Push the image to the registry, at this step, the locally 

produced image is pushed to the shared registry (RedHat Quay 

and/ or Docker Hub) using the image ID. 

8) Initially, steps 3 through 8, are completed manually. 

Afterwards, CI/CD pipelines are set up using Azure DevOps. 

At this stage, each microservice has a CI pipeline to execute 

the code following an approved PR. The CT pipeline verifies 

the written code. The CD pipeline manages the deployment 

procedure for each environment, including integration, QC, 

security testing, UAT, load testing, packaging, and pre-

production. A certain set of stakeholders must be informed 

and given permission before the created image is deployed on 

any deployment environment. 

9) A new commit was added to the SC and step 3 was 

restarted to meet the additional requirements. 
In conclusion, you can successfully containerize your 

application by following the previous steps, which include 
setting up the required tools, building the image, running the 
containers, and pushing the image to a registry. This will 
streamline the deployment and management process. 
Moreover, will encourage consistency and repeatability. 

B. The Proposed MCM Model Build 

The MCM model was built using a combination of 
recurrent neural network (RNN) architecture “Bidirectional 
LSTM (Bi- LSTM)” and a reinforcement learning algorithm 
“state–action–reward–state–action (SARSA)”. This 
combination integrates into application CI/CD pipelines and 
monitoring systems, enabling continuous optimization of 
container application performance. Further, by analyzing 
streaming data from container environments, the Bi-LSTM 
and SARSA can adapt to changing workload patterns and 
optimize resource usage dynamically. Combining the 
algorithms results in improved, robust, and shortened build 
and deployment times. The proposed MCM's model 
performance was evaluated using backpropagation through 
time (BPTT). The Adaptive Moment Estimation (Adam) 
optimizer was selected to improve the performance and 
accelerate the convergence of Bi-LSTM. 

The proposed MCM’s model build process was divided 
into the seven main stages listed below: 

1) Environment representation 

a) Define the scope of the MCM’s model environment 

in terms of the performance and state of the containerized 

applications. 

b) Normalize the metrics to make sure they were 

appropriate for input into MCM model and to guarantee 

consistent scaling. 

2) Action scope 

a) Specify a range of actions that the MCM model agent 

can accomplish to maximize container performance. 

b) Discretization of the actions into a finite set. 
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3) Feedback function: provide the suggested MCM's 

agent a reward function that gives feedback based on the 

observed metrics, actions taken, and the obtained performance 

outcomes. The design of the reward function is broken down 

into three categories: positive, negative, and delayed feedback. 

Positive feedback rewards actions that improve container 

performance, like shorter build and deploy times, higher 

throughput, more efficient use of resources, and/or faster 

response times. Negative feedback penalizes actions that lead 

to inefficiency or performance degradation, like excessive 

resource consumption and downtime. 

4) MCM’s model agent: The proposed MCM’s model 

agent depends on the SARSA’s agent as shown in Fig. 8, to 

pick actions based on the current state and the observed 

feedback. MCM model learns an action-value function M (s, 

a) that estimates the expected cumulative feedback of taking 

an action (a) in the specified state (s) then a balanced 

exploration (random actions) and exploitation (best-known 

actions) strategy was combined with temporal difference 

learning in the SARSA algorithm to update the M-values. 

5) Integrated MCM’s model architecture: the MCM’s 

model architecture is based on The Bi-LSTM design which 

consist of some LSTM layers, several hidden units per layer, 

and the size of input and output. System configurations, 

workload patterns, historical performance data, and other 

aspects were arranged into sequences and time-series 

representations to create the appropriately structured input 

data. The MCM model uses the input data to learn temporal 

patterns and anticipate future states. The SARSA agent then 

uses these predictions to make decisions on how best to 

optimize container performance and deployment durations. 

The schematic Bi-LSTM is shown in Fig. 9 and MCM’s 

model integration architecture is shown in Fig. 10. 

6) MCM model training: to ensure that gradients and 

errors are transmitted appropriately throughout time and to 

update the model weights while taking into consideration the 

sequential nature of the data, the MCM model was trained 

using BPTT. Further, Adam's optimizer was selected to 

modify the Bi-LSTM weights during training to minimize the 

loss function. Fig. 11 shows the flowchart for the training 

loop. 

7) Evaluation and deployment 

a) A validation dataset and container assessment 

measures, such as response times, throughput, resource 

utilization, and build/deploy durations, were utilized to assess 

the MCM model algorithm's performance. 

b) Embed the trained MCM’s model algorithm in the 

CI/CD pipelines and containerized application deployment 

pipelines to automate the entire deployment process and 

guarantee a smooth integration with the current DevOps 

workflows. 

 
Fig. 8. MCM’s model agent environment interaction. 

 
Fig. 9. Schematic Bi-LSTM’s architecture. 

 
Fig. 10. Integrated MCM’s model architecture 
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Fig. 11. MCM’s model training flowchart. 

VII. MCM MODEL RESULTS 

The outcomes of a successful progress visualization during 
MCM model training to improve the deployment time are 
presented in Fig. 12. The improvements in build and 
deployment durations are shown in Fig. 13. 

 

Fig. 12. MCM’s model resource usage optimization. 

Fig. 12 demonstrates optimization of the resource usage of 
the containers. It can be noticed that the containers 
enhancements made by the MCM model compared to the 
previously employed methodologies for CUP usage is up to 
38.25%, for disk I/O is up to 39.20%, for memory usage is up 
to 50.77% and for network latency is up to 58.37%. 

 

Fig. 13. MCM’s model build and deployment duration. 

Fig. 13 observes the improvements in seconds of the build 
and deployment frequencies across the different environments, 
which are for a build duration up to 13% and for a deployment 
duration up to 24.55%. 

VIII. MCM MODEL DISCUSSION 

The literature research revealed several barriers to the use 
of MLOps. These unresolved concerns fall into three 
categories: organizational, ML system, and operational. 

A. Organizational Challenges 

A common issue in organizational settings is the mentality 
and culture of data science practice [31]. The study's findings 
indicate that to effectively develop, implement, and monitor 
machine learning systems, there require a culture shift away 
from model-driven machine learning and toward a discipline 
that is system-oriented. This can be accomplished by placing 
more emphasis on the data-related activities that take place 
before the creation of the ML model. Furthermore, when 
designing ML products, roles involved in these activities 
should have a system-focused view and must therefore be a 
group process as this is challenging since teams usually 
operate in silos rather than collaborative environments also the 
specialized terminologies and varying degrees of knowledge 
further complicate communication. Moreover, MLOps 
demands a wide range of skills and specialized roles. Because 
there aren't enough highly qualified professionals to fill these 
positions, particularly in the fields of architects, data 
engineers, ML engineers, and DevOps engineers [32] [33] 
[34]. As MLOps is often not included in data science courses, 
this is relevant to the training that future workers will need 
[35]. 

B. ML System Challenges 

It might be difficult to develop MLOps systems to 
accommodate changing demands, especially when it comes to 
the ML training and monitoring procedures [35]. This is a 
result of potentially massive and unpredictable data [36], 
which makes it challenging to correctly forecast the necessary 
infrastructure resources (CPU, RAM, and GPU), and calls a 
high level of flexibility when it comes to the scalability of the 
containers [35] [37]. 
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C. Operational Challenges 

ML is challenging to execute manually because of the 
numerous software and hardware stacks and their 
interrelationships. Thus, reliable automation is required to 
produce numerous artifacts, which require solid governance 
[35] [38] [39] [32] [40] [41]. Versioning of the data, model, 
and code is also necessary to guarantee reliability and 
reproducibility [32] [2]. Finally, because there are so many 
parties and components involved, it can be difficult to handle 
a possible support request (for example, by identifying the 
root cause). Moreover, failures might result from a 
combination of ML infrastructure and software [37] [42], 
making it essential to monitor each phase and collect as much 
data as possible to aid in making timely decisions. 

Therefore, this research proposed a model (MCM) which 
depends on the multi-container architecture and microservices 
principles that applied to solve the mentioned barriers by 
building and deploying the stages of the application 
development lifecycle. The MCM reduced the requirement for 
re-developing and re-deploying software applications while 
also improving the performance of software releases. The 
MCM model enhances the build duration cycles and software 
deployment cycles ratio by employing MLOps. 

IX. CONCLUSIONS AND FUTURE WORK 

More machine learning systems than ever before are being 
developed as a result of the growing demand to innovate. 
Higher monitoring and analysis skills are required for ML 
models. However, only a few of these proofs of concept move 
forward to deployment to production. Furthermore, in the real 
world, data scientists are still managing ML operations largely 
manually. These issues are addressed by the Machine 
Learning Operations (MLOps) paradigm. Moreover, 
according to the linked publications, there are no studies that 
concentrate on monitoring MLOps applications, especially 
those that rely on multi-container and microservices design. 
Therefore, this research proposed a model (MCM) which 
depends on the multi-container architecture and microservices 
principles that applied to the build and deploy stages of the 
application development lifecycle. The developed MCM 
model used to increase the number of software deployments 
across a variety of environments. Further the proposed MCM 
improved the software release performance and decreased the 
need for re-developing and re-deploying software 
applications. By utilizing MLOps, the suggested MCM model 
improves the software deployment cycles ratio by up to 
24.55% and build duration cycles by up to 13%. This was 
useful in directing different IT teams towards the areas of 
monitoring ML model’s features by using MLOps. 
Furthermore, the research recommended four routines for each 
layer of the suggested MCM model, described how each layer 
will be developed. As future work, more experimental work is 
also needed to assess the MLOps pipelines and see how they 
might affect the overall software development cycle. The 
MCM model needs to be implemented on different data sets 
and monitor its efficiency. More experiments to compare the 
performance of the MCM model algorithm against baseline 
approaches or alternative optimization strategies are needed. 
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