
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

605 | P a g e

www.ijacsa.thesai.org

Evaluating the Effectiveness of the Binary PSO

Method in Feature Selection to Improve the Detection

of Android Botnets

Peng WANG*, Zhijun WANG

College of Mathematics and Computer Science, Chifeng College, Chifeng 024000, China

Abstract—Android botnets endanger the security and privacy

of mobile devices by doing harmful actions such as sending spam,

taking data, and starting distributed denial-of-service (DDoS)

attacks. Detecting Android botnets is a challenging task, as they

often use sophisticated techniques to evade traditional detection

methods. This paper uses the Binary PSO (BPSO) algorithm to

select the important features of the Android botnet, and then

adjusts the training and testing datasets accordingly, discarding

the irrelevant features. Then, with the help of BPSO-SVM and

BPSO-DT approaches, Android botnets are identified with high

accuracy, and ten key features used to identify Android botnets

are introduced. The results obtained from the approaches in

question show an accuracy higher than 97% in identifying this

type of malware.

Keywords—Android botnet; botnet; binary PSO; SVM; decision

tree; BPSO-SVM; BPSO-DT

I. INTRODUCTION

The rapid development and widespread adoption of mobile
devices, especially smartphones, have revolutionized the way
people communicate, work, learn, and entertain. Statista
reported that the global smartphone users were about 3.8 billion
in 2021, and they predicted that this number would increase to
4.3 billion by 2023 [1]. Among the various operating systems
for smartphones, Android is the most dominant one, with a
market share of 72.2% in 2020 [2]. Android is an open-source
platform that allows developers to create various applications
for different purposes and users to customize their devices
according to their preferences.

However, the popularity and openness of Android also make
it a lucrative target for cybercriminals, who seek to exploit the
vulnerabilities of the system and the applications to compromise
the devices and perform malicious activities. One of the most
severe and sophisticated threats facing Android users is the
mobile botnet, which is a network of infected devices that can
be remotely controlled by a botmaster to execute malicious
commands. A mobile botnet can be used for various malicious
purposes, such as stealing personal information, sending spam
messages, launching distributed denial-of-service (DDoS)
attacks, mining cryptocurrencies, and more. The impact of a
mobile botnet can be devastating, not only for the individual
users, but also for the network operators, service providers, and
the society at large. For example, in 2016, the Mirai botnet
infected over 600,000 IoT devices, including Android
smartphones, and launched massive DDoS attacks against

several websites, such as Twitter, Netflix, and Reddit, causing
significant disruption and financial losses [3].

The main challenge in detecting and preventing mobile
botnets is the diversity and complexity of the techniques used by
the attackers [4]. Mobile botnets can employ various methods to
infect devices, such as malicious applications, phishing links,
drive-by downloads, and exploit kits. Moreover, mobile botnets
can use different communication channels to receive commands
and send data, such as SMS, HTTP, peer-to-peer (P2P), and
social networks [5]. Furthermore, mobile botnets can adopt
different topologies to organize the devices, such as centralized,
decentralized, or hybrid. These factors make it difficult to
identify and analyze the behavior and structure of mobile botnets
and to design effective countermeasures against them.

The paper is structured as follows. Section II gives some
background knowledge on the mobile botnet, SVM, and DT
concept. Section III shows the classification and analysis of the
Android mobile botnet methods based on the BPSO-SVM and
BPSO-DT. Section IV presents the simulation of the results.
Section V ends the paper and highlights the main results.

II. RELATED WORKS

In this section, we review the existing literature on mobile
botnets based on the Android operating system. We classify the
literature according to three dimensions: infection, command
and control (C&C), and topology. For each dimension, we
discuss the main techniques, challenges, and limitations of
current research.

A. Infection

The infection dimension refers to the methods used by the
attackers to compromise the Android devices and install the
botnet malware on them. The infection methods can be
categorized into two types: active and passive [5].

Active infection methods require the user's interaction or
consent to install the malware, such as downloading and running
a malicious application, clicking on a phishing link, or granting
excessive permissions to a seemingly benign application.
Passive infection methods do not require the user's interaction or
consent, such as exploiting a vulnerability in the system or an
application or using a drive-by download technique.

The majority of existing research on Android mobile botnet
infection focuses on the active methods, especially the malicious
applications. Several studies have proposed various techniques
to detect and analyze malicious applications, such as static

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

606 | P a g e

www.ijacsa.thesai.org

analysis, dynamic analysis, hybrid analysis, machine learning,
and deep learning [6]. However, these techniques face several
challenges, such as code obfuscation, encryption, dynamic
loading, evasion, and stealthiness that make the detection and
analysis of malicious applications difficult and time-consuming.

The passive infection methods are less studied in the
literature, but they pose a serious threat to Android devices, as
they can exploit the vulnerabilities that exist in the system or the
applications, and install the malware without the user's
knowledge or consent [4]. Some examples of the passive
infection methods are the Stagefright exploit, which can execute
an arbitrary code on the device by sending a specially crafted
multimedia message, the Cloak and Dagger attack, which can
perform malicious actions on the device by abusing the Android
permissions system, and the Man-in-the-Disk attack, which can
compromise the device by manipulating the external storage.

B. Command and Control (C&C)

The C&C dimension refers to the communication channels
used by the botmaster to send commands to the bots and receive
data from them. The C&C channels can be categorized into two
types: centralized and decentralized [7, 8].

Centralized C&C channels rely on a single server or a group
of servers to communicate with the bots. The botmaster can
easily manage the bots and coordinate their activities through the
centralized server. However, this also makes the botnet
vulnerable to detection and disruption, as the server can be
identified and blocked by the defenders. SMS, HTTP, and email
are some of the centralized communication methods that the
C&C server uses to control the bots [9].

Decentralized C&C channels do not rely on a single server,
but use a distributed network of peers to communicate with the
bots [9]. The botmaster can send commands to a subset of the
bots, and the commands can propagate to the rest of the bots
through the peer-to-peer network. This makes the botnet more
resilient to detection and disruption, as there is no single point
of failure. However, this also makes the botnet management and
coordination more complex and challenging. Some examples of
decentralized C&C channels are P2P, social networks, and
blockchain.

C. Topology

The topology dimension refers to the structure and
organization of the bots in the botnet. Topology can affect the
performance, scalability, and robustness of the botnet. The
topology can be categorized into three types: centralized,
decentralized, and hybrid [10].

Centralized topology has a star-shaped structure, where the
bots are directly connected to the central server [11]. The
botmaster can manipulate the bots with ease through the server,
which serves as the C&C channel. However, this topology has
low scalability and robustness, as the server can be a bottleneck
and a single point of failure.

Decentralized topology has a mesh-shaped structure, where
the bots are connected in a peer-to-peer network. The C&C
channel is a peer-to-peer network, and the botmaster can
communicate with the bots via any peer [12]. This topology has

high scalability and robustness, as the botnet can grow and
survive without relying on a central server.

Hybrid topology has a combination of star-shaped and mesh-
shaped structures, where the bots are divided into clusters, and
each cluster has a leader that is connected to the central server
[11]. The server and the cluster leaders are the command and
control channels, and the botmaster can talk to the bots using the
server or the cluster leaders. This topology has moderate
scalability and robustness, as it balances the advantages and
disadvantages of the centralized and decentralized topologies.

D. Support Vector Machine (SVM)

SVM is a machine learning technique that can perform
classification and regression by discovering the optimal
hyperplane that separates the data into distinct classes or predicts
output values. SVM has many benefits, such as high precision,
resistance to noise and outliers, and sparseness of the solution.
However, SVM also faces some challenges, such as choosing
the appropriate kernel function, dealing with large-scale and
imbalanced data, and incorporating prior knowledge and
domain-specific constraints. Therefore, many researchers have
proposed various extensions and improvements to the standard
SVM formulation, such as kernel selection, ensemble methods,
fuzzy SVM, semi-supervised SVM, and constrained SVM.

Some of the recent researches that discuss these extensions
and improvements are:

This research [13] reviews the existing methods for kernel
selection in SVM, which can be divided into three categories:
data-dependent, model-dependent, and hybrid. The study also
proposes a new hybrid method that combines the advantages of
data-dependent and model-dependent methods. The study
assesses how well various kernel selection methods work on
some benchmark datasets and demonstrates that the suggested
method can attain higher accuracy and stability than the current
methods.

This research [14] addresses the problem of imbalanced data
classification, where the number of instances in different classes
is significantly different. The study proposes a novel ensemble
method that combines SVM with random subspace and bagging
techniques. The study shows that the proposed method can
effectively handle imbalanced data by creating diverse and
balanced base classifiers and combining them with a weighted
voting scheme. The study compares the proposed method with
other state-of-the-art methods on several imbalanced datasets
and demonstrates its superiority in terms of accuracy and
robustness.

This research [15] deals with the problem of outliers, which
are data points that deviate significantly from the normal
distribution of the data. The study proposes a fuzzy SVM
method that can handle outliers by introducing a fuzzy
membership function that assigns different weights to different
data points according to their degree of belonging to the classes.
The study shows that the proposed method can improve the
performance of SVM by reducing the influence of outliers and
enhancing the generalization ability. The study tests the
proposed method on several datasets with different levels of
outliers and shows its effectiveness and efficiency.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

607 | P a g e

www.ijacsa.thesai.org

E. Decision Tree (DT)

Decision trees are graphical models that can perform
classification and regression tasks by splitting the data into
smaller subsets based on some criteria. Decision trees are easy
to understand, interpret, and visualize, as they mimic the human
decision-making process. However, decision trees also have
some drawbacks, such as overfitting, instability, sensitivity to
noise, and missing values. Therefore, many researchers have
proposed various techniques to improve the quality and
robustness of decision trees, such as pruning, ensemble methods,
fuzzy logic, and evolutionary algorithms.

Some of the recent researches that discuss these techniques
are:

This research [16] reviews the existing methods for decision
tree pruning, which is a technique to reduce the size and
complexity of decision trees by removing unnecessary or
redundant nodes. The study categorizes the pruning methods
into two types: pre-pruning and post-pruning. The study also
compares the advantages and disadvantages of different pruning
methods and provides some guidelines for choosing the best
pruning method for a given problem.

This research [17] describes the concept and applications of
ensemble methods, which are techniques to combine multiple
decision trees to improve the accuracy and diversity of
predictions. The study covers topics such as bagging, boosting,
random forests, and stacking. The study also discusses the
challenges and future directions of ensemble methods for data
mining.

This research [18] presents a comprehensive review of fuzzy
decision trees, which are extensions of decision trees that can
handle uncertainty and vagueness in the data by using fuzzy sets
and fuzzy logic. The study covers topics such as fuzzy entropy,
fuzzy impurity, fuzzy information gain, fuzzy splitting criteria,
and fuzzy pruning. The study also compares the performance of
fuzzy decision trees with crisp decision trees and other fuzzy
classifiers on several benchmark datasets.

F. Post-Quantum Cryptography (PQC)

In recent years, post-quantum cryptography (PQC) has
attracted considerable interest due to the potential risks quantum
computers pose to traditional cryptographic systems. Numerous
studies have delved into various aspects of PQC, focusing on
algorithm development, performance enhancement, and
practical application.

Liu et al. (2024) conducted an extensive survey on the
performance and optimization of post-quantum cryptographic
algorithms for the Internet of Things (IoT) [19]. Their research
underscores the challenges and solutions in incorporating PQC
into IoT devices, highlighting the necessity for lightweight and
efficient algorithms to maintain security without sacrificing
performance.

Another notable contribution is the survey by Ramachandran
et al. (2022), which offers a comprehensive overview of lattice-
based cryptographic algorithms [20]. This study examines the
resilience of lattice-based methods against quantum attacks and
their suitability for various cryptographic protocols. The authors

also compare different lattice-based schemes, providing insights
into their respective strengths and weaknesses.

In a broader scope, Jurdak et al. (2023) reviewed the current
state of PQC, including an in-depth analysis of the most
prevalent methods such as lattice-based, code-based, and
multivariate polynomial cryptography [21]. The paper also
discusses the implementation status of these methods and future
research directions.

Furthermore, recent advancements in cryptographic
accelerators for PQC have been documented by several
researchers [19]. These studies focus on hardware
implementations that can meet the computational demands of
PQC algorithms, thereby enhancing their practicality for real-
world applications.

Overall, the research on post-quantum cryptography is
rapidly growing, with significant advancements being made in
both theoretical and practical areas. Ongoing research is crucial
to develop robust, efficient, and scalable cryptographic solutions
capable of withstanding the emergence of quantum computing.

III. PRESENTED APPROACH

In this study, we identify Android botnets and the purpose of
this study is to remove inefficient features from training and
testing datasets of Android botnets. Android botnets can
obfuscate and encrypt the traffic sent to the botmaster, and this
causes the identification of Android botnets to be associated
with many challenges. Considering this issue, it can be
acknowledged that the features extracted from the traffic of
botnets can have ambiguous and incorrect values, which causes
the wrong training of the learning model. But among the
extracted features, there are several features that only by using
them in machine learning approaches, the trained model can
identify Android botnets with high accuracy. Therefore, the
question arises as to how to identify the mentioned features from
the dataset obtained from Android botnets and exclude other
inefficient features from the dataset so that they can be trained
in the best conditions with the help of effective features of
machine learning approaches. To answer the stated question, in
the next section, the Binary Particle Swarm Optimization
(BPSO) approach is introduced to select key features from the
Android botnet dataset.

A. Binary PSO

PSO is a famous evolutionary computation method, which
has been used to solve many optimization problems. PSO
mimics the social behavior of bird flocking, where each member
(particle) is a possible solution and moves in the search space
based on its own and its neighbors' best positions [22]. PSO can
be divided into two main types: continuous PSO (CPSO] and
binary PSO (BPSO). CPSO is designed for continuous
optimization problems, where the position and velocity of each
particle are real-valued vectors. BPSO is a variant of PSO for
binary optimization problems, where the position and velocity
of each particle are binary vectors [23, 24].

Binary optimization problems are widely encountered in
various fields, such as feature selection, knapsack, scheduling,
cryptography, and network design [24, 25]. In these problems,
the objective is to find the optimal combination of binary

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

608 | P a g e

www.ijacsa.thesai.org

variables that satisfies some constraints and maximizes or
minimizes a given function. BPSO is a simple and effective
method for solving binary optimization problems, as it can
explore the search space efficiently and avoid being trapped in
local optima [26].

The transfer function is a key component of BPSO, as it
maps the continuous velocity to a binary position. The transfer
function determines the probability of flipping each bit of the
position vector, which affects the diversity and convergence of
the swarm. Different transfer functions have different
characteristics and suitability for different problems. Therefore,
choosing an appropriate transfer function is crucial for the
success of BPSO [27].

In general, BPSO and CPSO formulas are shown in Table I.
The CPSO algorithm uses the first two formulas to change the
speed and position of the particles. The BPSO algorithm
changes the speed with Eq. (1) and the position of particles
(binary) with Eq. (3) and (4).

In Table I, 𝑥𝑖𝑑
𝑡 is the location of the i-th particle in the d-th

dimension at the t-th iteration, and 𝜑1 and 𝜑2are two random

numbers in a bounded domain with a uniform distribution. 𝑃𝑔𝑏
𝑡

and 𝑃𝑖𝑑
𝑡 are the best positions discovered in the entire search

space and the best position reached by the i-th particle at the t-
th iteration, respectively. 𝑐1 and 𝑐2 are acceleration constants
and ω is the inertia weight that balances the global and local

searches [28]. 𝑥𝑖𝑑
𝑡+1 is the location of the i-th particle in the d-th

dimension at the (t + 1)-th iteration.

The sigmoid function (S (.)) is a function of the particle's
velocity in each dimension. It has a range of [0, 1]. Eq. (4)
evaluates the output of this function against the outcome of Eq.
(3) using a random function that produces a value in [0, 1].
Based on this comparison, Eq. (4) assigns either 1 (feature
selected) or 0 (feature not selected) to each dimension of the

particle (𝑥𝑖𝑑
𝑡+1(𝑡 + 1)).

TABLE I. CPSO AND BPSO FORMULAS

Number Name Formula

1
Velocity

Updating

𝑣𝑖𝑑
𝑡+1 = 𝜔 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∗ 𝜑1 ∗ (𝑃𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡) + 𝑐2

∗ 𝜑2 ∗ (𝑃𝑔𝑏
𝑡 − 𝑥𝑖𝑑

𝑡)

2
Position

Updating
𝑥𝑖𝑑

𝑡+1 = 𝑥𝑖𝑑
𝑡 + 𝑣𝑖𝑑

𝑡+1

3
Sigmoid

Function
𝑆(𝑣𝑖,𝑑) =

1

1 + 𝑒−𝑣𝑖,𝑑

4
Binary
Position

Updating
𝑥𝑖𝑑

𝑡+1 ← {
0, 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑆(𝑣𝑖,𝑑)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In Fig. 1, the BPSO algorithm performance is shown. In this
approach, the mentioned technique based on Eq. (4) in Table I
selects the desired features (features with a value of 1) and

removes other features from the dataset (features with a value of
0).

B. BPSO-DT and BPSO-SVM

In the literature review section, the limitations of SVM and
DT approaches were mentioned. In the continuation of this
study, by combining these approaches with the BPSO algorithm,
an attempt has been made to overcome some of the limitations
expressed in these techniques.

Fig. 2 shows the flowchart of BPSO-SVM and BPSO-DT
algorithms. In this form, the parameters of these methods are
first initialized; then, the BPSO algorithm initializes the BPSO
parameters for each particle in the search space. Next, the speed
and position values of the particles are calculated. The BPSO
method uses the binary position of particles to select the features
of the training and testing datasets so that the optimal features
can be obtained from the dataset. Then, the BPSO algorithm
trains the SVM and DT methods with the Train dataset, which
has the selected features. Finally, the model is applied to the test
dataset (Fitness Function) and if the model accuracy is 100%,
the model training is done. Otherwise, the BPSO method
updates the Pbest and Gbest values based on each model's
accuracy and computes the particles' speed to extract new
features from the training and testing datasets. Finally, each new
training dataset is given to the SVM and DT methods to train
and get a new model. If any of the models can get 100%
accuracy in the Fitness function, their training is done;
Otherwise, the process is repeated until a certain number of
iterations (for example, N times) and if it does not get 100%
accuracy, it stops after the N-th iteration.

C. Fitness Function

The Fitness function is the accuracy function that evaluates
the performance of the machine-learning methods. In Eq. (1),
the TP and TN terms are the botnet and benign data that are
classified correctly.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑎𝑡𝑎𝑙 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒
 (1)

IV. EVALUATION AND RESULTS

At the beginning of this section, it should be mentioned that
all approaches are implemented in Python software, and SVM
and DT approaches are selected from the Scikit-Learn library
available in Python.

This paper uses two Android botnets, PJapps (in EXE and
BACK mode) and Geinimi (in EXE and BACK mode), from the
28-SABD databases [29], to compare the performance of the
proposed methods. Also, the specifications of these datasets are
mentioned in Table II. Four evaluation metrics, which are shown
in Eq. (2)-(5), are used to measure the performance of each
method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

609 | P a g e

www.ijacsa.thesai.org

Fig. 1. How the BPSO algorithm works.

Fig. 2. BPSO-SVM & BPSO-DT.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

610 | P a g e

www.ijacsa.thesai.org

TABLE II. ANDROID BOTNET DATASETS [29]

Dataset
Number of

Columns
Number of Rows

PJapps-Back 85 3702

PJapps EXE 85 10628

Geinimi-Back 85 4674

Geinimi-EXE 85 13757

In these equations, TP, TN, FP, and FN correspond to True
Positive, True Negative, False Positive, and False Negative,
respectively. Also, in Table II, the default parameters of the
BPSO approach are shown.

Accuracy(ACC) =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
 (2)

Precision(Pre) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

Recall(Rec) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

𝐹 − 1 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

 (5)

Before the model is trained and tested in all methods, the
four datasets used are shuffled first. The techniques were applied
to four different datasets and the results are shown in Tables III
to VI. Based on these tables, we can say that.

TABLE III. BPSO DEFAULT VALUES

Parameter Default Value

Number of Particles 10

Number of Iterations 10

𝜔 0.7

𝐶1 1.49445

𝐶2 1.49445

The techniques were applied to four different datasets and
the results are shown in Tables III to VI. Based on these tables,
we can say that:

1) The BPSO-SVM method performed better than the other

methods on all four metrics on the PJappsExe dataset.

2) The BPSO-DT approach is the only approach that has

shown better performance than other approaches in all four

evaluation criteria on the PJappsBack dataset.

3) The two approaches BPSO-SVM and BPSO-DT have

shown the best performance on the GeinimiExe dataset. In these

approaches, all four evaluation criteria have achieved 100%.

The main reason for this can be considered the selection of the

best features from the aforementioned dataset. After selecting

these features, the training model was trained in the best way

and was able to provide the best results on the test dataset.

4) Finally, in Table VI, the BPSO-SVM approach has

shown the best performance in all four measurement criteria on

the GeinimiBack dataset.

As can be seen from the Tables III to VI; in all four datasets
used, the BPSO-SVM approach has shown better performance
than the SVM approach in all four measurement criteria. It

should be noted that in some datasets, the results obtained in
some measurement criteria show the performance of BPSO-
SVM and SVM approaches. For example, in the PJappsBack
dataset, the performance of both approaches was similar to each
other in all four measurement criteria. On the other hand, the
topic stated for BPSO-SVM and SVM approaches can be
extended to BPSO-DT and DT techniques as well. For example,
in the GeinimiBack dataset, both BPSO-DT and DT approaches
have shown similar performance in all four measurement
criteria.

TABLE IV. COMPARING THE PERFORMANCE OF THE SUGGESTED

METHODS AND THE OTHER TWO METHODS ON THE PJAPPSEXE DATASET

Method
Dataset

Accuracy Precision Recall
F-1

BPSO-

SVM
PJappsExe 0.9390 0.8878 0.8636

0.8755

BPSO-

DT
PJappsExe 0.9051 0.9857 0.6272

0.7666

SVM PJappsExe 0.9255 0.8666 0.8272
0.8465

DT PJappsExe 0.6681 0.4170 0.8454
0.5585

TABLE V. COMPARING THE PERFORMANCE OF THE SUGGESTED

METHODS AND THE OTHER TWO METHODS ON THE PJAPPSBACK DATASET

Method Dataset Accuracy Precision Recall F-1

BPSO-

SVM
PJappsBack 0.9663 0.5714 1.0 0.7272

BPSO-
DT

PJappsBack 0.9775 0.6666 1.0 0.8

SVM PJappsBack 0.9663 0.5714 1.0 0.7272

DT PJappsBack 0.9213 0.3636 1.0 0.5333

TABLE VI. COMPARING THE PERFORMANCE OF THE SUGGESTED

METHODS AND THE OTHER TWO METHODS ON THE GEINIMIEXE DATASET

Method Dataset Accuracy Precision Recall F-1

BPSO-

SVM
GeinimiExe 1.0 1.0 1.0 1.0

BPSO-
DT

GeinimiExe 1.0 1.0 1.0 1.0

SVM GeinimiExe 0.9980 1.0 0.75 0.8571

DT GeinimiExe 0.9980 1.0 0.75 0.8571

TABLE VII. COMPARING THE PERFORMANCE OF THE SUGGESTED

METHODS AND THE OTHER TWO METHODS ON THE GEINIMIBACK DATASET

Method Dataset Accuracy Precision Recall F-1

BPSO-

SVM
GeinimiBack 0.9854 1.0 0.4166 0.5882

BPSO-
DT

GeinimiBack 0.9771 1.0 0.0833 0.1538

SVM GeinimiBack 0.9812 1.0 0.25 0.4

DT GeinimiBack 0.9771 1.0 0.0833 0.1538

To examine the average performance of the methods on all
four datasets, we obtain Fig. 3 to 6. Based on these results, we
can draw the following conclusions on the metrics used on the
four Android botnet datasets:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

611 | P a g e

www.ijacsa.thesai.org

a) The BPSO-SVM approach has shown the best

performance in the "Accuracy" criterion. And the BPSO-DT

approach is placed next. The key point obtained from Fig. 3 is

the significant improvement in the performance of BPSO-DT

compared to the DT approach in the "Accuracy" criterion.

b) The SVM approach shows the best value for the

"Precision" criterion among other approaches. On the other

hand, the BPSO-DT approach has been able to significantly

improve the performance of the DT approach in this criterion.

c) The BPSO-SVM approach shows the best performance

among other approaches in the "Recall" measure. It should be

noted, that the performance of the BPSO-DT approach in this

criterion has been ranked second in comparison with other

approaches.

d) The BPSO-SVM and BPSO-DT approaches have

shown the best performance among other approaches in the

measurement criterion "F1", respectively, and have

significantly improved the values of this criterion compared to

the SVM and DT approaches.

The feature selection is the most significant part of Fig. 2
because the particles can get lost in the search space if they
choose the wrong features. Therefore, the algorithm will not
perform well if it is powerful, but the features are not relevant.
Table VII shows the 10 top features of the Android botnet. These
features are ranked by importance in Table VII.

In Table VIII, “Percent” indicates the percentage of a feature
appearing in four different datasets. The table indicates that the
most significant feature is TotalLengthofBwdPacketsfwd,
which was chosen in 87.5% of the datasets. For further details
on the 85 features of CICFlowMeters, refer to references [30,
31]. Android botnets communicate with the command and
control server and other botnets very covertly, so applying many
features does not enhance their identification but increases the
FP and FN rates. Android botnet tries to avoid detection by
hiding and encrypting the key features that most security
researchers seek.

TABLE VIII. TEN OF THE MOST FREQUENTLY USED FEATURES AMONG THE

FOUR ANDROID BOTNET DATASETS

Number Features Name Percent (%)

1 TotalLengthofBwdPackets 87.5

2 ECEFlagCount 87.5

3 IdleMean 87.5

4 BwdPacketLengthMin 75

5 FlowIATMax 75

6 SubflowFwdPackets 75

7 SubflowBwdPackets 75

8 ActiveMax 75

9 BwdIATMax 75

10 FwdURGFlags 75

Fig. 3. Comparison of the accuracy of the four approaches used in this

paper.

Fig. 4. Comparison of the precision of the four approaches used in this

paper.

Fig. 5. Comparison of the recall of the four approaches used in this paper.

Fig. 6. Comparison of the F1 of the four approaches used in this paper.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

BPSO-SVM SVM BPSO-DT DT

Accuracy

0

0.2

0.4

0.6

0.8

1

BPSO-SVM SVM BPSO-DT DT

Precision

0

0.2

0.4

0.6

0.8

1

BPSO-SVM SVM BPSO-DT DT

Recall

0

0.2

0.4

0.6

0.8

1

BPSO-SVM SVM BPSO-DT DT

F1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

612 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION AND SUGGESTIONS

Android botnets are malicious networks of compromised
devices that can perform various harmful activities, such as
spamming, stealing data, and launching DDoS attacks.
Detecting Android botnets is a vital and difficult task, as they
often use advanced techniques to evade traditional detection
methods. In this study, the two machine learning approaches,
SVM and DT, are used to identify Android botnets. As
mentioned in this study, one of the problems of identifying
Android botnets is the encryption of the traffic sent between the
botmaster and botnets, which makes it impossible to identify
botnets at a high rate. Some of the features from the dataset are
obscure and encrypted, which hinders machine learning
methods from being trained properly to detect Android botnets
with high precision. This study employs the BPSO algorithm to
help machine learning methods (SVM and DT) by selecting the
relevant features of the dataset so that they can recognize
Android botnets with high accuracy. The research results show
that the best method (BPSO-SVM) has more than 97% accuracy
in detecting Android botnets. Also, in this study, the top 10 most
effective features that have been effective in identifying Android
botnets have been mentioned.

In future research, the issue of optimizing the parameters of
machine learning approaches and the effect of these parameters
on the performance of these techniques will be discussed.

REFERENCES

[1] Attaran M. The impact of 5G on the evolution of intelligent automation
and industry digitization. Journal of ambient intelligence and humanized
computing. 2023;14(5):5977-93.

[2] Adekotujo A, Odumabo A, Adedokun A, Aiyeniko O. A Comparative
Study of Operating Systems: Case of Windows, UNIX, Linux, Mac,
Android and iOS. International Journal of Computer Applications.
2020;176(39):16-23.

[3] Bursztein E. Inside the infamous mirai iot botnet: A retrospective analysis.
Cloudflare Blog. 2020.

[4] Arora M, Skach M, Huang W, An X, Mars J, Tang L, Tullsen DM, editors.
Understanding the impact of socket density in density optimized servers.
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA); 2019: IEEE.

[5] Hamzenejadi S, Ghazvini M, Hosseini S. Mobile botnet detection: a
comprehensive survey. International Journal of Information Security.
2023;22(1):137-75.

[6] Arshad S, Shah MA, Khan A, Ahmed M. Android malware detection &
protection: a survey. International Journal of Advanced Computer Science
and Applications. 2016;7(2).

[7] Gaonkar S, Dessai NF, Costa J, Borkar A, Aswale S, Shetgaonkar P,
editors. A survey on botnet detection techniques. 2020 International
Conference on Emerging Trends in Information Technology and
Engineering (ic-ETITE); 2020: IEEE.

[8] Shinan K, Alsubhi K, Alzahrani A, Ashraf MU. Machine learning-based
botnet detection in software-defined network: a systematic review.
Symmetry. 2021;13(5):866.

[9] Laabid N. Botnet command & control detection in iot networks: Itä-
Suomen yliopisto; 2021.

[10] Zhou J, Xu Z, Rush AM, Yu M. Automating botnet detection with graph
neural networks. arXiv preprint arXiv:200306344. 2020.

[11] Apostol I, Tica A-D, Patriciu V-V, editors. Design and implementation of
a novel hybrid botnet. 2022 14th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI); 2022: IEEE.

[12] Dehkordi MJ, Sadeghiyan B. An effective node-removal method against
P2P botnets. Computer Networks. 2020;182:107488.

[13] Awad M, Khanna R, Awad M, Khanna R. Support vector machines for
classification. Efficient Learning Machines: Theories, Concepts, and
Applications for Engineers and System Designers. 2015:39-66.

[14] Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector
machines. IEEE Intelligent Systems and their applications.
1998;13(4):18-28.

[15] Guenther N, Schonlau M. Support vector machines. The Stata Journal.
2016;16(4):917-37.

[16] Charbuty B, Abdulazeez A. Classification based on decision tree
algorithm for machine learning. Journal of Applied Science and
Technology Trends. 2021;2(01):20-8.

[17] Seni G, Elder J. Ensemble methods in data mining: improving accuracy
through combining predictions: Morgan & Claypool Publishers; 2010.

[18] Altay A, Cinar D. Fuzzy decision trees. Fuzzy statistical decision-making:
theory and applications. 2016:221-61.

[19] Liu, T., Ramachandran, G., & Jurdak, R. (2024). Post-quantum
cryptography for internet of things: a survey on performance and
optimization. arXiv preprint arXiv:2401.17538.

[20] Asif, Rameez. "Post-quantum cryptosystems for Internet-of-Things: A
survey on lattice-based algorithms." IoT 2, no. 1 (2021): 71-91.

[21] Dam, Duc-Thuan, Thai-Ha Tran, Van-Phuc Hoang, Cong-Kha Pham, and
Trong-Thuc Hoang. "A survey of post-quantum cryptography: Start of a
new race." Cryptography 7, no. 3 (2023): 40.

[22] Nguyen BH, Xue B, Andreae P, editors. A novel binary particle swarm
optimization algorithm and its applications on knapsack and feature
selection problems. Intelligent and Evolutionary Systems: The 20th Asia
Pacific Symposium, IES 2016, Canberra, Australia, November 2016,
Proceedings; 2017: Springer.

[23] Li J, Wu Y, Fong S, Tallón-Ballesteros AJ, Yang X-s, Mohammed S, Wu
F. A binary PSO-based ensemble under-sampling model for rebalancing
imbalanced training data. The Journal of Supercomputing. 2022:1-36.

[24] Kennedy J, Eberhart RC, editors. A discrete binary version of the particle
swarm algorithm. 1997 IEEE International conference on systems, man,
and cybernetics Computational cybernetics and simulation; 1997: IEEE.

[25] Nguyen BH, Xue B, Andreae P, Zhang M. A new binary particle swarm
optimization approach: Momentum and dynamic balance between
exploration and exploitation. IEEE transactions on cybernetics.
2019;51(2):589-603.

[26] Fister I, Fister Jr I, Yang X-S, Brest J. A comprehensive review of firefly
algorithms. Swarm and evolutionary computation. 2013;13:34-46.

[27] Zhang J, Huang D-S, Lok T-M, Lyu MR. A novel adaptive sequential
niche technique for multimodal function optimization. Neurocomputing.
2006;69(16-18):2396-401.

[28] Boussaïd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics.
Information sciences. 2013;237:82-117.

[29] Moodi M, Ghazvini M. A new method for assigning appropriate labels to
create a 28 Standard Android Botnet Dataset (28-SABD). Journal of
Ambient Intelligence and Humanized Computing. 2019;10:4579-93.

[30] Lashkari AH, Gil GD, Mamun MSI, Ghorbani AA, editors.
Characterization of tor traffic using time based features. International
Conference on Information Systems Security and Privacy; 2017:
SciTePress.

[31] Draper-Gil G, Lashkari AH, Mamun MSI, Ghorbani AA, editors.
Characterization of encrypted and vpn traffic using time-related.
Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP); 2016.

