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Abstract—Object tracking plays a pivotal role in Intelligent 

Transportation Systems (ITS), enabling applications such as 

traffic monitoring, congestion management, and enhancing road 

safety in urban environments. However, existing object tracking 

algorithms like DeepSORT are computationally intensive, which 

hinders their deployment on resource-constrained edge devices 

essential for distributed ITS solutions. Urban mobility challenges 

necessitate efficient and accurate vehicle tracking to ensure 

smooth traffic flow and reduce accidents. In this paper, we present 

a modified lightweight variant of the DeepSORT algorithm 

tailored for vehicle tracking in traffic surveillance systems. By 

leveraging multi-dimensional features extracted directly from 

YOLOv5 detections, our approach eliminates the need for an 

additional convolutional neural network (CNN) descriptor and 

reduces computational overhead. Experiments on real-world 

traffic surveillance data demonstrate that our method reduces 

tracking time to 25.29% of that required by DeepSORT, with only 

a minimal increase over the simpler SORT algorithm. 

Additionally, it maintains low error rates between 0.43% and 

1.69% in challenging urban scenarios. Our lightweight solution 

facilitates efficient and accurate vehicle tracking on edge devices, 

contributing to more effective ITS deployments and improved 

road safety. 

Keywords—Distributed systems; intelligent transportation 

systems; edge computing; object tracking 

I. INTRODUCTION 

In the era of smart cities, integrating distributed Intelligent 
Transportation Systems (ITS) with edge computing marks a 
significant advancement in urban mobility. By processing data 
closer to the source, using embedded devices with traffic 
cameras rather than relying solely on centralized servers, ITS 
can enable real-time decision-making and responsiveness, even 
in resource-constrained environments. This decentralized 
approach improves system scalability, reduces latency, and 
enhances data privacy by processing sensitive information 
locally. Multiple Object Tracking (MOT), a core component of 
ITS, refers to tracking the trajectories of multiple objects across 
video frames. Recent advances in object detection and deep 
learning have made tracking-by-detection the dominant 
approach in MOT [1]. This approach formulates MOT as a data 
association task, linking newly detected objects with those 
already being tracked. 

Recent Multiple Object Tracking (MOT) systems are 
generally composed of three key components: the object 
detector, the embedding model, and the data association 
algorithm. The object detector localizes and identifies objects of 
interest within each frame, commonly using deep learning 
models such as YOLO [1], and Faster R-CNN [2]. The 
embedding model extracts representative features from the 
detected objects to capture their appearance characteristics. 
These embeddings combined with spatiotemporal parameters, 
are used to associate objects across frames and maintain 
consistent track identities. Finally, the data association 
algorithm links objects based on their appearance and 
spatiotemporal similarities. This is typically achieved through 
methods such as the Hungarian algorithm, as used in DeepSORT 
[3], or via deep learning-based techniques like Siamese 
networks or recurrent neural networks [4]. 

Current object detection and tracking algorithms, notably 
YOLOv5 and DeepSORT, have achieved high accuracy in 
multi-object tracking tasks. However, their computational 
intensity poses significant challenges for deployment on 
resource-constrained edge devices essential for distributed ITS. 
This limitation creates a challenge for the practical application 
of ITS, where real-time processing is crucial for urban mobility 
and road safety enhancements. To bridge this gap, we propose a 
lightweight variant of the DeepSORT algorithm that reduces 
computational overhead while maintaining tracking accuracy, 
making it suitable for edge computing environments [5], [6], [7], 
[8], [9], [10]. 

In this work, we propose a lightweight tracking algorithm 
that follows a similar workflow to DeepSORT, with a key 
modification in the appearance embedding step. Traditionally, 
this step relies on a dedicated CNN model as a descriptor to 
calculate appearance similarity between objects. While 
effective, CNN descriptors are computationally intensive, 
particularly for resource-constrained devices. To enhance the 
computational efficiency of the tracking process, we eliminate 
the CNN descriptor and introduce an alternative strategy for 
object appearance extraction and association. 

Our strategy replaces the appearance features provided by 
the embedding model with data directly derived from the feature 
map generated during the initial detection phase. These feature 
maps, produced by the intermediate layers of the detector, 
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contain high-level abstract representations of the objects. 
Experiments demonstrate that these representations are a viable 
substitute for CNN descriptor features when calculating 
appearance similarity, reducing computational overhead without 
sacrificing tracking accuracy. 

The rest of this paper is structured as following. Section II 
discusses related work in object detection and multi-object 
tracking. In Section III, we present our proposed tracking 
approach, starting with its background methods (i.e. YOLOv5 
and DeepSORT), followed by a detailed explanation of our 
lightweight DeepSORT variant, including the modified 
detection and appearance similarity processes. Section IV 
describes our experimental setup and shows the results. In 
conclusion section, we summarizing our contributions and 
suggesting future research directions. 

II. RELATED WORK 

In this section, we present a review of key works related to 
object detection and multi-object tracking. 

A. Object Detection 

Since the introduction of deep convolutional neural 
networks (CNNs), numerous object detection approaches have 
emerged, leveraging large open datasets such as COCO [11] and 
Pascal VOC [12]. Early detectors followed a two-stage process, 
beginning with region proposal generation, followed by object 
classification and refinement. Models like Fast R-CNN [13] and 
Faster R-CNN enhanced both speed and accuracy by improving 
feature extraction and region proposal methods. Despite their 
effectiveness, two-stage detectors often face computational 
inefficiencies due to their sequential processing structure. 

The introduction of YOLO (You Only Look Once) [1] in 
2016 marked a significant shift towards one-stage detectors, 
which focus on simultaneous detection and classification. 
Subsequent versions of YOLO have made considerable strides 
in performance, particularly in real-time applications, by 
refining this one-stage detection approach. Recent YOLO 
versions, such as YOLOv5, YOLOv7-tiny, YOLOv8s, and 
YOLOv9s, offer lightweight models optimized for devices with 
limited computational power, making them well-suited for edge 
devices and real-time object detection tasks  [15], [16], [17]. 

B. Multi-Object Tracking 

In recent years, tracking-by-detection (TBD) has emerged as 
the dominant paradigm in Multiple Object Tracking (MOT), 
driven by the increasing capabilities of object detectors. In the 
TBD approach, tracking begins with the detection of target 
objects in each frame, followed by the extraction of image crops 
and spatial parameters based on the objects' bounding boxes. 
Tracking is then achieved by establishing correspondences 
between objects in consecutive frames using the extracted data. 
To facilitate this, a similarity matrix is constructed using 
parameters such as distance, IoU (Intersection over Union), and 
appearance features. Algorithms like the Hungarian algorithm 
or greedy algorithm are commonly used to solve this assignment 
problem. 

To further improve tracking performance, state estimation 
algorithms are employed to predict the positions of tracked 
objects based on their spatiotemporal characteristics. Notable 
state estimation methods include Kalman filters, particle filters, 
and Gaussian processes. Two of the most widely recognized 
tracking algorithms in MOT are SORT (Simple Online and 
Realtime Tracking) [18] and DeepSORT. 

SORT is an efficient algorithm that uses a Kalman filter for 
state estimation and Hungarian matching for data association. It 
focuses solely on objects' positions, making it highly effective 
in real-time scenarios. However, in more challenging 
conditions, such as complex motion patterns, occlusions or 
missed detections, SORT may produce incorrect associations, 
leading to identity switches and reduced tracking robustness. To 
address these limitations, DeepSORT extends SORT by 
incorporating cascade matching for enhanced data association. 
In addition to spatial similarity, DeepSORT uses appearance 
similarity to refine associations between detected objects and 
existing tracks, improving tracking robustness in more complex 
environments [8], [9], [14], [19]. 

III. PROPOSED TRACKING APPROACH 

Our proposed approach consists of an optimized tracking 
algorithm based on DeepSORT, designed to run efficiently in 
terms of processing time while maintaining high tracking 
accuracy. Our main contribution is the development of a 
modified tracking algorithm based on YOLOv5 and 
DeepSORT, incorporating novel methods for appearance 
feature extraction and appearance similarity calculation. This 
innovation allows us to eliminate the need for the CNN model 
traditionally used in DeepSORT for the appearance-embedding 
task. By removing the CNN model, we significantly reduce the 
vehicle tracking time, making the algorithm more suitable for 
deployment on devices with limited computational resources. 

A. Background 

1) YOLOv5: In our implementation, we utilized the 

publicly available YOLOv5s detector, trained on the COCO 

dataset, with an input image size of 416 × 416. YOLOv5 is a 

widely-used single-stage object detector, known for its clear 

and flexible architecture, offering high precision and speed. It 

is available in five different scales: N, S, M, L, and X, 

representing Nano, Small, Medium, Large, and Xlarge models, 

respectively. Each variant maintains the same overall structure, 

scaling the depth and width to improve detection performance. 

A key feature of the YOLO architecture is its grid-based 
approach, which divides the input image into spatial cells. This 
division allows YOLOv5 to perform object detection at multiple 
spatial resolutions simultaneously, enabling the model to detect 
objects of varying sizes and aspect ratios across the image. Each 
cell is responsible for predicting the bounding box coordinates 
and associated class probabilities for objects within its spatial 
region, as illustrated in Fig. 1. For our experiments, we chose 
the small model (YOLOv5s) due to its optimal trade-off between 
precision and speed. 
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Fig. 1. Example of multiple steps in grid-based approach used in YOLO. 

As shown in Fig. 2, the three main components of the 
YOLOv5 architecture typically include: 

 Backbone: The backbone is responsible for extracting 
features from the input image and is composed of 
multiple convolutional layers arranged hierarchically. 
These layers progressively capture higher-level features 
from the image, enabling the detection of objects of 
interest by analyzing patterns, edges, and textures at 
different levels of abstraction. 

 Neck: Positioned between the backbone and head, the 
neck is responsible for additional feature fusion and 
refinement. Its primary function is to aggregate data 
extracted at various scales and levels of abstraction by 
the backbone, ensuring that the model can effectively 
capture both spatial and contextual information. This 
step enhances the overall detection performance by 
combining fine details and broader contextual features 
before passing them to the detection head. 

 Head: The head receives the refined feature maps from 
the neck and processes them to generate the final 
detection results. Its layers are designed to predict 
bounding boxes, objectness scores, and class 
probabilities, which are used to determine the locations, 
presence, and categories of objects within the image. 

 
Fig. 2. Abstract overview of YOLOv5 default structure with an input size of 

416×416. 

2) DeepSORT: DeepSORT builds on the efficiency of the 

traditional SORT algorithm while incorporating the 

discriminative power of deep appearance features. Its workflow 

integrates object detection, feature extraction, data association, 

and track management to deliver robust tracking results. The 

DeepSORT workflow can be summarized as follows: 

 Detection: The process starts with detecting objects in 
each frame using an object detector, providing bounding 
boxes around the detected objects, which serve as input 
for the tracking process. 

 State Estimation: The Kalman Filter (KF) is employed 
for state prediction, estimating the future states of 
detected objects based on their current states. This 
estimation is important for the tracking of each object 
across frames, especially in cases where an object's 
detection might be shortly missed. 

 Similarity measurement: Multiple metrics are used to 
calculate object similarity. Mahalanobis distance 
measures the spatial relationship between predicted 
states and new detections, while appearance descriptors 
assess visual similarity. Intersection Over Union (IoU) 
evaluates the overlap between bounding boxes. These 
metrics are combined to ensure accurate object 
association for effective tracking. 

 Data Association: The Hungarian algorithm is used to 
associate detected objects with existing tracks, based on 
predicted states from the Kalman filter and appearance 
similarities. This assignment problem combines two 
metrics: object location and appearance information. 
DeepSORT’s cascade matching prioritizes more 
frequently seen objects, reducing unstable tracks caused 
by missed detections. In the final stage, an IoU 
association is performed for any remaining unmatched 
targets. 

 Track Management: After data association, tracks are 
updated with their associated detections. New tracks are 
initialized for unassociated detections, and existing 
tracks are updated for the next frame using the Kalman 
filter. 

B. Proposed Lightweight Deep SORT Variant 

To implement our lightweight variant of DeepSORT, we 
modified existing modules and introduced new ones to optimize 
the overall tracking process. The key adjustments made to 
transition from DeepSORT to our lightweight version include: 

 Simultaneous detection and appearance feature 
extraction: We streamlined the detection process by 
enabling the simultaneous extraction of both detection 
data and appearance features. This eliminates the need 
for a separate embedding model, significantly reducing 
the computational overhead. 

 Adaptation of the appearance similarity process: We 
adapted the appearance similarity calculation to match 
the new format of the features obtained from the 
detection phase. This adjustment ensures seamless 
integration with our new feature extraction process. 

In the following, we provide a detailed explanation of the 
key adjustments made to our algorithm. 
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1) Modified detection process: Originally, DeepSORT 

employs two CNN models: the first functions as an object 

detector, returning bounding boxes around targets, while the 

second is a simple CNN descriptor that generates appearance 

features for those bounding boxes. As mentioned earlier, our 

approach eliminates the need for a separate CNN model. To 

maintain appearance association in our algorithm without using 

a CNN descriptor, we replace the appearance features generated 

by this descriptor with feature map data associated with the 

bounding boxes. These feature maps are extracted by 

YOLOv5's backbone during the detection phase. To extract 

both feature map data and detection data simultaneously, we 

implemented several key steps (as shown in Fig. 3), including: 

 
Fig. 3. Workflow of our proposed tracking system. 

a) Access detection data and feature data from YOLO: 

This step involves modifying the model inference process to 

access intermediate layers of the YOLOv5 architecture, which 

contain feature map data, in addition to the final detection layer 

(as shown in Fig. 4). This modification produces an output that 

includes both detection data and feature map data. 

 Detection Data: The detection output includes bounding 
boxes and class probabilities for small, medium, and 
large objects, aggregated into a tensor of shape (1, 10647, 
85). Specifically, the dimensions 52×52×3×85, 
28×28×3×85, and 13×13×3×85 correspond to the 
detection outputs for small, medium, and large objects, 
respectively. Here, the grid cell size (e.g., 52×52) refers 
to the resolution of the detection, the number 3 represents 
the number of anchor boxes per grid cell, and the 85 
elements represent the prediction output for each 
detection. 

 Feature Map Data: The feature map output consists of 
three tensors representing the features extracted from the 
backbone layers for each object size. These feature maps 
are organized in grids of vectors, where each vector is a 
feature vector for a grid cell. The backbone generates 
three different vector sizes (128, 256, and 512) for small, 
medium, and large objects, respectively. 

 
Fig. 4. A representation of the output data extracted from YOLOv5 layers in 

our algorithm. 

b) Association between detection data and feature data: 

After the model makes its predictions, an association step is 

performed to map each detected object to its corresponding grid 

cell in the feature maps to identify its appearance feature. This 

process involves identifying the spatial locations of object 

centers within the grid. Since YOLOv5 uses different grid sizes 

for detection (small (26x26), medium (52x52), and large 

(13x13)), each object may be represented by multiple detection 

instances across different grids. Each detection instance is 

associated with a vector of dimension 85, which includes the 

object's bounding box coordinates and class information. The 

feature map data from the grid cell that contains the center of 

the bounding box is used to represent the object (Fig. 5). 

Subsequently, the grid cells are mapped to bounding boxes 

where the box center lies within the grid cell region. This step 

ensures that all relevant backbone feature vectors are accessible 

for each detected object. 

c) Object clustering: Typically, a non-maximum 

suppression (NMS) process is applied to remove redundant 

bounding boxes and retain only the most confident detection. 

However, in our approach, we aim to extract both bounding box 

and feature map data. To achieve this, we replace NMS with an 

Object Clustering (OC) module. The OC module works 

similarly to NMS, using the IoU (Intersection over Union) 

metric to compare object overlap. However, instead of 

eliminating redundant bounding boxes, the OC clusters 

detections of the same object. This approach allows us to retain 

all associated feature data, which contributes more effectively 

to the appearance-based association process. 

 

Fig. 5. Example of cell location on different feature grids. 

2) Modified appearance similarity process: In the original 

DeepSORT, a feature bank (or gallery) mechanism is employed 

to retain long-term appearance information about targets, aiding 

in recovering object identities after long-term occlusions. This 

mechanism calculates the appearance similarity between a 

detection and a tracked target by storing up to 100 appearance 

descriptors for each track. The similarity is determined by the 

smallest cosine distance between the detection's appearance 

vector and the stored vectors in the feature bank. These 

appearance descriptors are obtained through a pre-trained CNN 

embedding model. However, this CNN model in DeepSORT 

contains 2,800,864 parameters and processing a batch of 32 

bounding boxes takes approximately 30 ms on an Nvidia 

GeForce GTX 1050 mobile GPU. On embedded devices or 

devices with limited resources, especially those without GPU 

capability, the processing time may increase significantly. 
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To optimize the tracker for such devices, we propose 
extracting the appearance similarity without relying on the CNN 
model. Instead, we leverage the feature map vectors generated 
during the detection process. As discussed earlier, our detection 
process associates each detected object with its corresponding 
feature map vectors extracted from the YOLOv5 neck. The 
number of feature vectors varies depending on the number of 
predicted detections for that object, and these vectors differ in 
dimensionality based on the three grid sizes used in YOLOv5’s 
detection process. These feature vectors are stored for each 
object in what we refer to as an object cluster. An object cluster 
consists of all the feature vectors associated with the multiple 
predicted detections of the same object resulted from the 
previous modified detection phase. 

For example, in YOLOv5s, the grid for small objects 
(52x52) generates feature vectors with a dimensionality of 128, 
the grid for medium-sized objects (26x26) produces vectors with 
a dimensionality of 256, and the grid for large objects (13x13) 
creates vectors with a dimensionality of 512. Considering these 
feature vectors, we propose an approach that evaluates 
appearance similarity by comparing vectors of the same size 
between two objects. 

Algorithm 1 outlines the steps for calculating appearance 
similarity between a detection D and a track T. First, we divide 
the feature vectors into three sets based on their dimensions 
(128, 256, and 512). Then, we compute the similarity score for 
each set as the minimum cosine distance between corresponding 
vectors. The final appearance similarity score is determined by 
taking the overall minimum of these three scores. 

Simil(DFDim ,TFDim)=min{cos(dfi , tfj) | dfi ∈ DFDim , tfj ∈ TFDim}(Eq.1)  

Algorithm 1 Appearance Similarity between two objects  

Input:  DF = {df1, . . . , dfn},    // features of object 1 

        TF = {tf1, . . . , tfn}       // features of object 2 

1: (DF128 , DF256 , DF512) = separate_by_size(DF) 

2: (TF128 , TF256  , TF512) = separate_by_size(TF) 

3: simil128 = Simil( DF128 ,  TF128 )  using Eq. 1 

4: simil256 = Simil( DF256 ,  TF256 )  using Eq. 1 

5: simil512 = Simil( DF512 ,  TF512 )  using Eq. 1 

6: return min{ simil128, simil256 , simil512 } 

IV. EXPERIMENTS 

To evaluate the performance of our proposed tracking 
algorithm, we conducted a series of experiments using real-
world highway surveillance videos. We compared the tracking 
accuracy, robustness, and computational efficiency of our 
algorithm against the state-of-the-art SORT and DeepSORT 
algorithms. The video sequences used for testing captured a 
variety of challenging traffic scenarios, including high-density 
traffic and occlusions, to thoroughly assess the algorithm's 
performance under realistic conditions. 

For our experiments, we utilized a locally collected traffic 
video dataset comprising over 10,000 frames. This dataset 
captures real-world urban traffic scenarios with varying 
numbers of vehicles, ranging from light traffic to highly 
congested conditions. It includes challenging situations such as 
shadowing caused by varying lighting conditions throughout the 

day and occlusions resulting from vehicles overlapping or 
obstructing each other. The videos were recorded at a resolution 
of 1920x1080 and a frame rate of 30 fps, ensuring high-quality 
imagery for accurate detection and tracking. The dataset 
encompasses different times of the day and weather conditions, 
providing a comprehensive set of challenges for evaluating the 
robustness and scalability of our proposed tracking approach. 

The experiments were performed on a Windows machine 
equipped with an Intel Xeon Silver 4110 CPU @ 2.10 GHz and 
32 GB of RAM. To simulate low-resource environments, we 
deployed our tracker within a Docker container configured with 
reduced resources, specifically 4 CPU cores and 4 GB of RAM, 
to mimic the capabilities of edge devices. This setup allowed us 
to assess the feasibility of deploying our algorithm on resource-
constrained platforms without compromising its real-time 
performance. 

To evaluate the computational efficiency of our algorithm, 
we measured the average processing time required to track 
varying numbers of vehicles in the scene. This processing time 
represents the duration needed to perform the tracking task for 
each frame, excluding the object detection phase. This metric 
provided valuable insights into the performance of our 
algorithm, particularly in terms of calculating appearance 
similarity and data association, under different workload 
conditions. 

To assess the scalability of our method, we analyzed its 
performance across scenes with varying numbers of vehicles. 
Table I illustrates the processing time per frame (in 
milliseconds) relative to the number of detected vehicles 
compared to DeepSORT and SORT. Additionally, Fig. 6 
provides a graphical representation of the data in Table I, 
offering a visual comparison of the processing times between 
the algorithms. Our findings revealed that, on average, the 
processing time of our tracker is about 25 % of the time required 
by DeepSORT, and approximately 10% higher than SORT. 
These results underscore the significant computational 
efficiency of our tracker, as it maintains near-constant 
processing time as the number of vehicles increases, 
demonstrating efficient scalability. This consistent performance 
is critical for real-time applications in ITS, where traffic density 
can fluctuate significantly. 

TABLE I. MEASURED PROCESSING TIMES IN MILLISECONDS FOR EACH 

ALGORITHM WITH VARYING NUMBERS OF VEHICLES  

# Number of Vehicles DEEP SORT SORT Our Tracker 

1 24,58 2,23 2,97 

2 39,75 3,82 7,01 

3 52,43 5,80 12,77 

4 65,14 7,85 20,71 

5 73,83 10,37 31,21 

6 87,07 12,38 38,08 

7 96,49 12,69 42,06 

Avg Proce. time 45,01 6,83 11,38 
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Fig. 6. Visual comparison of the processing times between our algorithm 

and the DeepSORT and SORT. 

To evaluate the accuracy of our tracker, instead of using 
manually annotated video sequences with ground truth object 
trajectories, we opted to compare our tracking results directly 
with those of DeepSORT, which achieved a perfect score in our 
scenarios. We employed an error rate metric, calculated by 
summing the number of misses and false matches, then dividing 
by the total number of matches. This metric provides a 
comprehensive assessment of the accuracy and reliability of our 
algorithm under various conditions, with lower error rates 
indicating higher tracking accuracy. 

To assess the robustness of our tracker, we introduced real-
world uncertainty by simulating missed detections with a certain 
probability. We utilized a parameter called the skip detection 
rate, which we tested with three values: 0%, 25%, and 50%. This 
parameter simulates scenarios of missed detections by 
occasionally sending an empty detection output to the tracker. 
This test allowed us to evaluate the tracker's ability to re-identify 
objects through appearance association, even after missed 
detections, providing valuable insights into its reliability for 
real-world applications. 

TABLE II. A COMPARISON BETWEEN THE ERROR RATES OF OUR 

TRACKER AND SORT REGARDING VARIOUS SKIP RATE VALUES 

Skip rate 0% 25% 50% 

Algorithm 
Our 
tracker 

SOR
T 

Our 

track

er 

SORT 

Our 

track

er 

SORT 

Miss 

matches 
34 92 53 1048 50 1164 

False 

matches 
2 0 6 2 14 0 

Total 

matches 
8369 8362 6119 5949 3783 3661 

Error Rate 0,43% 
1,10

% 
0,96

% 

17,65

% 
1,69

% 

31,79

% 

Table II presents the accuracy performance results of our 
tracker compared to SORT across three scenarios of skip 
detection rates: 0%, 25%, and 50%. DeepSORT was excluded 
from the comparison due to its perfect accuracy score in all 
scenarios. 

The results show that under normal conditions (i.e., without 
skip detections) both our tracker and SORT achieve high 
accuracy with very low error rates. Notably, our tracker achieves 
an error rate of 0.43%, outperforming SORT, which records an 

error rate of 1.10%. In more challenging scenarios with non-zero 
skip detection rates, our tracker demonstrates a significant 
advantage. At skip rates of 25% and 50%, our tracker achieves 
error rates of 0.96% and 1.69%, respectively, while SORT 
shows much higher error rates of 17.65% and 31.79%. These 
results highlight the superior robustness of our tracker in 
handling missed detections compared to SORT (Fig. 7). 

 

Fig. 7. Sample of tracking results visualization using our lightweight tracker. 

V. DISCUSSION 

The experimental results confirm that our modified 
lightweight DeepSORT variant significantly reduces 
computational requirements while maintaining high tracking 
accuracy. This improvement addresses a critical barrier in 
deploying effective ITS solutions on edge devices, enabling 
more widespread and efficient traffic monitoring systems. Our 
approach demonstrates that leveraging features directly from 
YOLOv5 detections is an effective strategy for reducing 
overhead without sacrificing performance. This finding suggests 
a paradigm shift in multi-object tracking, where the integration 
of detection and tracking components can lead to more 
streamlined and efficient algorithms. 

One of the key insights from our study is that integrating 
detection and appearance features can lead to more efficient 
multi-object tracking solutions suitable for real-time 
deployment. However, we acknowledge that testing on a single, 
localized dataset may limit the generalizability of our findings. 
Evaluating the method on additional datasets, possibly from 
different regions or with different characteristics, would further 
substantiate its scalability. 

One challenge we observed is that in highly congested 
scenes, the absence of an additional CNN descriptor slightly 
affected the appearance similarity process, occasionally leading 
to some miss matching and ID switches. This issue could be 
addressed in future work by incorporating further improvements 
to the processing method. Some of these improvements could 
include exploring optimized adaptive association mechanisms 
and integrating more recent and enhanced detection models to 
further improve performance. We also we aims to investigate the 
integration of our tracking algorithm with other ITS 
components, such as traffic prediction models and anomaly 
detection systems. 
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A promising direction for improvement is training the 
detector on a specialized dataset enriched with detailed 
annotations. By labeling objects with attributes like distinct 
colors, shapes, and varied viewing angles, the detector's 
backbone network can learn to recognize more discriminative 
features. This enhancement would significantly improves its 
ability to differentiate between objects, particularly in complex 
traffic scenarios with similar-looking vehicles or difficult 
perspectives, leading to more accurate and reliable tracking. 

VI. CONCLUSION 

In this paper, we present a novel lightweight tracking 
algorithm designed specifically for vehicle tracking in 
Intelligent Transportation Systems (ITS). By leveraging the 
predictability of vehicle trajectories and optimizing the 
DeepSORT workflow, we propose an algorithm that strikes a 
balance between accuracy and computational efficiency, 
making it well-suited for deployment on resource-constrained 
edge devices. Our approach utilizes features extracted from the 
detector network as a source of appearance information for the 
appearance matching task, effectively eliminating the need for 
the traditional CNN descriptor used in DeepSORT. This 
significantly reduces the computational load of our tracking 
algorithm. Experiments with real-world traffic surveillance data 
reveal that our tracker not only outperforms traditional methods 
like SORT in tracking accuracy but also significantly reduces 
processing time compared to DeepSORT. This efficiency is 
crucial for real-time applications on resource-constrained 
devices. However, some scenarios when a large number of 
features are extracted with objects, the algorithm can encounter 
some challenges, as the similarity calculation becomes 
computationally demanding. To address this, we plan in future 
works to add a new feature limitation mechanism that adjust the 
number of features used in the similarity processing, allowing 
users to tradeoff between efficiency and accuracy. Additionally, 
we aim to enhance the detector by training it on specialized 
datasets to improve object distinction. We also intend to evaluate 
the effectiveness of our method on devices like the Raspberry Pi 
to assess its performance on typical edge computing hardware 
and explore its applicability in more general use cases within 
ITS. 
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