
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

658 | P a g e

www.ijacsa.thesai.org

A Modified Lightweight DeepSORT Variant for

Vehicle Tracking

Ayoub El-alami1, Younes Nadir2, Khalifa Mansouri3

Signaux, systèmes distribués et Intelligence Artificielle (M2S2I), Equipe Systèmes Informatiques Distribués (SID),

Ecole Normale Supérieure de l’Enseignement Technique (ENSET), Université Hassan II de Casablanca (UH2C), Mohammedia,

Morocco1, 3

Signaux, systèmes distribués et Intelligence Artificielle (M2S2I), Équipe Technologies de l'Information et Intelligence Artificielle

(T2IA), Ecole Nationale Supérieure de l’Art et de Design (ENSAD), Université Hassan II de Casablanca (UH2C), Mohammedia,

Morocco2

Abstract—Object tracking plays a pivotal role in Intelligent

Transportation Systems (ITS), enabling applications such as

traffic monitoring, congestion management, and enhancing road

safety in urban environments. However, existing object tracking

algorithms like DeepSORT are computationally intensive, which

hinders their deployment on resource-constrained edge devices

essential for distributed ITS solutions. Urban mobility challenges

necessitate efficient and accurate vehicle tracking to ensure

smooth traffic flow and reduce accidents. In this paper, we present

a modified lightweight variant of the DeepSORT algorithm

tailored for vehicle tracking in traffic surveillance systems. By

leveraging multi-dimensional features extracted directly from

YOLOv5 detections, our approach eliminates the need for an

additional convolutional neural network (CNN) descriptor and

reduces computational overhead. Experiments on real-world

traffic surveillance data demonstrate that our method reduces

tracking time to 25.29% of that required by DeepSORT, with only

a minimal increase over the simpler SORT algorithm.

Additionally, it maintains low error rates between 0.43% and

1.69% in challenging urban scenarios. Our lightweight solution

facilitates efficient and accurate vehicle tracking on edge devices,

contributing to more effective ITS deployments and improved

road safety.

Keywords—Distributed systems; intelligent transportation

systems; edge computing; object tracking

I. INTRODUCTION

In the era of smart cities, integrating distributed Intelligent
Transportation Systems (ITS) with edge computing marks a
significant advancement in urban mobility. By processing data
closer to the source, using embedded devices with traffic
cameras rather than relying solely on centralized servers, ITS
can enable real-time decision-making and responsiveness, even
in resource-constrained environments. This decentralized
approach improves system scalability, reduces latency, and
enhances data privacy by processing sensitive information
locally. Multiple Object Tracking (MOT), a core component of
ITS, refers to tracking the trajectories of multiple objects across
video frames. Recent advances in object detection and deep
learning have made tracking-by-detection the dominant
approach in MOT [1]. This approach formulates MOT as a data
association task, linking newly detected objects with those
already being tracked.

Recent Multiple Object Tracking (MOT) systems are
generally composed of three key components: the object
detector, the embedding model, and the data association
algorithm. The object detector localizes and identifies objects of
interest within each frame, commonly using deep learning
models such as YOLO [1], and Faster R-CNN [2]. The
embedding model extracts representative features from the
detected objects to capture their appearance characteristics.
These embeddings combined with spatiotemporal parameters,
are used to associate objects across frames and maintain
consistent track identities. Finally, the data association
algorithm links objects based on their appearance and
spatiotemporal similarities. This is typically achieved through
methods such as the Hungarian algorithm, as used in DeepSORT
[3], or via deep learning-based techniques like Siamese
networks or recurrent neural networks [4].

Current object detection and tracking algorithms, notably
YOLOv5 and DeepSORT, have achieved high accuracy in
multi-object tracking tasks. However, their computational
intensity poses significant challenges for deployment on
resource-constrained edge devices essential for distributed ITS.
This limitation creates a challenge for the practical application
of ITS, where real-time processing is crucial for urban mobility
and road safety enhancements. To bridge this gap, we propose a
lightweight variant of the DeepSORT algorithm that reduces
computational overhead while maintaining tracking accuracy,
making it suitable for edge computing environments [5], [6], [7],
[8], [9], [10].

In this work, we propose a lightweight tracking algorithm
that follows a similar workflow to DeepSORT, with a key
modification in the appearance embedding step. Traditionally,
this step relies on a dedicated CNN model as a descriptor to
calculate appearance similarity between objects. While
effective, CNN descriptors are computationally intensive,
particularly for resource-constrained devices. To enhance the
computational efficiency of the tracking process, we eliminate
the CNN descriptor and introduce an alternative strategy for
object appearance extraction and association.

Our strategy replaces the appearance features provided by
the embedding model with data directly derived from the feature
map generated during the initial detection phase. These feature
maps, produced by the intermediate layers of the detector,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

659 | P a g e

www.ijacsa.thesai.org

contain high-level abstract representations of the objects.
Experiments demonstrate that these representations are a viable
substitute for CNN descriptor features when calculating
appearance similarity, reducing computational overhead without
sacrificing tracking accuracy.

The rest of this paper is structured as following. Section II
discusses related work in object detection and multi-object
tracking. In Section III, we present our proposed tracking
approach, starting with its background methods (i.e. YOLOv5
and DeepSORT), followed by a detailed explanation of our
lightweight DeepSORT variant, including the modified
detection and appearance similarity processes. Section IV
describes our experimental setup and shows the results. In
conclusion section, we summarizing our contributions and
suggesting future research directions.

II. RELATED WORK

In this section, we present a review of key works related to
object detection and multi-object tracking.

A. Object Detection

Since the introduction of deep convolutional neural
networks (CNNs), numerous object detection approaches have
emerged, leveraging large open datasets such as COCO [11] and
Pascal VOC [12]. Early detectors followed a two-stage process,
beginning with region proposal generation, followed by object
classification and refinement. Models like Fast R-CNN [13] and
Faster R-CNN enhanced both speed and accuracy by improving
feature extraction and region proposal methods. Despite their
effectiveness, two-stage detectors often face computational
inefficiencies due to their sequential processing structure.

The introduction of YOLO (You Only Look Once) [1] in
2016 marked a significant shift towards one-stage detectors,
which focus on simultaneous detection and classification.
Subsequent versions of YOLO have made considerable strides
in performance, particularly in real-time applications, by
refining this one-stage detection approach. Recent YOLO
versions, such as YOLOv5, YOLOv7-tiny, YOLOv8s, and
YOLOv9s, offer lightweight models optimized for devices with
limited computational power, making them well-suited for edge
devices and real-time object detection tasks [15], [16], [17].

B. Multi-Object Tracking

In recent years, tracking-by-detection (TBD) has emerged as
the dominant paradigm in Multiple Object Tracking (MOT),
driven by the increasing capabilities of object detectors. In the
TBD approach, tracking begins with the detection of target
objects in each frame, followed by the extraction of image crops
and spatial parameters based on the objects' bounding boxes.
Tracking is then achieved by establishing correspondences
between objects in consecutive frames using the extracted data.
To facilitate this, a similarity matrix is constructed using
parameters such as distance, IoU (Intersection over Union), and
appearance features. Algorithms like the Hungarian algorithm
or greedy algorithm are commonly used to solve this assignment
problem.

To further improve tracking performance, state estimation
algorithms are employed to predict the positions of tracked
objects based on their spatiotemporal characteristics. Notable
state estimation methods include Kalman filters, particle filters,
and Gaussian processes. Two of the most widely recognized
tracking algorithms in MOT are SORT (Simple Online and
Realtime Tracking) [18] and DeepSORT.

SORT is an efficient algorithm that uses a Kalman filter for
state estimation and Hungarian matching for data association. It
focuses solely on objects' positions, making it highly effective
in real-time scenarios. However, in more challenging
conditions, such as complex motion patterns, occlusions or
missed detections, SORT may produce incorrect associations,
leading to identity switches and reduced tracking robustness. To
address these limitations, DeepSORT extends SORT by
incorporating cascade matching for enhanced data association.
In addition to spatial similarity, DeepSORT uses appearance
similarity to refine associations between detected objects and
existing tracks, improving tracking robustness in more complex
environments [8], [9], [14], [19].

III. PROPOSED TRACKING APPROACH

Our proposed approach consists of an optimized tracking
algorithm based on DeepSORT, designed to run efficiently in
terms of processing time while maintaining high tracking
accuracy. Our main contribution is the development of a
modified tracking algorithm based on YOLOv5 and
DeepSORT, incorporating novel methods for appearance
feature extraction and appearance similarity calculation. This
innovation allows us to eliminate the need for the CNN model
traditionally used in DeepSORT for the appearance-embedding
task. By removing the CNN model, we significantly reduce the
vehicle tracking time, making the algorithm more suitable for
deployment on devices with limited computational resources.

A. Background

1) YOLOv5: In our implementation, we utilized the

publicly available YOLOv5s detector, trained on the COCO

dataset, with an input image size of 416 × 416. YOLOv5 is a

widely-used single-stage object detector, known for its clear

and flexible architecture, offering high precision and speed. It

is available in five different scales: N, S, M, L, and X,

representing Nano, Small, Medium, Large, and Xlarge models,

respectively. Each variant maintains the same overall structure,

scaling the depth and width to improve detection performance.

A key feature of the YOLO architecture is its grid-based
approach, which divides the input image into spatial cells. This
division allows YOLOv5 to perform object detection at multiple
spatial resolutions simultaneously, enabling the model to detect
objects of varying sizes and aspect ratios across the image. Each
cell is responsible for predicting the bounding box coordinates
and associated class probabilities for objects within its spatial
region, as illustrated in Fig. 1. For our experiments, we chose
the small model (YOLOv5s) due to its optimal trade-off between
precision and speed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

660 | P a g e

www.ijacsa.thesai.org

Fig. 1. Example of multiple steps in grid-based approach used in YOLO.

As shown in Fig. 2, the three main components of the
YOLOv5 architecture typically include:

 Backbone: The backbone is responsible for extracting
features from the input image and is composed of
multiple convolutional layers arranged hierarchically.
These layers progressively capture higher-level features
from the image, enabling the detection of objects of
interest by analyzing patterns, edges, and textures at
different levels of abstraction.

 Neck: Positioned between the backbone and head, the
neck is responsible for additional feature fusion and
refinement. Its primary function is to aggregate data
extracted at various scales and levels of abstraction by
the backbone, ensuring that the model can effectively
capture both spatial and contextual information. This
step enhances the overall detection performance by
combining fine details and broader contextual features
before passing them to the detection head.

 Head: The head receives the refined feature maps from
the neck and processes them to generate the final
detection results. Its layers are designed to predict
bounding boxes, objectness scores, and class
probabilities, which are used to determine the locations,
presence, and categories of objects within the image.

Fig. 2. Abstract overview of YOLOv5 default structure with an input size of

416×416.

2) DeepSORT: DeepSORT builds on the efficiency of the

traditional SORT algorithm while incorporating the

discriminative power of deep appearance features. Its workflow

integrates object detection, feature extraction, data association,

and track management to deliver robust tracking results. The

DeepSORT workflow can be summarized as follows:

 Detection: The process starts with detecting objects in
each frame using an object detector, providing bounding
boxes around the detected objects, which serve as input
for the tracking process.

 State Estimation: The Kalman Filter (KF) is employed
for state prediction, estimating the future states of
detected objects based on their current states. This
estimation is important for the tracking of each object
across frames, especially in cases where an object's
detection might be shortly missed.

 Similarity measurement: Multiple metrics are used to
calculate object similarity. Mahalanobis distance
measures the spatial relationship between predicted
states and new detections, while appearance descriptors
assess visual similarity. Intersection Over Union (IoU)
evaluates the overlap between bounding boxes. These
metrics are combined to ensure accurate object
association for effective tracking.

 Data Association: The Hungarian algorithm is used to
associate detected objects with existing tracks, based on
predicted states from the Kalman filter and appearance
similarities. This assignment problem combines two
metrics: object location and appearance information.
DeepSORT’s cascade matching prioritizes more
frequently seen objects, reducing unstable tracks caused
by missed detections. In the final stage, an IoU
association is performed for any remaining unmatched
targets.

 Track Management: After data association, tracks are
updated with their associated detections. New tracks are
initialized for unassociated detections, and existing
tracks are updated for the next frame using the Kalman
filter.

B. Proposed Lightweight Deep SORT Variant

To implement our lightweight variant of DeepSORT, we
modified existing modules and introduced new ones to optimize
the overall tracking process. The key adjustments made to
transition from DeepSORT to our lightweight version include:

 Simultaneous detection and appearance feature
extraction: We streamlined the detection process by
enabling the simultaneous extraction of both detection
data and appearance features. This eliminates the need
for a separate embedding model, significantly reducing
the computational overhead.

 Adaptation of the appearance similarity process: We
adapted the appearance similarity calculation to match
the new format of the features obtained from the
detection phase. This adjustment ensures seamless
integration with our new feature extraction process.

In the following, we provide a detailed explanation of the
key adjustments made to our algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

661 | P a g e

www.ijacsa.thesai.org

1) Modified detection process: Originally, DeepSORT

employs two CNN models: the first functions as an object

detector, returning bounding boxes around targets, while the

second is a simple CNN descriptor that generates appearance

features for those bounding boxes. As mentioned earlier, our

approach eliminates the need for a separate CNN model. To

maintain appearance association in our algorithm without using

a CNN descriptor, we replace the appearance features generated

by this descriptor with feature map data associated with the

bounding boxes. These feature maps are extracted by

YOLOv5's backbone during the detection phase. To extract

both feature map data and detection data simultaneously, we

implemented several key steps (as shown in Fig. 3), including:

Fig. 3. Workflow of our proposed tracking system.

a) Access detection data and feature data from YOLO:

This step involves modifying the model inference process to

access intermediate layers of the YOLOv5 architecture, which

contain feature map data, in addition to the final detection layer

(as shown in Fig. 4). This modification produces an output that

includes both detection data and feature map data.

 Detection Data: The detection output includes bounding
boxes and class probabilities for small, medium, and
large objects, aggregated into a tensor of shape (1, 10647,
85). Specifically, the dimensions 52×52×3×85,
28×28×3×85, and 13×13×3×85 correspond to the
detection outputs for small, medium, and large objects,
respectively. Here, the grid cell size (e.g., 52×52) refers
to the resolution of the detection, the number 3 represents
the number of anchor boxes per grid cell, and the 85
elements represent the prediction output for each
detection.

 Feature Map Data: The feature map output consists of
three tensors representing the features extracted from the
backbone layers for each object size. These feature maps
are organized in grids of vectors, where each vector is a
feature vector for a grid cell. The backbone generates
three different vector sizes (128, 256, and 512) for small,
medium, and large objects, respectively.

Fig. 4. A representation of the output data extracted from YOLOv5 layers in

our algorithm.

b) Association between detection data and feature data:

After the model makes its predictions, an association step is

performed to map each detected object to its corresponding grid

cell in the feature maps to identify its appearance feature. This

process involves identifying the spatial locations of object

centers within the grid. Since YOLOv5 uses different grid sizes

for detection (small (26x26), medium (52x52), and large

(13x13)), each object may be represented by multiple detection

instances across different grids. Each detection instance is

associated with a vector of dimension 85, which includes the

object's bounding box coordinates and class information. The

feature map data from the grid cell that contains the center of

the bounding box is used to represent the object (Fig. 5).

Subsequently, the grid cells are mapped to bounding boxes

where the box center lies within the grid cell region. This step

ensures that all relevant backbone feature vectors are accessible

for each detected object.

c) Object clustering: Typically, a non-maximum

suppression (NMS) process is applied to remove redundant

bounding boxes and retain only the most confident detection.

However, in our approach, we aim to extract both bounding box

and feature map data. To achieve this, we replace NMS with an

Object Clustering (OC) module. The OC module works

similarly to NMS, using the IoU (Intersection over Union)

metric to compare object overlap. However, instead of

eliminating redundant bounding boxes, the OC clusters

detections of the same object. This approach allows us to retain

all associated feature data, which contributes more effectively

to the appearance-based association process.

Fig. 5. Example of cell location on different feature grids.

2) Modified appearance similarity process: In the original

DeepSORT, a feature bank (or gallery) mechanism is employed

to retain long-term appearance information about targets, aiding

in recovering object identities after long-term occlusions. This

mechanism calculates the appearance similarity between a

detection and a tracked target by storing up to 100 appearance

descriptors for each track. The similarity is determined by the

smallest cosine distance between the detection's appearance

vector and the stored vectors in the feature bank. These

appearance descriptors are obtained through a pre-trained CNN

embedding model. However, this CNN model in DeepSORT

contains 2,800,864 parameters and processing a batch of 32

bounding boxes takes approximately 30 ms on an Nvidia

GeForce GTX 1050 mobile GPU. On embedded devices or

devices with limited resources, especially those without GPU

capability, the processing time may increase significantly.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

662 | P a g e

www.ijacsa.thesai.org

To optimize the tracker for such devices, we propose
extracting the appearance similarity without relying on the CNN
model. Instead, we leverage the feature map vectors generated
during the detection process. As discussed earlier, our detection
process associates each detected object with its corresponding
feature map vectors extracted from the YOLOv5 neck. The
number of feature vectors varies depending on the number of
predicted detections for that object, and these vectors differ in
dimensionality based on the three grid sizes used in YOLOv5’s
detection process. These feature vectors are stored for each
object in what we refer to as an object cluster. An object cluster
consists of all the feature vectors associated with the multiple
predicted detections of the same object resulted from the
previous modified detection phase.

For example, in YOLOv5s, the grid for small objects
(52x52) generates feature vectors with a dimensionality of 128,
the grid for medium-sized objects (26x26) produces vectors with
a dimensionality of 256, and the grid for large objects (13x13)
creates vectors with a dimensionality of 512. Considering these
feature vectors, we propose an approach that evaluates
appearance similarity by comparing vectors of the same size
between two objects.

Algorithm 1 outlines the steps for calculating appearance
similarity between a detection D and a track T. First, we divide
the feature vectors into three sets based on their dimensions
(128, 256, and 512). Then, we compute the similarity score for
each set as the minimum cosine distance between corresponding
vectors. The final appearance similarity score is determined by
taking the overall minimum of these three scores.

Simil(DFDim ,TFDim)=min{cos(dfi , tfj) | dfi ∈ DFDim , tfj ∈ TFDim}(Eq.1)

Algorithm 1 Appearance Similarity between two objects

Input: DF = {df1, . . . , dfn}, // features of object 1

 TF = {tf1, . . . , tfn} // features of object 2

1: (DF128 , DF256 , DF512) = separate_by_size(DF)

2: (TF128 , TF256 , TF512) = separate_by_size(TF)

3: simil128 = Simil(DF128 , TF128) using Eq. 1

4: simil256 = Simil(DF256 , TF256) using Eq. 1

5: simil512 = Simil(DF512 , TF512) using Eq. 1

6: return min{ simil128, simil256 , simil512 }

IV. EXPERIMENTS

To evaluate the performance of our proposed tracking
algorithm, we conducted a series of experiments using real-
world highway surveillance videos. We compared the tracking
accuracy, robustness, and computational efficiency of our
algorithm against the state-of-the-art SORT and DeepSORT
algorithms. The video sequences used for testing captured a
variety of challenging traffic scenarios, including high-density
traffic and occlusions, to thoroughly assess the algorithm's
performance under realistic conditions.

For our experiments, we utilized a locally collected traffic
video dataset comprising over 10,000 frames. This dataset
captures real-world urban traffic scenarios with varying
numbers of vehicles, ranging from light traffic to highly
congested conditions. It includes challenging situations such as
shadowing caused by varying lighting conditions throughout the

day and occlusions resulting from vehicles overlapping or
obstructing each other. The videos were recorded at a resolution
of 1920x1080 and a frame rate of 30 fps, ensuring high-quality
imagery for accurate detection and tracking. The dataset
encompasses different times of the day and weather conditions,
providing a comprehensive set of challenges for evaluating the
robustness and scalability of our proposed tracking approach.

The experiments were performed on a Windows machine
equipped with an Intel Xeon Silver 4110 CPU @ 2.10 GHz and
32 GB of RAM. To simulate low-resource environments, we
deployed our tracker within a Docker container configured with
reduced resources, specifically 4 CPU cores and 4 GB of RAM,
to mimic the capabilities of edge devices. This setup allowed us
to assess the feasibility of deploying our algorithm on resource-
constrained platforms without compromising its real-time
performance.

To evaluate the computational efficiency of our algorithm,
we measured the average processing time required to track
varying numbers of vehicles in the scene. This processing time
represents the duration needed to perform the tracking task for
each frame, excluding the object detection phase. This metric
provided valuable insights into the performance of our
algorithm, particularly in terms of calculating appearance
similarity and data association, under different workload
conditions.

To assess the scalability of our method, we analyzed its
performance across scenes with varying numbers of vehicles.
Table I illustrates the processing time per frame (in
milliseconds) relative to the number of detected vehicles
compared to DeepSORT and SORT. Additionally, Fig. 6
provides a graphical representation of the data in Table I,
offering a visual comparison of the processing times between
the algorithms. Our findings revealed that, on average, the
processing time of our tracker is about 25 % of the time required
by DeepSORT, and approximately 10% higher than SORT.
These results underscore the significant computational
efficiency of our tracker, as it maintains near-constant
processing time as the number of vehicles increases,
demonstrating efficient scalability. This consistent performance
is critical for real-time applications in ITS, where traffic density
can fluctuate significantly.

TABLE I. MEASURED PROCESSING TIMES IN MILLISECONDS FOR EACH

ALGORITHM WITH VARYING NUMBERS OF VEHICLES

Number of Vehicles DEEP SORT SORT Our Tracker

1 24,58 2,23 2,97

2 39,75 3,82 7,01

3 52,43 5,80 12,77

4 65,14 7,85 20,71

5 73,83 10,37 31,21

6 87,07 12,38 38,08

7 96,49 12,69 42,06

Avg Proce. time 45,01 6,83 11,38

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

663 | P a g e

www.ijacsa.thesai.org

Fig. 6. Visual comparison of the processing times between our algorithm

and the DeepSORT and SORT.

To evaluate the accuracy of our tracker, instead of using
manually annotated video sequences with ground truth object
trajectories, we opted to compare our tracking results directly
with those of DeepSORT, which achieved a perfect score in our
scenarios. We employed an error rate metric, calculated by
summing the number of misses and false matches, then dividing
by the total number of matches. This metric provides a
comprehensive assessment of the accuracy and reliability of our
algorithm under various conditions, with lower error rates
indicating higher tracking accuracy.

To assess the robustness of our tracker, we introduced real-
world uncertainty by simulating missed detections with a certain
probability. We utilized a parameter called the skip detection
rate, which we tested with three values: 0%, 25%, and 50%. This
parameter simulates scenarios of missed detections by
occasionally sending an empty detection output to the tracker.
This test allowed us to evaluate the tracker's ability to re-identify
objects through appearance association, even after missed
detections, providing valuable insights into its reliability for
real-world applications.

TABLE II. A COMPARISON BETWEEN THE ERROR RATES OF OUR

TRACKER AND SORT REGARDING VARIOUS SKIP RATE VALUES

Skip rate 0% 25% 50%

Algorithm
Our
tracker

SOR
T

Our

track

er

SORT

Our

track

er

SORT

Miss

matches
34 92 53 1048 50 1164

False

matches
2 0 6 2 14 0

Total

matches
8369 8362 6119 5949 3783 3661

Error Rate 0,43%
1,10

%
0,96

%

17,65

%
1,69

%

31,79

%

Table II presents the accuracy performance results of our
tracker compared to SORT across three scenarios of skip
detection rates: 0%, 25%, and 50%. DeepSORT was excluded
from the comparison due to its perfect accuracy score in all
scenarios.

The results show that under normal conditions (i.e., without
skip detections) both our tracker and SORT achieve high
accuracy with very low error rates. Notably, our tracker achieves
an error rate of 0.43%, outperforming SORT, which records an

error rate of 1.10%. In more challenging scenarios with non-zero
skip detection rates, our tracker demonstrates a significant
advantage. At skip rates of 25% and 50%, our tracker achieves
error rates of 0.96% and 1.69%, respectively, while SORT
shows much higher error rates of 17.65% and 31.79%. These
results highlight the superior robustness of our tracker in
handling missed detections compared to SORT (Fig. 7).

Fig. 7. Sample of tracking results visualization using our lightweight tracker.

V. DISCUSSION

The experimental results confirm that our modified
lightweight DeepSORT variant significantly reduces
computational requirements while maintaining high tracking
accuracy. This improvement addresses a critical barrier in
deploying effective ITS solutions on edge devices, enabling
more widespread and efficient traffic monitoring systems. Our
approach demonstrates that leveraging features directly from
YOLOv5 detections is an effective strategy for reducing
overhead without sacrificing performance. This finding suggests
a paradigm shift in multi-object tracking, where the integration
of detection and tracking components can lead to more
streamlined and efficient algorithms.

One of the key insights from our study is that integrating
detection and appearance features can lead to more efficient
multi-object tracking solutions suitable for real-time
deployment. However, we acknowledge that testing on a single,
localized dataset may limit the generalizability of our findings.
Evaluating the method on additional datasets, possibly from
different regions or with different characteristics, would further
substantiate its scalability.

One challenge we observed is that in highly congested
scenes, the absence of an additional CNN descriptor slightly
affected the appearance similarity process, occasionally leading
to some miss matching and ID switches. This issue could be
addressed in future work by incorporating further improvements
to the processing method. Some of these improvements could
include exploring optimized adaptive association mechanisms
and integrating more recent and enhanced detection models to
further improve performance. We also we aims to investigate the
integration of our tracking algorithm with other ITS
components, such as traffic prediction models and anomaly
detection systems.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7

DEEP SORT Our Tracker SORT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 10, 2024

664 | P a g e

www.ijacsa.thesai.org

A promising direction for improvement is training the
detector on a specialized dataset enriched with detailed
annotations. By labeling objects with attributes like distinct
colors, shapes, and varied viewing angles, the detector's
backbone network can learn to recognize more discriminative
features. This enhancement would significantly improves its
ability to differentiate between objects, particularly in complex
traffic scenarios with similar-looking vehicles or difficult
perspectives, leading to more accurate and reliable tracking.

VI. CONCLUSION

In this paper, we present a novel lightweight tracking
algorithm designed specifically for vehicle tracking in
Intelligent Transportation Systems (ITS). By leveraging the
predictability of vehicle trajectories and optimizing the
DeepSORT workflow, we propose an algorithm that strikes a
balance between accuracy and computational efficiency,
making it well-suited for deployment on resource-constrained
edge devices. Our approach utilizes features extracted from the
detector network as a source of appearance information for the
appearance matching task, effectively eliminating the need for
the traditional CNN descriptor used in DeepSORT. This
significantly reduces the computational load of our tracking
algorithm. Experiments with real-world traffic surveillance data
reveal that our tracker not only outperforms traditional methods
like SORT in tracking accuracy but also significantly reduces
processing time compared to DeepSORT. This efficiency is
crucial for real-time applications on resource-constrained
devices. However, some scenarios when a large number of
features are extracted with objects, the algorithm can encounter
some challenges, as the similarity calculation becomes
computationally demanding. To address this, we plan in future
works to add a new feature limitation mechanism that adjust the
number of features used in the similarity processing, allowing
users to tradeoff between efficiency and accuracy. Additionally,
we aim to enhance the detector by training it on specialized
datasets to improve object distinction. We also intend to evaluate
the effectiveness of our method on devices like the Raspberry Pi
to assess its performance on typical edge computing hardware
and explore its applicability in more general use cases within
ITS.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, et A. Farhadi, « You Only Look
Once: Unified, Real-Time Object Detection », in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA: IEEE, juin 2016, p. 779‑788. doi: 10.1109/CVPR.2016.91.

[2] S. Ren, K. He, R. Girshick, et J. Sun, « Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks », in Advances in
Neural Information Processing Systems, Curran Associates, Inc., 2015.
Consulté le: 19 septembre 2022. [En ligne]. Disponible sur:
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba0
28a21ed38046-Abstract.html

[3] N. Wojke, A. Bewley, et D. Paulus, « Simple Online and Realtime
Tracking with a Deep Association Metric », 21 mars 2017, arXiv:
arXiv:1703.07402. doi: 10.48550/arXiv.1703.07402.

[4] Z. Zhang et H. Peng, « Deeper and Wider Siamese Networks for Real-
Time Visual Tracking », présenté à Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, p.
4591‑4600. Consulté le: 28 avril 2024. [En ligne]. Disponible sur:
https://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Deeper
_and_Wider_Siamese_Networks_for_Real-
Time_Visual_Tracking_CVPR_2019_paper.html

[5] C. Duan et X. Li, « Multi-target Tracking Based on Deep Sort in Traffic
Scene », J. Phys.: Conf. Ser., vol. 1952, no 2, p. 022074, juin 2021, doi:
10.1088/1742-6596/1952/2/022074.

[6] H. A. Abdelali, H. Derrouz, Y. Zennayi, R. O. H. Thami, et F. Bourzeix,
« Multiple Hypothesis Detection and Tracking Using Deep Learning for
Video Traffic Surveillance », IEEE Access, vol. 9, p. 164282‑164291,
2021, doi: 10.1109/ACCESS.2021.3133529.

[7] M. Anandhalli, V. P. Baligar, P. Baligar, P. Deepsir, et M. Iti, « Vehicle
detection and tracking for traffic management », IJ-AI, vol. 10, no 1, p.
66, mars 2021, doi: 10.11591/ijai.v10.i1.pp66-73.

[8] A. El-Alami, Y. Nadir, L. Amhaimar, et K. Mansouri, « An efficient
hybrid approach for vehicle detection and tracking », in 2023 10th
International Conference on Wireless Networks and Mobile
Communications (WINCOM), oct. 2023, p. 1‑8. doi:
10.1109/WINCOM59760.2023.10322924.

[9] A. El-Alami, Y. Nadir, et K. Mansouri, « A hybrid vehicle tracking
System for Low-power Embedded Devices », in 2024 International
Conference on Circuit, Systems and Communication (ICCSC), juin 2024,
p. 1‑6. doi: 10.1109/ICCSC62074.2024.10617125.

[10] Z. Charouh, A. Ezzouhri, M. Ghogho, et Z. Guennoun, « A Resource-
Efficient CNN-Based Method for Moving Vehicle Detection », Sensors,
vol. 22, no 3, Art. no 3, janv. 2022, doi: 10.3390/s22031193.

[11] T.-Y. Lin et al., « Microsoft COCO: Common Objects in Context », 20
février 2015, arXiv: arXiv:1405.0312. Consulté le: 18 juin 2023. [En
ligne]. Disponible sur: http://arxiv.org/abs/1405.0312

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, et A. Zisserman,
« The Pascal Visual Object Classes (VOC) Challenge », Int J Comput Vis,
vol. 88, no 2, p. 303‑338, juin 2010, doi: 10.1007/s11263-009-0275-4.

[13] R. Girshick, « Fast R-CNN », 27 septembre 2015, arXiv:
arXiv:1504.08083. Consulté le: 19 septembre 2022. [En ligne].
Disponible sur: http://arxiv.org/abs/1504.08083

[14] D. V. Tu, P. M. Quang, H. P. Nghi, et T. N. Thinh, « An Edge AI-Based
Vehicle Tracking Solution for Smart Parking Systems », in Intelligence
of Things: Technologies and Applications, N.-N. Dao, T. N. Thinh, et N.
T. Nguyen, Éd., in Lecture Notes on Data Engineering and
Communications Technologies. Cham: Springer Nature Switzerland,
2023, p. 234‑243. doi: 10.1007/978-3-031-46573-4_22.

[15] A. Benjumea, I. Teeti, F. Cuzzolin, et A. Bradley, « YOLO-Z: Improving
small object detection in YOLOv5 for autonomous vehicles », 3 janvier
2023, arXiv: arXiv:2112.11798. Consulté le: 7 avril 2024. [En ligne].
Disponible sur: http://arxiv.org/abs/2112.11798

[16] A. El-Alami, Y. Nadir, et K. Mansouri, « A review of object detection
approaches for traffic surveillance systems », International Journal of
Electrical and Computer Engineering (IJECE), vol. 14, no 5, Art. no 5,
oct. 2024, doi: 10.11591/ijece.v14i5.pp5221-5233.

[17] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, et B. Lee,
« A Survey of Modern Deep Learning based Object Detection Models »,
12 mai 2021, arXiv: arXiv:2104.11892. Consulté le: 7 septembre 2022.
[En ligne]. Disponible sur: http://arxiv.org/abs/2104.11892

[18] A. Bewley, Z. Ge, L. Ott, F. Ramos, et B. Upcroft, « Simple Online and
Realtime Tracking », in 2016 IEEE International Conference on Image
Processing (ICIP), sept. 2016, p. 3464‑3468. doi:
10.1109/ICIP.2016.7533003.

[19] M. Elhoseny, « Multi-object Detection and Tracking (MODT) Machine
Learning Model for Real-Time Video Surveillance Systems », Circuits
Syst Signal Process, vol. 39, no 2, p. 611‑630, févr. 2020, doi:
10.1007/s00034-019-01234-7.

