
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

583 | P a g e

www.ijacsa.thesai.org

A Machine Learning Operations (MLOps)

Monitoring Model Using BI-LSTM and SARSA

Algorithms

Zeinab Shoieb Elgamal, Laila Elfangary, Hanan Fahmy

Department of Information Systems-Faculty of Computers and Artificial Intelligence, Helwan University, Helwan, Egypt1

Abstract—Machine learning operations (MLOps) achieves

faster model development, deliver higher machine learning

models quality, and faster deployment cycle. Unfortunately,

MLOps is still an uncertain concept with ambiguous research

implications. Professionals and academics have focused only on

creating machine learning models, rather than using

sophisticated machine learning systems in practical situations.

Furthermore, the monitoring system must have a comprehensive

view over the system interactions. The need for a strong efficient

monitoring system increases when it comes to use the multi

container services. Therefore, this research provides a new

proposed model called Multi Containers Monitoring (MCM)

Model, based on multi container service and machine learning

approaches which are bidirectional long short-term memory (BI-

LSTM) and state-action-reward-state-action (SARSA). The

proposed MCM model enables MLOps systems to be scaled and

monitored efficiently. The proposed MCM model realizes and

interprets the interactions between the containers. The proposed

MCM model enhances the performance of the software release

and increases the number of software deployments across

different types of environments. Moreover, this research

proposes four routines for each layer of the proposed MCM

model that illustrates how each layer is going to be developed.

This research also illustrates how the proposed MCM model

achieves improvements ratio in software deployment cycles by

using MLOps up to 24.55% and in build duration cycle up to

13%.

Keywords—Machine learning; MLOps; monitoring; container;

model

I. INTRODUCTION

The fast and increasing popularity of machine learning
(ML) applications has led to growing attention in Machine
Learning Operations (MLOps), that is, the practice of
continuous integration and deployment (CI/CD) of ML-
enabled systems [1]. Since changes may not affect only the
code but also the ML model parameters and the data
themselves, the automation of traditional CI/CD needs to be
extended to outspread to monitor model retraining in
production [1]. ML has become a significant technique to
leverage the potential of data and allows businesses to be more
innovative, efficient, and sustainable [2] [3] [4] [5]. However,
the success of many ML applications in the real world doesn't
meet expectations as the ML community has focused
extensively on the building of ML models not on building
production-ready ML products and providing the necessary
coordination of the resulting [2] [6] [7] [8]. Besides that, these

applications started to produce and maintain a huge amount of
data from their operations. Those new developments require
monitoring the operations of applications in real-time [9]. If
MLOps model selection and training are not closely and
carefully monitored, applications may lose value in the market
and organizations might be at risk of losing money, but the
worst is to lose their reputation [10] [11] [12].

This research proposes a multi-container monitoring
(MCM) model to monitor the communication and all
containers' behavior for the software deployment cycles to
help in more frequent releases and reduce production issues.
Further, discusses the MLOps practice to effectively handle
the issue of creating and monitoring effective ML.
Furthermore, adopts a broad viewpoint to provide
comprehension of the relevant principles, responsibilities, and
architectural structures.

This research makes a significant contribution to the
software industry by:

 Review all the previous studies in monitoring
containerized software.

 Delineate what kind of problems MLOps practices may
be best suited to apply, to help in reducing the re-
developing and re-deploying.

 Monitor software performance at a finer granularity
level.

 Monitor DevOps and MLOps pipelines and system
infrastructure behavior.

 Reduce the build time of software systems.

 Improve the deployment rates of existing methods in
software systems.

This research applies a new machine learning technique to
monitor and learn more ML model features based on different
software systems.

The remainder of this research is structured as follows.
Section II presents the background. Section III illustrates the
necessary definitions and related work in the field. Section IV,
presents an overview of the utilized methodology and the
proposed MCM model. It also presents the MCM model
challenges and limitations. Section V and VI presents model
dataset and model configuration. Results and discussion is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

584 | P a g e

www.ijacsa.thesai.org

given in Section VII and Section VIII respectively. Finally,
Section VI, concludes the work with a summary.

II. BACKGROUND

There are a variety of software process models and
development methodologies used in software engineering such
as waterfall and the agile manifesto. Those methodologies
have similar objectives, which are to deliver production-ready
software applications [2] [13] [14]. Recently software
development teams have moved away from the traditional
waterfall methodology to DevOps as the traditional life cycle
is not suited for dynamic projects as needed in the ML
development process, as shown in Fig. 1.

Fig. 1. Waterfall, DevOps SDLC, and the manual ML pipeline [15].

DevOps refers to the modern software deployment model
that combines software development (Dev) and IT operations
(Ops) [16]. DevOps aims to enable automation, continuous
integration, continuous deployment, monitoring, and team
collaboration of software applications in fast and small
releases [17] [18]. The two primary DevOps practices are
Continuous Integration and Continuous Delivery.

Continuous integration (CI) is a software practice that
concentrates on automating the creation and integration of
code from many developers. To enable quicker development
cycles and enhance quality, developers are demanded to
merge their code into the primary repository more frequently
in this procedure. Version control systems (VCS), automated
software development, and testing procedures are the key
elements of this practice [15] [19].

Continuous delivery (CD) core purpose is to deliver newly
created features to the end user as rapidly as possible by
building the software in a way that is constantly in a
production-ready state to ensure that code updates might be
released on demand fast and safely [15] [20] [21].

Continuous deployment (CDE), which is frequently
confused with CD, is a different technique. Continuous
deployment is a technique where every software modification
is automatically pushed to production. Even so, some
businesses have procedures in place for obtaining outside
approval before releasing new application’s version to users.
Thus, continuous delivery is considered necessary in certain

circumstances; however, continuous deployment is optional
and can be skipped [15] [19] as shown in Fig. 2.

Fig. 2. Deployment pipelines [18].

Continuous monitoring is an automated procedure that
uses cloud services to assess a deployed application's
operational functionality against business criteria as it is being
used [18] [22].

The DevOps pipeline, also known as the CI/CD pipeline,
enables greater support for the deployment of applications to
the cloud and utilizing a wide range of tools [15] [17] [23].

ML pipeline is defined as an automation of the ML life
cycle by minimizing human interaction in routine processes
[24].

MLOps refers to the complete vision of best practices and
procedures from the design of the training data through the
final deployment lifecycle [16] as shown in Fig. 3. MLOps
can alternatively be considered as the integration of DevOps
with machine learning techniques [25]. By another word,
MLOps is the artificial intelligence (AI) equivalent of DevOps
[16]. Furthermore, MLOps places a strong emphasis on
automation while monitoring each step of the machine
learning process, much like DevOps [26].

Fig. 3. High-level process perspective of MLOps [24].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

585 | P a g e

www.ijacsa.thesai.org

MLOps phases are typically related to various roles and
concepts, such as containerization and dockerizing [24] [27].
Containerization has become a standard approach for
environments, which support on-demand, short-lived
execution of computational tasks such as Function-as-a-
Service (FaaS) platforms [28] [29].

Running applications in containers enables automatic
orchestration and agile DevOps practices, in cloud-native
platforms, the design of container and objects in software
object-oriented programming (OOP) is similar: each container
has a particular duty to carry out effectively [30] [31]. Cloud-
native containers are easier to grow horizontally and replace,
reuse, and update transparently [31], this has been termed the
“Single Concern Principle” [32].

Dockerizing facilitates the hosting and execution of any
kind of software applications, platforms, middleware,
databases, packaged, in-house, and custom-built software.
Moreover, the quicker maturation and reliability of the Docker
platform have made it much easier to develop, distribute,
deliver, and deploy software [33]. Furthermore, dockerizing
offers a simple approach to isolate the network and restrict
how much resource the containers can use [34].

There is another design concept that helps in monitoring
the ML projects if it had been used during the project
development phase which is the “Microservices” design rather
than the monolithic design. Microservice architecture (MSA)
is suggested to divide single-component applications into
numerous loosely linked and independent microservice
components [35] [36]. Microservices are applications broken
down into their core functionalities. Each function operates as
its own "service" inside a container and interacts with other
containers across the network [37]. Microservices have several
benefits over monolithic applications, such as autonomous
update cycles, fine-grained resource control, and high
elasticity [37]. The monolithic design is only appropriate for
small-scale systems with straightforward internal structures
since these monolithic applications adhere to an all-in-one
architecture in which all functional modules are created and
configured into precisely one deployment unit, namely, one
container [38].

III. RELATED WORK

Raúl Minin, et al., introduced a tool named Pangea that
generates adequate execution settings for deploying analytic
pipelines automatically. These pipelines are broken down into
several stages so that each can be executed in the edge, fog,
cloud, or on-premises environment which will minimize
latency and make the best use of available hardware and
software resources. Pangea is focused on achieving three
specific goals: (1) creating the required infrastructure if it
doesn’t already exist; (2) providing it with the components
needed to run the pipelines (i.e., configuring each host
operating system and software, installing dependencies, and
downloading the executable code); and (3) deploying the
pipelines [39]. Raúl introduced a complex tool that takes a lot
of work to conceptualize and build. Although the first version
of the tool is sufficiently developed to demonstrate some of its
potential advantages, further use cases and technology and
connection compatibility must be added before it can be used

in more situations. The web client requires to be improved to
assist the management of users, pipelines, and infrastructure
since Pangea isn’t built to support the description and
deployment of analytical pipelines in the training stage.
Moreover, Pangea doesn’t support monitoring pipelines and
infrastructure behavior.

Matteo Testi, et al., provided a literature review on MLOps
to illustrate the present difficulties in developing and
sustaining an ML system in a production context. The
literature review revealed that the utilization of MLOps in the
workplace and the application of DevOps principles to
machine learning are still under-discussed issues in academia.
Furthermore, organizations will need to conduct experimental
work to test the ML pipeline as they attempt to apply an ML
approach to an end-to-end use case, going through each step
and demonstrating what results if certain phases are skipped
[40].

Sergio Moreschini, et al., offered a better illustration of
MLOps by integrating ML development stages into the
established DevOps practices. The research suggested a
MLOps pipeline that concentrated on the duality between
software engineers and machine learning developers and their
roles [41]. Sergio’s roadmap increased adoption of ML-based
software generated a demand for ML developers who need to
perform tasks in parallel to software developers and produced
two extra loops for both the ML and software sides.

Pinchen Cui focused on providing security for
containerization through secure monitoring of containerized
applications to give better simulation of actual application
behaviors and greater coverage of attacks with extended
feature space [35]. Pinchen’s research has not been put
through an online evaluation. The elements of the security
monitoring target must be enhanced to allow the framework to
automatically determine what to monitor in an unsupervised
manner. Meanwhile, the framework did not support scaling
the dataset with various application architectures, such as
multi-container applications, where a service is composed of
several containers, and Docker Swarm's distributed
monitoring.

Holger Gantikow, et al., suggested integrating
containerized environments with rule-based security
monitoring. The suitability of the method is investigated for
both (1) a variety of undesirable behaviors that may point to
abuse and attacks of workloads running inside a container and
(2) misconfigurations and attempts to increase privileges and
weaken isolation safeguards at the container runtime level
[36]. The article does not cover the security monitoring of
distributed workloads because shared workloads interact
strongly across host borders.

While recent studies cover a variety of specific MLOps
topics, a comprehensive conception, generalization, and
explanation of ML systems monitor are still lacking. Different
interpretations of the phrase "MLOps" may result in
misconceptions, which may result in setup errors for the entire
ML system. MCM model will work on the monitoring of the
development for the multi-container “distributed” ML systems
resulting in the ability to improve the software build and
deployment cycles in real-world settings.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

586 | P a g e

www.ijacsa.thesai.org

IV. THE MCM PROPOSED MODEL

The proposed Multi Container Monitoring (MCM) Model
consists of four different layers as shown in Fig. 4. The

MCM’s model layers are the "Development layer, MLOps and
container layer, and Monitoring layer with the support of
different tools in the Tools and Automation layer".

Fig. 4. Multi Containers Monitoring (MCM) model.

The MCM Model starts from the developer's commitment
of a specific piece of code and ends with its deployment and
monitoring on various environments. The next sub-sections
will introduce a detailed description of the MCM’s model
layers and describe the components of the MCM model.

A. Development Layer

The initial part of the proposed MCM model is the
development layer, which is further separated into two main
sublayers: the application structure layer (microservices) and
the code lifecycles layer. The microservice layer focuses on
designing a good structure between each part of the
application. The microservice layer seems to be as a pre-
requisite for the code lifecycles. The development layer
focuses on managing code changes and adopting CI principles
to minimize code conflicts.

The code lifecycle layer consists of four steps. The first
step verifies that the code is versioned correctly and that a
stable version of the code has always been kept up to date in
the main repository after the appropriate tagging. Developing
a stable version of the code is the second step. The third step
involves executing multiple test scenarios, starts after the
build step is being successful. At this point, it is confirmed
that the code satisfies the necessary functional and needed
requirements. When the system's artifact is prepared for
release, the last step in the build and validation software
process is called "artifact preparation" This involves gathering
the output required for the next release and deployment
phases.

Routine 1 discusses the high-level routine for the code
lifecycle sublayer.

Routine 1: Implement CI/CD Pipeline

Notations: SW // Software, VCS // Version control system, Repo //
Repository, VAL // Validation, PR // Pull request, CONF //
Confirmation, CI // Continuous integration, PL // Pipeline, TC // Test
cases, Pkg // Package, Exec // Execute, CD // Continuous deployment
Input: SW code, Different types of TCs
Output: Deploy the succeeded container images to the target env
Steps:

1) Select VCS
2) Repo VAL
3) Code merge

 If (PR= Yes) then

 While (review = accepted) do

 For (every merge CONF) do

 1) Push code

 2) Run CI PL

 3) Exec unit TCs
4) Pkg the build artifact
5) Exec extra TCs
6) If (build pkg = accepted) then

 Pkg the container image
End

 7) If (CD env>=1) then

 deploy pkg

 End

 End

 End

 End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

587 | P a g e

www.ijacsa.thesai.org

The procedures of this layer are concentrated on giving
code and tests a transparent control structure. Selecting the
most appropriate VCS is the initial stage, followed by defining
the structure of the repository and its validation guidelines.
Then get ready to create the different test cases required to get
the CI/CD pipeline started. Finally, store the tested package
and make it available for usage in deployment.

B. MLOps and Container Layer

The second layer of the MCM model is MLOps and
Container layer. The MLOps and container layer is divided
into two primary sublayers: the layer of MLOps comes first,
and the layer of containers comes second.

MLOps layer includes the development of the MCM
model, the pipelines construction, test preparation, configuring
and adding some security gates throughout the MCM model.

Container layer, container as a service (CaaS), is the
framework that relies on the idea of multiple containers.
Therefore, each container in this layer will go through the
same steps. The steps include container orchestration, cluster
management, container security, image repository, routing
services, and microservices mesh. The container's network
configuration, security, and resource allocation are among the
processes in this process, along with deployment, auto-scaling,
health monitoring, migration, and load balancing.

The high-level routine for the MLOps layer is discussed in
Routine 2. Routine 3 presents the container layer.

Routine 2: Implement MLOps Pipeline

Notations: DAQ // Data acquisition, DS // Data source, PL // Pipeline,
DA // Data analysis, KPI // Key performance indicators, PERF //
Performance, OP // Operational

Input: Model Data
Output: Deploy the succeeded ML model to the target env
Steps:

 While (Business understanding = true) do

 For each (DAQ) do

 Define DS

 Define PL

 Define deployment env

 Exploration and cleaning
End

 Model Security

 Model deployment

 For each (Model training) do

 Exploratory DA

 Define feature engineering

 Model training

 End

 For each (Model evaluation) do

 Model KPIs (PERF and OP)

 Model retrain

 End

 Model logging

 End

The MLOps layer consists of seven steps and the
development of the MLOps pipeline is the main objective at
this layer. The identification of the application type is the most
crucial step because it serves as the base for the subsequent
steps. The second step is understanding the application type
which enables the identification and analysis of the received
data. The data transformation step is the third step and begins
after the data is received. The fourth step is setting up some
security validation over the model pipeline and configuring all
necessary deployment environments for the pipeline. The fifth
step is the MCM’s model training phase. The sixth step is the
validation step. Depending on the outcomes of the MCM
model validation step, the last step at MLOps layer which is
the retraining step. The retraining step begins with some
modifications to the MCM model and/or data to maximize the
benefits. Furthermore, this step depends on the data in the
MCM’s model log file to keep track of the used data to be able
to take the necessary action.

Routine 3: Implement Container Structure

Notations: STRTG // Strategy, CONFIG // Configuration, SP //
Security policies, DR // Disaster recovery, HA // High availability, RS
// Routing services

Input: Container STRTG
Output: CONFIG container architecture
Steps:

 Container orchestration

 CONFIG the container registry

 For each (Container) do

 Set container SP

 Define PL

 End

 Push container image

Along with the MLOps layer, the container layer which
contains three steps starts. The first step is establishing the
rules for container’s interaction with the other containers. This
process is known as container management and orchestration.
The identification of the deployment strategy for the
containers is the second step. The last step is defining all the
image registries that depend on the various deployment
environments.

C. Monitor Layer

The third layer of the MCM model is monitor layer. This
layer includes MCM’s model-based event logging, step-by-
step monitoring, and the creation of dashboards for convenient
monitoring to aid in decision-making on enhancements. The
high-level routine for this layer is discussed in Routine 4 and
it has been highlighted also in Routine 2 steps 6 and 7.

Routine 4: Monitoring

Notations: INIT: Initialize, PL // Pipeline, ML // Machine learning,
REC // Record, CONFIG // Configuration

Input: Monitoring matrices
Output: Monitor PL, container, and ML model
Steps:

 INIT monitoring

 While (Logging = true) do

 For each (PL, container, and ML model) do

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

588 | P a g e

www.ijacsa.thesai.org

 REC external logs

 REC internal logs

 End

 End

CONFIG dashboards
cc

In order to validate, enhance, and maintain any abnormal
behavior over MCM’s model layers, the monitoring layer
contains various dashboards to represent multiple perspectives
at various stages. The monitor layer saved external logs that
record which data the MCM model is applied to, and internal
logs that check the inner workings of the ML pipeline and
debug problems. The monitoring layer makes it easier to
understand and identify any failures, and act quickly to keep
everything under control and in good condition. Moreover, the
monitoring layer would guarantee a system with fewer
development, deployment, and monitoring issues.

D. Tools and Automation Layer

The fourth layer of the MCM model is the Tools and
Automation layer. This layer is necessary to support the
MCM’s model layers with one or more different tools to
obtain reliable statistics and facilitate the transition from one
step to another. Specifically, for provisioning and container
cataloging, this layer uses a set of open-source and
development automation tools to help in all MCM’s model
building and monitoring.

V. MCM MODEL DATASET

The dataset used in the of the proposed MCM model
consists of 286 pipelines. The pipelines are divided to
continuous integration, continuous testing, and continuous
delivery pipelines that use 100 microservices. The pipelines
serve over seven million users and run on Windows and Linux
operating systems. The dataset contains 122 production
environments, seven test and pre-production environments and
158 attributes spread across each layer of the suggested MCM
model. Therefore, the size of the dataset is sufficient to
validate the proposed MCM model and to investigate possible
future enhancements. The dataset used by the MCM model
collects and stores unstructured data from a variety of sources,
including emails, business papers, source control software,
and software engineers' feedback. A sample of the dataset is
shown in Fig. 5 and a sample of the dataset and docker file are
shown in Fig. 6.

Fig. 5. Example of the dataset representation.

Fig. 6. Example of the docker file.

VI. MCM MODEL CONFIGURATION

Every stage of the MCM's model preparation phase is
covered in this section. This process consists of two primary
preparation steps: building the application is the first main
step, and setting up the ML model is the second.

A. Application Build

The migration phase and the automation phase are the two
major stages of the application build process. The process
depends on separating the application's functionality into
discrete services according to their use cases or modules, and
integration the DevOps with MLOps pipelines. Furthermore,
the process focuses on using the containerization concept
which makes it easier to manage and scale the system and
makes it easier to automate the deployment of new features.

 Migration Phase from Monolithic Application to
Containerized-Microservices Application

The goal of the migration process is to have a new, well-
structured application to benefit from containers and DevOps
tools in the next automation phase. Furthermore, the migration
process identifies methods that will assist with securing the
daily operation of the IT and reduce costs. Five primary stages
made up the migration process, some of which had the
subsequent sub-stages:

1) Evaluating the legacy application: The components of

the MCM model were chosen with the need to address issues

such as performance bottlenecks and reduce build and

deployment durations.

2) Select a migration method: The Lift-and-Shift and

Refactoring migration methods were chosen for the proposed

MCM model.

3) Get the Legacy Application Ready for the Migration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

589 | P a g e

www.ijacsa.thesai.org

4) Data on migration: the GitOps tools, orchestration

platform command-line interface (CLI), or orchestration

platform web console can all be used to carry out deployment

on the platform after migrating the application data. RedHat-

OpenShift, and Kubernetes were chosen as the orchestration

platforms for the proposed MCM model to scale resources for

microservices and even to simply enable autoscaling. The

platform CLI and Azure pipelines were used for the

deployment execution.

5) Evaluate and deploy: once the application deployed on

an orchestration platform, careful testing is also essential to

confirm that the application performs as intended. The

application can be launched to production if the testing is

successful, which will complete the migration process.

 Automation Phase

This stage demonstrates how the refactored code
"microservices" that were previously developed during the
migration phase was built automatically based on Docker as
shown in Fig. 7. One of the objectives of moving to
microservices is to achieve the most benefit of the automated
CI/CD pipeline, which enables a very seamless release
process. In the case of an issue, the CI/CD pipeline system can
initiate a fix or revert to an earlier version. Define checks at
each stage using security scans, service level objectives
(SLOs), service level indicators (SLIs), and service level
agreements (SLAs).

Automate the changes between continuous integration,
testing, delivery, and deployment.

Fig. 7. Creation of container application and push the image to the registry.

The automation procedure was broken down into the
following nine major phases:

1) Select a source control (SC) system. Git was the best

SC system that met the requirements after several SC system

types were compared.

2) Produce Docker files that specify each microservice's

container contents.

3) Make a PR request.

4) Build and package every microservice, for Java

projects, that have been developed and coded with Spring

Boot and for .Net applications, which was created and

developed with the .net framework versions 4.8.0, 4.8.1, and

6.

5) Build and produce Docker container images and verify

if the image was locally created and accessible.

6) Launch the Docker containers and verify to see if the

application within the container is operating properly.

7) Push the image to the registry, at this step, the locally

produced image is pushed to the shared registry (RedHat Quay

and/ or Docker Hub) using the image ID.

8) Initially, steps 3 through 8, are completed manually.

Afterwards, CI/CD pipelines are set up using Azure DevOps.

At this stage, each microservice has a CI pipeline to execute

the code following an approved PR. The CT pipeline verifies

the written code. The CD pipeline manages the deployment

procedure for each environment, including integration, QC,

security testing, UAT, load testing, packaging, and pre-

production. A certain set of stakeholders must be informed

and given permission before the created image is deployed on

any deployment environment.

9) A new commit was added to the SC and step 3 was

restarted to meet the additional requirements.
In conclusion, you can successfully containerize your

application by following the previous steps, which include
setting up the required tools, building the image, running the
containers, and pushing the image to a registry. This will
streamline the deployment and management process.
Moreover, will encourage consistency and repeatability.

B. The Proposed MCM Model Build

The MCM model was built using a combination of
recurrent neural network (RNN) architecture “Bidirectional
LSTM (Bi- LSTM)” and a reinforcement learning algorithm
“state–action–reward–state–action (SARSA)”. This
combination integrates into application CI/CD pipelines and
monitoring systems, enabling continuous optimization of
container application performance. Further, by analyzing
streaming data from container environments, the Bi-LSTM
and SARSA can adapt to changing workload patterns and
optimize resource usage dynamically. Combining the
algorithms results in improved, robust, and shortened build
and deployment times. The proposed MCM's model
performance was evaluated using backpropagation through
time (BPTT). The Adaptive Moment Estimation (Adam)
optimizer was selected to improve the performance and
accelerate the convergence of Bi-LSTM.

The proposed MCM’s model build process was divided
into the seven main stages listed below:

1) Environment representation

a) Define the scope of the MCM’s model environment

in terms of the performance and state of the containerized

applications.

b) Normalize the metrics to make sure they were

appropriate for input into MCM model and to guarantee

consistent scaling.

2) Action scope

a) Specify a range of actions that the MCM model agent

can accomplish to maximize container performance.

b) Discretization of the actions into a finite set.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

590 | P a g e

www.ijacsa.thesai.org

3) Feedback function: provide the suggested MCM's

agent a reward function that gives feedback based on the

observed metrics, actions taken, and the obtained performance

outcomes. The design of the reward function is broken down

into three categories: positive, negative, and delayed feedback.

Positive feedback rewards actions that improve container

performance, like shorter build and deploy times, higher

throughput, more efficient use of resources, and/or faster

response times. Negative feedback penalizes actions that lead

to inefficiency or performance degradation, like excessive

resource consumption and downtime.

4) MCM’s model agent: The proposed MCM’s model

agent depends on the SARSA’s agent as shown in Fig. 8, to

pick actions based on the current state and the observed

feedback. MCM model learns an action-value function M (s,

a) that estimates the expected cumulative feedback of taking

an action (a) in the specified state (s) then a balanced

exploration (random actions) and exploitation (best-known

actions) strategy was combined with temporal difference

learning in the SARSA algorithm to update the M-values.

5) Integrated MCM’s model architecture: the MCM’s

model architecture is based on The Bi-LSTM design which

consist of some LSTM layers, several hidden units per layer,

and the size of input and output. System configurations,

workload patterns, historical performance data, and other

aspects were arranged into sequences and time-series

representations to create the appropriately structured input

data. The MCM model uses the input data to learn temporal

patterns and anticipate future states. The SARSA agent then

uses these predictions to make decisions on how best to

optimize container performance and deployment durations.

The schematic Bi-LSTM is shown in Fig. 9 and MCM’s

model integration architecture is shown in Fig. 10.

6) MCM model training: to ensure that gradients and

errors are transmitted appropriately throughout time and to

update the model weights while taking into consideration the

sequential nature of the data, the MCM model was trained

using BPTT. Further, Adam's optimizer was selected to

modify the Bi-LSTM weights during training to minimize the

loss function. Fig. 11 shows the flowchart for the training

loop.

7) Evaluation and deployment

a) A validation dataset and container assessment

measures, such as response times, throughput, resource

utilization, and build/deploy durations, were utilized to assess

the MCM model algorithm's performance.

b) Embed the trained MCM’s model algorithm in the

CI/CD pipelines and containerized application deployment

pipelines to automate the entire deployment process and

guarantee a smooth integration with the current DevOps

workflows.

Fig. 8. MCM’s model agent environment interaction.

Fig. 9. Schematic Bi-LSTM’s architecture.

Fig. 10. Integrated MCM’s model architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

591 | P a g e

www.ijacsa.thesai.org

Fig. 11. MCM’s model training flowchart.

VII. MCM MODEL RESULTS

The outcomes of a successful progress visualization during
MCM model training to improve the deployment time are
presented in Fig. 12. The improvements in build and
deployment durations are shown in Fig. 13.

Fig. 12. MCM’s model resource usage optimization.

Fig. 12 demonstrates optimization of the resource usage of
the containers. It can be noticed that the containers
enhancements made by the MCM model compared to the
previously employed methodologies for CUP usage is up to
38.25%, for disk I/O is up to 39.20%, for memory usage is up
to 50.77% and for network latency is up to 58.37%.

Fig. 13. MCM’s model build and deployment duration.

Fig. 13 observes the improvements in seconds of the build
and deployment frequencies across the different environments,
which are for a build duration up to 13% and for a deployment
duration up to 24.55%.

VIII. MCM MODEL DISCUSSION

The literature research revealed several barriers to the use
of MLOps. These unresolved concerns fall into three
categories: organizational, ML system, and operational.

A. Organizational Challenges

A common issue in organizational settings is the mentality
and culture of data science practice [31]. The study's findings
indicate that to effectively develop, implement, and monitor
machine learning systems, there require a culture shift away
from model-driven machine learning and toward a discipline
that is system-oriented. This can be accomplished by placing
more emphasis on the data-related activities that take place
before the creation of the ML model. Furthermore, when
designing ML products, roles involved in these activities
should have a system-focused view and must therefore be a
group process as this is challenging since teams usually
operate in silos rather than collaborative environments also the
specialized terminologies and varying degrees of knowledge
further complicate communication. Moreover, MLOps
demands a wide range of skills and specialized roles. Because
there aren't enough highly qualified professionals to fill these
positions, particularly in the fields of architects, data
engineers, ML engineers, and DevOps engineers [32] [33]
[34]. As MLOps is often not included in data science courses,
this is relevant to the training that future workers will need
[35].

B. ML System Challenges

It might be difficult to develop MLOps systems to
accommodate changing demands, especially when it comes to
the ML training and monitoring procedures [35]. This is a
result of potentially massive and unpredictable data [36],
which makes it challenging to correctly forecast the necessary
infrastructure resources (CPU, RAM, and GPU), and calls a
high level of flexibility when it comes to the scalability of the
containers [35] [37].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

592 | P a g e

www.ijacsa.thesai.org

C. Operational Challenges

ML is challenging to execute manually because of the
numerous software and hardware stacks and their
interrelationships. Thus, reliable automation is required to
produce numerous artifacts, which require solid governance
[35] [38] [39] [32] [40] [41]. Versioning of the data, model,
and code is also necessary to guarantee reliability and
reproducibility [32] [2]. Finally, because there are so many
parties and components involved, it can be difficult to handle
a possible support request (for example, by identifying the
root cause). Moreover, failures might result from a
combination of ML infrastructure and software [37] [42],
making it essential to monitor each phase and collect as much
data as possible to aid in making timely decisions.

Therefore, this research proposed a model (MCM) which
depends on the multi-container architecture and microservices
principles that applied to solve the mentioned barriers by
building and deploying the stages of the application
development lifecycle. The MCM reduced the requirement for
re-developing and re-deploying software applications while
also improving the performance of software releases. The
MCM model enhances the build duration cycles and software
deployment cycles ratio by employing MLOps.

IX. CONCLUSIONS AND FUTURE WORK

More machine learning systems than ever before are being
developed as a result of the growing demand to innovate.
Higher monitoring and analysis skills are required for ML
models. However, only a few of these proofs of concept move
forward to deployment to production. Furthermore, in the real
world, data scientists are still managing ML operations largely
manually. These issues are addressed by the Machine
Learning Operations (MLOps) paradigm. Moreover,
according to the linked publications, there are no studies that
concentrate on monitoring MLOps applications, especially
those that rely on multi-container and microservices design.
Therefore, this research proposed a model (MCM) which
depends on the multi-container architecture and microservices
principles that applied to the build and deploy stages of the
application development lifecycle. The developed MCM
model used to increase the number of software deployments
across a variety of environments. Further the proposed MCM
improved the software release performance and decreased the
need for re-developing and re-deploying software
applications. By utilizing MLOps, the suggested MCM model
improves the software deployment cycles ratio by up to
24.55% and build duration cycles by up to 13%. This was
useful in directing different IT teams towards the areas of
monitoring ML model’s features by using MLOps.
Furthermore, the research recommended four routines for each
layer of the suggested MCM model, described how each layer
will be developed. As future work, more experimental work is
also needed to assess the MLOps pipelines and see how they
might affect the overall software development cycle. The
MCM model needs to be implemented on different data sets
and monitor its efficiency. More experiments to compare the
performance of the MCM model algorithm against baseline
approaches or alternative optimization strategies are needed.

REFERENCES

[1] F. Calefato, F. Lanubile, and L. Quaranta, A Preliminary Investigation
of MLOps Practices in GitHub, vol. 1, no. 1. Association for Computing
Machinery, 2022. doi: 10.1145/3544902.3546636.

[2] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine Learning Operations
(MLOps): Overview, Definition, and Architecture,” 2022, [Online].
Available: http://arxiv.org/abs/2205.02302.

[3] S. Makinen, H. Skogstrom, E. Laaksonen, and T. Mikkonen, “Who
needs MLOps: What data scientists seek to accomplish and how can
MLOps help?,” Proc. - 2021 IEEE/ACM 1st Work. AI Eng. - Softw.
Eng. AI, WAIN 2021, pp. 109–112, 2021, doi:
10.1109/WAIN52551.2021.00024.

[4] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying devops
practices of continuous automation for machine learning,” Inf., vol. 11,
no. 7, pp. 1–15, 2020, doi: 10.3390/info11070363.

[5] Y. Liu, Z. Ling, B. Huo, B. Wang, T. Chen, and E. Mouine, “Building A
Platform for Machine Learning Operations from Open Source
Frameworks,” IFAC-PapersOnLine, vol. 53, no. 5, pp. 704–709, 2020,
doi: 10.1016/j.ifacol.2021.04.161.

[6] L. Baier and S. Seebacher, “Challenges in the Deployment and,” 27th
Eur. Conf. Inf. Syst., no. May, pp. 1–15, 2019, [Online]. Available:
https://aisel.aisnet.org/ecis2019_rp/163/

[7] D. A. Tamburri, “Sustainable MLOps: Trends and Challenges,” Proc. -
2020 22nd Int. Symp. Symb. Numer. Algorithms Sci. Comput.
SYNASC 2020, pp. 17–23, 2020, doi:
10.1109/SYNASC51798.2020.00015.

[8] O. Spjuth, J. Frid, and A. Hellander, “The machine learning life cycle
and the cloud: implications for drug discovery,” Expert Opin. Drug
Discov., vol. 16, no. 9, pp. 1071–1079, 2021, doi:
10.1080/17460441.2021.1932812.

[9] E. Calikus, Self-Monitoring using Joint Human- Machine Learning :
Algorithms and Applications, no. 69.

[10] T. Schröder and M. Schulz, “Monitoring machine learning models: a
categorization of challenges and methods,” Data Sci. Manag., vol. 5, no.
3, pp. 105–116, 2022, doi: 10.1016/j.dsm.2022.07.004.

[11] L. Cardoso Silva et al., “Benchmarking Machine Learning Solutions in
Production,” Proc. - 19th IEEE Int. Conf. Mach. Learn. Appl. ICMLA
2020, no. March, pp. 626–633, 2020, doi:
10.1109/ICMLA51294.2020.00104.

[12] P. Liang et al., “Automating the training and deployment of models in
MLOps by integrating systems with machine learning”, Proceedings of
the 2nd International Conference on Software Engineering and Machine
Learning, 2024, doi: 10.54254/2755-2721/67/20240690.

[13] C. Wu, E. Haihong, and M. Song, “An Automatic Artificial Intelligence
Training Platform Based on Kubernetes,” ACM Int. Conf. Proceeding
Ser., pp. 58–62, 2020, doi: 10.1145/3378904.3378921.

[14] B. Karlaš et al., “Building Continuous Integration Services for Machine
Learning,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
no. November, pp. 2407–2415, 2020, doi: 10.1145/3394486.3403290.

[15] P. Ruf, M. Madan, C. Reich, and D. Ould-Abdeslam, “Demystifying
mlops and presenting a recipe for the selection of open-source tools,”
Appl. Sci., vol. 11, no. 19, 2021, doi: 10.3390/app11198861.

[16] Y. Liu, “Understanding MLOps : a Review of " Practical Deep Learning
at Scale with Understanding MLOps : a Review of ‘ Practical Deep
Learning at Scale with MLFlow ’ by Yong Liu,” no. July, 2022, doi:
10.13140/RG.2.2.21031.83369.

[17] Z. Shoieb, L. Abdelhamid, M. Abdelfattah, “Enhancing Software
Deployment Release Time Using DevOps Pipelines”, IJSER, vol.11, no.
3, 2020, ISSN: 2229-5518.

[18] M. Rowse and J. Cohen, “A survey of DevOps in the South African
software context,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2020-
Janua, pp. 6785–6794, 2021, doi: 10.24251/hicss.2021.814.

[19] A. Sajid et al., “AI-Driven Continuous Integration and Continuous
Deployment in Software Engineering” 2nd International Conference on
Disruptive Technologies (ICDT), 2024.

[20] R. Subramanya, S. Sierla, and V. Vyatkin, “From DevOps to MLOps:
Overview and Application to Electricity Market Forecasting,” Appl. Sci.,
vol. 12, no. 19, 2022, doi: 10.3390/app12199851.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

593 | P a g e

www.ijacsa.thesai.org

[21] B. Mayumi, A. Matsui, and D. H. Goya, “Applying DevOps to Machine
Learning Processes : A Systematic Mapping,” 2019.

[22] T. Zheng et al., “NCCMF: Non-Collaborative Continuous Monitoring
Framework for Container-Based Cloud Runtime Status”, Computers,
Materials & Continua, 2024, doi: 10.32604/cmc.2024.056141

[23] P. Agrawal and N. Rawat, “Devops, A New Approach to Cloud
Development Testing,” IEEE Int. Conf. Issues Challenges Intell.
Comput. Tech. ICICT 2019, 2019, doi:
10.1109/ICICT46931.2019.8977662.

[24] N. Hewage and D. Meedeniya, “Machine Learning Operations: A
Survey on MLOps Tool Support,” no. February, 2022, doi:
10.48550/arXiv.2202.10169.

[25] S. Alla and S. K. Adari, Beginning MLOps with MLFlow. 2021. doi:
10.1007/978-1-4842-6549-9.

[26] G. Recupito et al., “A Multivocal Literature Review of MLOps Tools
and Features,” no. July, pp. 84–91, 2023, doi:
10.1109/seaa56994.2022.00021.

[27] L. E. L. B, I. Crnkovic, R. Ellinor, and J. Bosch, “From a Data Science
Driven Process to a Continuous Delivery Process for Machine Learning
Systems,” Proceedings- PROFES- 21st Int. Conf., vol. 1, 2020.

[28] G. E. De Velp, E. Rivière, and R. Sadre, “Understanding the
performance of container execution environments,” WOC 2020 - Proc.
2020 6th Int. Work. Contain. Technol. Contain. Clouds, Part Middlew.
2020, no. 37, pp. 37–42, 2020, doi: 10.1145/3429885.3429967.

[29] C. Segarra et al., “Serverless Confidential Containers: Challenges and
Opportunities” 2024.

[30] B. Burns, “Design patterns for container-based distributed systems”.

[31] Z. Shen et al., “X-Containers: Breaking Down Barriers to Improve
Performance and Isolation of Cloud-Native Containers,” Int. Conf.
Archit. Support Program. Lang. Oper. Syst. - ASPLOS, pp. 121–135,
2019, doi: 10.1145/3297858.3304016.

[32] E. Summary, “PRINCIPLES OF CONTAINER-BASED”.

[33] R. Madhumathi, “The Relevance of Container Monitoring Towards
Container Intelligence,” 2018 9th Int. Conf. Comput. Commun. Netw.

Technol. ICCCNT 2018, pp. 1–5, 2018, doi:
10.1109/ICCCNT.2018.8493766.

[34] P. Liu and J. Guitart, “Performance comparison of multi-container
deployment schemes for HPC workloads: an empirical study,” J.
Supercomput., vol. 77, no. 6, pp. 6273–6312, 2021, doi:
10.1007/s11227-020-03518-1.

[35] J. Brier and lia dwi jayanti, “DevSecOps of Containerization,” vol. 21,
no. 1, pp. 1–9, 2020, [Online]. Available: http://journal.um-
surabaya.ac.id/index.php/JKM/article/view/2203

[36] H. Gantikow, C. Reich, M. Knahl, and N. Clarke, “Rule-Based Security
Monitoring of Containerized Environments,” Commun. Comput. Inf.
Sci., vol. 1218 CCIS, pp. 66–86, 2020, doi: 10.1007/978-3-030-49432-
2_4.

[37] A. Mahesar et al., “Efficient microservices offloading for cost
optimization in diverse MEC cloud networks”. J Big Data, vol. 11, no.
123, 2024. https://doi.org/10.1186/s40537-024-00975-w

[38] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, “Machine
Learning-based Orchestration of Containers: A Taxonomy and Future
Directions,” ACM Comput. Surv., vol. 54, no. 10s, pp. 1–35, 2022, doi:
10.1145/3510415.

[39] R. Miñón, J. Diaz-De-arcaya, A. I. Torre-Bastida, and P. Hartlieb,
“Pangea: An MLOps Tool for Automatically Generating Infrastructure
and Deploying Analytic Pipelines in Edge, Fog and Cloud Layers,”
Sensors, vol. 22, no. 12, 2022, doi: 10.3390/s22124425.

[40] M. Testi et al., “MLOps: A Taxonomy and a Methodology,” IEEE
Access, vol. 10, no. June, pp. 63606–63618, 2022, doi:
10.1109/ACCESS.2022.3181730.

[41] S. Moreschini, F. Lomio, D. Hastbacka, and D. Taibi, “MLOps for
evolvable AI intensive software systems,” Proc. - 2022 IEEE Int. Conf.
Softw. Anal. Evol. Reengineering, SANER 2022, no. January, pp. 1293–
1294, 2022, doi: 10.1109/SANER53432.2022.00155.

[42] G. Bou Ghantous and A. Q. Gill, Evaluating the DevOps Reference
Architecture for Multi-cloud IoT-Applications, vol. 2, no. 2. Springer
Singapore, 2021. doi: 10.1007/s42979-021-00519-6.

https://doi.org/10.32604/cmc.2024.056141

