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Abstract—The rapid evolution of blockchain technology calls 

for innovative educational frameworks to effectively convey its 

complex principles and applications. This paper investigates the 

use of Formal Concept Analysis (FCA) for constructing knowledge 

graphs as part of a blockchain teaching program. FCA, grounded 

in lattice theory, provides a mathematical foundation for 

analyzing relationships between concepts, making it an ideal tool 

for organizing and visualizing knowledge structure within 

blockchain education. This study aims to develop an interactive, 

context-based graph that captures the intricate interrelations 

among blockchain topics. The methodology includes mapping key 

blockchain concepts and their applications into a structured 

graph, which enhances both the understanding and the systematic 

delivery of educational content. The research demonstrates that 

FCA not only facilitates the creation of scalable and adaptable 

educational materials but also enhances students' conceptual 

understanding by presenting the interconnected nature of 

blockchain concepts in an accessible format. Knowledge graph 

aids in identifying interconnected learning outcomes that cover 

overlapping subjects. It serves as a valueable resource for 

educators focusing on cryptocurrencies, making it easier to create 

a thorough list of key topics related to particular cryptocurrency 

characteristics. 
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I. INTRODUCTION 

In the rapidly evolving landscape of cryptocurrencies, 
understanding the intricate relationships between various 
concepts is pivotal for effective analysis, decision-making, and 
innovation. Cryptocurrencies have not only revolutionized 
financial transactions but have also sparked interest in 
interdisciplinary research spanning economics, computer 
science, and cryptography. In various industries, blockchain 
enables the transfer of digital assets within a peer-to-peer 
network (such as currencies, securities, votes, shares, and 
commodities), facilitates data tracing (for financial assets, 
products, and other goods), and automates the management of 
contracts of all types (including insurance and programmable 
payments) [1-4]. 

The impact of blockchain will extend across various sectors, 
including finance, industry, renewable energy, government, 
and educational applications [5-10]. In this way, it has appeared 
the demand in creating educational programs of blockchain 
domain. Kazakhstan pioneered an educational initiative, 
becoming the first country globally to integrate blockchain into 

the standard university curriculum on a national level. During 
the pilot phase, the Blockchain Center chose 22 out of 116 
universities to participate, developing six unique courses in 
blockchain engineering for them [11]. Presently, 16 universities 
have incorporated blockchain courses into their educational 
offerings. Building on the success of the pilot project, The 
Global University Outreach Program, the Binance Academy 
education center and the Blockchain Center research laboratory 
have announced the expansion of their blockchain educational 
initiative to incorporate Web3 education into the curricula of 
over 200 universities across 50 countries [12]. The utilization 
of data mining tools is essential for the rapid development and 
optimization of educational programs on blockchain, enabling 
a data-driven approach to tailor content that meets the evolving 
needs of the academic and professional landscape. 

Due to this complexity, constructing a robust knowledge 
graph becomes indispensable for organizing knowledge and 
facilitating efficient information retrieval and inference. Hsu 
[13] summarized a study that systematically reviews 60 data 
science course syllabi from general education classes in 
Taiwan, highlighting the need to address diverse student 
backgrounds by evaluating course content, instructional 
materials, assessment methods, and learning objectives, with an 
emphasis on Python programming and big data competency. 

Sumangali and Kumar [14] introduced a novel approach for 
generating a smaller, meaningful concept lattice in FCA by 
organizing attributes into clusters based on structural 
similarities and dissimilarities, thereby simplifying the 
extraction of valueable information while preserving the 
structural relationships of the original lattice. Cui et. al [15] 
addresses the challenge of handling extensive linguistic 
information in uncertain environments by introducing a 
property-oriented linguistic concept lattice combined with a 
neural network to improve rule extraction and inference 
accuracy, ultimately demonstrating the efficiency of the method 
through experiments. 

FCA is a mathematical method for data analysis grounded 
in lattice theory [16,17]. In FCA, a concept lattice graphically 
portrays the underlying relationships between the objects and 
attributes of an information system. One of the key complexity 
problems of concept lattices lies in extracting the valueable 
information. The unorganized nature of attributes in huge 
contexts often does not yield an informative lattice in FCA. 
Moreover, understanding the collective relationships between 
attributes and objects in a larger many valued context is more 
complicated. 
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Hao et. al [18] proposed a knowledge point navigation 
approach for autonomous learning using three-way concept 
lattices to describe correlations and hierarchical relationships 
among knowledge points, generating AE-concept and OE-
concept lattices to provide effective learning paths and 
guidance. Lara-Bercial et al. [19] concluded that students who 
engaged with Project-Based Learning (PBL) in the Computer 
Engineering degree at Universidad Europea perceive a better 
acquisition of technical and soft skills, as well as improved 
motivation and adaptability to the work environment compared 
to those who did not use PBL. 

While previous studies have leveraged various 
methodologies for ontology construction, the adoption of  FCA 
holds promise for capturing contextual information and 
conceptual hierarchies within the cryptocurrency ecosystem. 
By employing FCA as a methodological framework, 
researchers can construct context-aware knowledge graph that 
serve as valuable resources for semantic analysis, data 
integration, and knowledge representation in this dynamic and 
rapidly evolving domain. 

In this paper, It was introduced a novel approach for 
deducing a smaller and meaningful concept lattice from which 
excerpts of concepts can be inferred. In existing attribute-based 
concept lattice reduction methods for FCA, mostly either the 
attribute size or the context size is reduced. This approach 
organized the attributes and objects within the blockchain 
teaching program into clusters based on their structural 
relationships, using FCA to create a derived formal context. 
Through this process, It was observed that the generated 
concept lattice preserves the hierarchical relationships present 
in the original dataset. Moreover, It was demonstrated 
mathematically that there exists a unique surjective inclusion 
mapping from the original concept lattice to the derived one, 
ensuring the structural integrity and completeness of 
knowledge graph constructed. 

The primary objective of this paper is twofold: firstly, to 
demonstrate the feasibility and efficacy of FCA in knowledge 
graph building within the blockchain context, and secondly, to 
showcase the practical applications of the resulting the graph in 
enhancing data interpretation, knowledge discovery, and 
decision support in creating educational program. 

This paper focused on the realm of knowledge graph 
construction within the blockchain domain in educational 
purposes, employing FCA as a methodological framework. 
FCA, rooted in lattice theory and order theory, offers a 
systematic approach to conceptual analysis, allowing for the 
extraction of meaningful relationships between entities and 
attributes. By leveraging contextual information inherent in 
cryptocurrency data, this approach aims to capture the nuanced 
semantics and interdependencies prevalent in this dynamic 
domain. 

Furthermore, it was illustrated the applicability of this 
methodology through an experiment wherein It was constructed 
knowledge graph adapted to the blockchain domain, capturing 
essential concepts, relationships, and properties pertinent to this 
burgeoning field. 

While previous research, such as that by Sumangali and 
Kumar [14] and Hao et al. [18], has explored the application of 
Formal Concept Analysis (FCA) in various domains, including 
simplifying concept lattices and generating effective learning 
paths, this work is distinct in its integration of FCA with 
clustering methods for structuring educational programs in the 
blockchain domain. Unlike traditional applications of FCA [19-
21], which primarily focus on organizing attributes within a 
specific context, its approach introduces a novel combination 
of FCA and clustering to generate an interactive knowledge 
graph tailored specifically for blockchain education [22]. This 
innovation enables a more scalable and adaptable educational 
framework compared to existing methods, such as ontology-
based approaches [23-25]. Furthermore, the integration of 
association rules into the knowledge graph enhances decision-
making for educators, providing them with data-driven insights 
on curriculum organization. Table I presents a comparison of 
previous methods with our proposed approach, highlighting key 
differences in terms of methodology, scalability, and 
application domain. 

TABLE I.  COMPARISON OF PREVIOUS WORKS WITH OUR APPROACH 

Method Domain Methodology Strengths Weaknesses 

Sumangali 

& Kumar 

[14] 

Various 
domains 

FCA with 

attribute 

clustering 

Simplifies 

extraction of 
valuable 

information 

Does not 

incorporate 
association 

rules 

Hao et al. 

[18] 

Autonomous 

learning 

FCA and three-

way lattices 

Improves 

learning path 
accuracy 

Limited 

scalability 

Chang et al. 

[25] 

Intelligent 
Tutoring 

Systems 

Ontology-

driven tutoring 

Automates 

rule derivation 

from tutoring 
sessions 

No formal 
concept lattice 

structure 

Our Work 
Blockchain 

education 

FCA + 

Clustering + 
Assoc. Rules 

Scalable, 

adaptable, 

enhances 
decision-

making 

Focuses 
specifically on 

blockchain 

domain 

The organization of the following sections is as follows: the 
Related Works section provides a detailed overview of the 
current approaches in blockchain education, focusing on the use 
of knowledge graphs and FCA; the Materials and Methods 
section explains the experimental setup and the design of the 
educational program using FCA and clustering methods; in the 
Results section, we present the results of the experiment, 
emphasizing the construction of the knowledge graph and its 
application in blockchain education; the Discussion and 
Conclusion section summarizes the findings of our work, 
compares our approach with previous methodologies, and 
outlines future research directions. 

II. RELATED WORKS 

The advent of cryptocurrencies has not only revolutionized 
financial transactions but has also stimulated interdisciplinary 
research across various domains. Among the challenges posed 
by this burgeoning field is the need for effective knowledge 
organization and representation to navigate the complex 
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network of concepts, entities, and relationships inherent in 
cryptocurrency systems. Blockchain offers significant 
advantages to businesses, including transparency, privacy, fault 
tolerance, security, risk control, democratization, tokenization, 
immutability, durability, and reliability [20-23]. In response to 
this challenge, scholars have increasingly turned to ontology 
engineering as a means to formalize and structure domain 
knowledge, facilitating data interpretation, semantic search, 
and decision-making processes. 

Cowart and Jin [24] highlighted that while all ten design 
elements in an online professional development series were 
beneficial for Instructional Technology Coaches' TPACK 
development, some participants experienced hindrances such as 
collaboration challenges, technical issues, and time constraints, 
underscoring the need for improvements in these areas. Chang 
et al. [25] introduced an innovative method to preserve the 
advantages of using a semantic web-based approach for 
representing pedagogical rules in an Intelligent Tutoring 
System (ITS). They addressed its primary limitation by 
utilizing a data mining technique to automatically derive rules 
from real-world tutoring sessions and represent them using the 
Web Ontology Language. Cristea et al. [26] indicated 
algorithms that integrate FCA with Pylint, a static code analysis 
tool, to identify and evaluate behavioral patterns in students' 
programming styles, aiming to enhance teaching content and 
methods. Hao et al. [27] define the stability of a three-way 
concept and examine its relevant properties. This concept can 
be applied to measure the cohesion of sub-graphs, enhance 
personalized recommendation systems, and facilitate team 
formation in crowdsourcing systems. Muangprathub et al. [28] 
developed a learning recommendation component for an 
intelligent tutoring system (ITS) that dynamically predicts and 
adapts to a learner's style. To create an effective ITS, they 
presented an enhanced knowledge base that supports adaptive 
learning, achievable through appropriate knowledge 
construction. 

The construction of knowledge graph tailored to the 
cryptocurrency domain has emerged as a pressing research 
endeavor, driven by the need to capture the evolving semantics 
and interdependencies inherent in blockchain-based systems. 
Prior studies have highlighted the significance of ontology 
engineering in facilitating data interoperability, semantic 
integration, and knowledge discovery across disparate 
cryptocurrency platforms [29]. By representing domain 
knowledge in a formalized and machine-interpretable manner, 
ontologies enable stakeholders to discern meaningful patterns, 
infer implicit relationships, and extract actionable insights from 
cryptocurrency data. 

Song et al. [30] utilized IP protection as a case study to 
demonstrate the development of their PoC consensus 
mechanism. It was compared PoC to various existing consensus 
mechanisms. The experimental results indicated that the PoC 
consensus mechanism retains most of the essential security 
features of blockchain and outperforms current consensus 
mechanisms, thereby enhancing the security and efficiency of 
blockchain technology for managing digital information. 

Gustavo Betarte et. al [31] presented and briefly discussed 
these properties, and outlined the foundation of a model-driven 

verification approach aimed at certifying the correctness of a 
specific protocol implementation. Son D-H. [32] analyzed the 
effects of reward schemes on on-demand ride-sourcing markets 
through a mathematical model in which a ride-sourcing 
platform determines the trip fare, vehicle fleet size, and 
cryptocurrency reward size. 

Kobayakawa et. al [33] analyzed cryptocurrency projects on 
GitHub to understand the relationship between market 
capitalization and contributor activity, finding that an increase 
in market capitalization leads to a rise in the number of 
contributors two months later, highlighting the influence of a 
project's future prospects on participation. Vidal-Tomás’s [34] 
analysis of 174 tokens revealed that this new crypto niche 
exhibits long-term positive performance, low correlation with 
the broader cryptocurrency market, the presence of bubbles, 
and minimal correlation with NFT features like transaction 
numbers, sales, and Google searches. 

Aquilina et. al [35] discussed the advantages and 
disadvantages of various regulatory approaches, proposes a 
framework for determining the appropriateness of bans, 
containment, and regulation, and describes Japan's pioneering 
methods, suggesting that central banks and public authorities 
can enhance traditional financial systems to support responsible 
innovation. Subramanian & Rouxelin [36] examined the impact 
of cryptocurrency rewards and token prices on user-generated 
content (UGC) on Steemit, finding that while higher rewards 
boost UGC contributions, token price increases alone do not, 
and that UGC growth does not necessarily enhance market 
capitalization, highlighting the need for well-designed reward 
mechanisms to sustain user engagement and platform growth. 
Hajiaghapour-Moghimi et. al [37] introduced cryptocurrency 
mining loads (CMLs) as virtual energy storage systems 
(CESSs) to store excess renewable energy in cryptocurrency 
units like Bitcoin, proposing an energy management system for 
microgrids (MGs) that reduces operational costs and renewable 
energy curtailment, demonstrated with a Finnish island dataset 
to decrease MG operating costs by about 46.5% and nearly 
eliminate energy curtailment. 

The literature on ontology engineering within the 
cryptocurrency domain underscores the importance of 
formalizing domain knowledge to facilitate data interpretation, 
knowledge discovery, and decision support. While previous 
studies have leveraged various methodologies for ontology 
construction, the adoption of FCA holds promise for capturing 
contextual information and conceptual hierarchies within the 
cryptocurrency ecosystem. By employing FCA as a 
methodological framework, researchers can construct context-
aware knowledge graphs that serve as valuable resources for 
semantic analysis, data integration, and knowledge 
representation in this dynamic and rapidly evolving domain. 

While the application of FCA in ontology engineering has 
been widely explored across various domains, its utilization 
within the cryptocurrency domain remains relatively 
underexplored. Nonetheless, recent studies have demonstrated 
the efficacy of FCA in capturing the contextual nuances and 
semantic relationships prevalent in cryptocurrency data [38]. 
By employing FCA as a methodological framework, 
researchers have successfully constructed context-aware 
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ontologies that encapsulate essential concepts, attributes, and 
relationships within the cryptocurrency ecosystem [39]. 

In this literature review, It was explored the existing 
research landscape pertaining to knowledge graph construction 
within the cryptocurrency properties, with a specific focus on 
the application of FCA as a methodological framework. 

III. MATERIALS AND METHODS 

This empirical investigation focused on all the topics 
relevant to the study of Blockchain as a discipline, getting from 
diverse sources including Massive Open Online Courses 
(MOOCs) and various syllabuses. These syllabuses were 
specifically provided as part of a comprehensive Blockchain 
technology training program, organized by the Blockchain 
Center in the framework of University Outreach program 
during the spring of 2024. This program is designed to learn 
university educators with the necessary knowledge and tools to 
proficiently teach blockchain technology. 

The duration of this primary course includes three months, 
equivalent to 14 weeks, with a weekly commitment of six 
hours, totaling 84 instructional hours, exclusive of practical 
sessions. In addition to this, a specialized course titled 
“Blockchain Compliance” was introduced, targeting students in 
economics and legal studies. This course emphasizes the legal 
and policy implications of blockchain technology and 
cryptocurrencies, crucial for educators in these fields. The 
“Blockchain Compliance” course is structured over six weeks, 
with six hours of instruction per week, culminating in 36 hours 
of learning, not including practical sessions. The division by 
specialization was carried out by conducting a survey among 
the teachers who took part in Global University Outreach 
Program, initiated by the Binance Academy education center 
and the Blockchain Center research laboratory. 

These courses are designed to ensure that participants are 
well-versed in both the technical and regulatory aspects of 
blockchain, preparing them to navigate and impart the 
complexities of this emerging field effectively. 

Totally, the program for the Blockchain technology courses 
encompassed a comprehensive range of over 100 distinct 
topics, distributed across two separate courses. These courses 
collectively aimed to achieve 20 specific learning outcomes. 
Each week, students were required to engage in four hours of 
practical sessions, resulting in a cumulative total of 80 hours 
dedicated to hands-on practice over the duration of the courses. 
Despite the extensive educational content and the structured 
practical experience, the demanding nature of the coursework 
proved to be challenging. Consequently, only 60% of the 
enrolled participants successfully completed the courses in their 
entirety. 

It was conducted an experiment of an educational program 
for blockchain technology. The aim of this study was to create 
knowledge graph with visualization of visualize the 
interconnections among various components of blockchain 
area. Knowledge graph includes specialty nodes, learning 
outcome nodes and topic nodes related to blockchain and 
cryptocurrency. This research was valueable for development 
of syllabus and educational program using knowledge graph. 

Additionally, it presents the outcomes of the experiment, 
demonstrating the effectiveness of this approach in curriculum 
development. The knowledge graph incorporates the following 
components: 

 Specialties: Courses that encompass the study of 
blockchain technology. 

 Learning Outcomes: Key results that students are 
expected to achieve through their blockchain education. 

 Topics: Specific subjects related to the learning 
outcomes. 

 Properties of Cryptocurrencies: Essential characteristics 
of cryptocurrencies, including decentralization, 
scalability, and security. 

 Types of Cryptocurrencies: Various categories of 
cryptocurrencies, each associated with specific 
properties. 

Each node in the graph was assigned a specific size and 
color to clearly differentiate between categories of elements. 
The connections between nodes illustrate the interactions 
among various program components, thereby providing a 
comprehensive visualization of how these elements collectively 
contribute to the overall learning framework. 

The formal context (X,Y,I) is constructed from the dataset 
provided according to Ganter and Wille [40], where: 

1) Formal context: X = {x1, x2,…,xn} represents the set of 

objects, which in this case includes Specialties, Learning 

Outcomes, Topics, and Cryptocurrencies. 

Y={y1,y2,…,ym} represents the set of attributes associated 
with these objects, capturing the relationships between them. 

I is the binary relation I⊆X×Y, indicating the presence of 
an association between a particular object and its corresponding 
attribute (e.g., a specific learning outcome being related to a 
particular topic or specialty). 

2) Concept-Forming operators: In the context of this code, 

the concept-forming operators α and β can be defined as: 

α (A) = {y ∈ Y ∣ ∀x ∈ A, (x, y) ∈ I} for A⊆X (1) 

β (B) = {x ∈ X ∣ ∀y∈B, (x,y) ∈ I} for B⊆Y  (2) 

Here, α (A) retrieves all the attributes (e.g., related topics or 
cryptocurrencies) that are common to the selected set of objects 
(e.g., specialties or learning outcomes), and β (B) finds the set 
of objects that share a given set of attributes. 

3) Formal concept: A formal concept in this framework is 

a pair (A, B)  where: 

A = β (B) and B = α (A)         (3) 

A (extent) is the set of all objects (e.g., all learning 
outcomes) associated with a particular set of attributes (e.g., all 
related topics or cryptocurrencies). 

B (intent) is the set of all attributes associated with a 
particular set of objects. 
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4) Concept lattice: The concept lattice B(X, Y, I) formed 

from this context is a partially ordered set, where each node 

represents a formal concept, and the ordering is determined by 

the subset relations between the extents and intents of these 

concepts: 

 (A1, B1) ≤ (A2, B2) if and only A1⊆A2 and B2⊆B1 

This lattice structure visually and hierarchically organizes 
the relationships between specialties, learning outcomes, 
topics, and cryptocurrencies. 

Galois Connection: The Galois connection between the 
concept-forming operators α and β ensures that: 

   ABifonlyandifBA        (4) 

This duality allows the formal concepts to be derived 
efficiently, ensuring that every set of related attributes can be 
linked to a specific group of objects. 

5) Algorithm: The algorithm is constructed using the 

formulas from Chapter 3.1, in particular formulas (1), (2) and 

(3). At each stage, the data is analyzed using the operators α and 

β, which allows identifying the relationships between objects 

and attributes. These formulas are used to determine the 

relationships between the elements of the system, which 

ensures the efficient construction of the knowledge graph. 

Then, using the partially ordered set of formal concepts, as 

specified in formula (4), a knowledge graph is constructed that 

visualizes the relationships between learning outcomes, topics 

and cryptocurrencies. The Galois relationship (5) ensures the 

correctness of the construction of formal concepts and is used 

to efficiently extract the relationships between objects and 

attributes during the execution of the algorithm. 

Here is the algorithm for constructing a knowledge graph 
based on syllabi: 

Algorithm 1: Heading 

Input: D, N Ø, E  Ø, S, LO, T, CP, CT  Ø 

Output:  G=(V,E), where V={ S, LO, T, CP, CT }, E ⃀ V×V 

For each row d ∈ D do:   

 Extract s  d['Specialty'], lo  d['Learning_Outcome'], t  
d['Theme'], cp  d['Crypto_Properties'], ct  
d[‘Crypto_Types].   
Define the formal context (X, Y, I), where: 

  X = {x1, x2, …, xn}, where X = {Specialties, Learning 
Outcomes, Topics, Cryptocurrencies},   
Y = {y1,y2, …, ym}, where Y = {attributes such as 
learning outcomes related to topics and specialties},   
I⊆X×Y 

 

 Apply concept-forming operators α and β as follows:   

  α (A) = {y∈ Y ∣ ∀x∈ A, (x,y)∈ I}      (6)                                      (6) 

  β (B) = {x∈X ∣ ∀y∈B,(x,y)∈I}          (7) 

 Define a formal concept as a pair (A,B), where A=β(B) and 
B=α(A).           

 Node and Edge Addition: 

  If s∉N then: Add s (specialty) as a node and connect 
it to lo.   
If lo∉N then: Add lo as a node and connect it to t.   

If t∉N then: Add t as a node and connect it to cp.   
If cp∉N then: Add cp as a node and connect it to ct.   
If ct∉N then: Add ct as a node.   

 Construct the concept lattice B(X,Y,I), a partially ordered set of 
formal concepts:  

  (A1,B1) ≤ (A2,B2) if A1⊆A2 and B2⊆B1      (8)                                

 Maintain the Galois connection between α and β:  

  A ⊆ β(B) if B ⊆ α(A)        (9) 

 Update V={ S, LO, T, CP, CT} for later use in tooltip 
visualization. 

  If all rows are processed then: Represents the graph 
G. 

   End 

 End 

 

where, D - an Excel file containing data on specialties, 
learning outcomes, topics, and cryptocurrencies, N - set of 
graph nodes, E - set of edges between nodes, S - specialties, LO 
- learning outcomes, T - theme, CP - crypto properties, CT - 
crypto types, G - represents the graph, V - set of nodes,  I - 
binary relation linking objects and attributes, A - set of all 
objects (e.g., learning outcomes), B - set of all attributes (e.g., 
related topics). 

Below in Fig. 1 is a sequence diagram of these steps for 
visual demonstration. 

 
Fig. 1. Sequence diagram of the algorithm for creating knowledge graphs 

based on blockchain topics. 

IV. RESULTS 

During the review process of the syllabuses on Blockchain 
technologies, particularly those offered through Massive Open 
Online Courses (MOOCs), experts in the field of blockchain 
concluded that it would be beneficial to divide the original two 
syllabuses into four distinct specializations: (1) Information 
Technology, (2) Information Security, (3) Economics, and (4) 
Jurisprudence. Each specialization is associated with specific, 
required learning outcomes, as detailed in Table II. Besides, it 
includes the final five learning outcomes without any particular 
specialization due to relation to general topics. 
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TABLE II.  LEARNING OUTCOMES BY SPECIALTY 

№ Learning_Outcome Specialty 

1.  Blockchain architecture and algorithms Information 

technology 

2.  Security and cryptographic methods in blockchain Information 
technology 

3.  Using oracles and simplified programming 

languages in blockchain 

Information 

technology 

4.  Development of decentralized applications 
(DApps) 

Information 
technology 

5.  Development of smart contracts Information 

technology 

6.  Security of hardware wallets and other storage 
media 

Information 
security 

7.  Security of smart contracts and decentralized 

applications (DApps) 

Information 

security 

8.  Data protection and privacy in blockchain networks Information 
security 

9.  Cryptographic methods and protocols in blockchain Information 

security 

10.  Ensuring the security of blockchain systems Information 
security 

11.  Cryptocurrency market analysis and forecasting Economy 

12.  Application of blockchain in banking and 

international transfers 

Economy 

13.  Development and implementation of decentralized 

financial applications (DeFi) 

Economy 

14.  Regulation of cryptocurrency exchanges and 

financial security 

Economy 

15.  Asset tokenization and blockchain-based 
crowdfunding 

Economy 

16.  Intellectual property and data protection in 

blockchain 

Jurisprudence 

17.  Application of blockchain in notarial activities and 
public administration 

Jurisprudence 

18.  Regulation and legal aspects of blockchain 

technologies 

Jurisprudence 

19.  Legal aspects of decentralized autonomous 

organizations (DAO) 

Jurisprudence 

20.  Legal aspects of tokenization and use DeFi Jurisprudence 

21.  The impact of blockchain on the economy and 
various industries 

General topics 

22.  Application of blockchain in government agencies 

and healthcare 

General topics 

23.  Application of blockchain in smart cities and digital 

identity 

General topics 

24.  Comparison and use of different blockchain 

platforms 

General topics 

25.  Technological innovation and development of 

blockchain ecosystems 

General topics 

Each learning outcome encompasses specific topics, with 
the potential for a single topic to correspond to multiple 
learning outcomes, and conversely, for a learning outcome to 
span several topics. Table III highlights the example of the 
relation mentioned. Consequently, certain topics may be 
essential across various specializations in order to fulfill the 
requirements of different learning outcomes. 

TABLE III.  EXAMPLE OF SOME CONNECTIONS BETWEEN TOPICS AND 

LEARNING OUTCOMES 

№ Topics 
Learning 

outcomes 

1.  Consensus Algorithms: Proof of Stake Blockchain 
architecture and 

algorithms 2.  Consensus Algorithms: Proof of Work 

3.  
Security of decentralized applications (DApps) 

Security and 

cryptographic 
methods in 

blockchain 

Security of smart 
contracts and 

decentralized 

applications 
(DApps) 

4.  
Consensus algorithms: Proof of Stake 

Blockchain 

architecture and 

algorithms 

5.  
Consensus algorithms: Proof of Work 

6.  
Blockchain architecture 

7.  
Methods for protecting consensus algorithms 

8.  
Scalability issues and security 

9.  
Comparison of different consensus algorithms 

10.  
Distributed ledger technology (DLT) 

11.  
Verification and audits of smart contracts 

Security and 
cryptographic 

methods in 

blockchain 

Security of smart 

contracts and 

decentralized 
applications 

(DApps) 

Cryptographic 

methods and 
protocols in 

blockchain 

Application of 
blockchain in 

banking and 

international 
transfers 

Cryptocurrencies have become an integral component of the 
global economy and financial system, due to blockchain 
serving as the foundational technology that underpins their 
functionality and growth. This highlights that, the existence and 
operation of cryptocurrencies are inextricably linked to 
blockchain technology, making it indispensable to the 
cryptocurrency ecosystem, it was essential to incorporate the 
types and properties of cryptocurrencies into the educational 
curriculum on blockchain technologies. As can be seen from 
Table IV, an analysis of popular cryptocurrencies and the 
properties they support is provided.
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TABLE IV.  TYPES AND PROPERTIES OF CRYPTOCURRENCIES 

Cryptocurrency 

properties 

Bitcoin 

(BTC) 

Ethereum 

(ETH) 

Ripple 

(XRP) 

Litecoin 

(LTC) 

Monero 

(XMR) 

Cardano 

(ADA) 

Polkadot 

(DOT) 

Chainlink 

(LINK) 

Decentralization Yes Yes No Yes Yes Yes Yes Yes 

Smart Contract No Yes Yes No Limited Yes Yes Yes 

Privacy No No No No Yes No No No 

Scalability No Yes Yes No No Yes Yes Yes 

Proof of Work Yes No No Yes Yes No No No 

Proof of Stake No Yes No No No Yes Yes No 

Limited Supply Yes No Yes Yes Yes Yes Yes No 

Mainstream Adoption Yes Yes Yes Moderate Limited Moderate Moderate Moderate 

Cross-Chain No No No No No No Yes Yes 

Exchange Availability Yes Yes Yes Yes Moderate Yes Yes Yes 

Mining Requirement Yes No No Yes Yes No No No 

Governance Model No Yes Yes No No Yes Yes No 

Deflationary 

Mechanism 

No No No No No No No No 

Staking Rewards No Yes No No No Yes Yes No 

Energy Efficiency No No Yes No No Yes Yes Yes 

Regulatory 

Compliance 

Yes Yes Yes Moderate Limited Yes Moderate Moderate 

Developer Community Yes Yes Moderate Yes Moderate Yes Yes Yes 

NFT Support No Yes Limited No No Yes Yes Yes 

The study of cryptocurrency properties and types aligns 
closely with the existing topics and learning outcomes within 
the blockchain curriculum. In collaboration with experts from 
the Blockchain Center, It was established a framework that 
connects the properties and types of cryptocurrencies to the 
relevant general topics and learning outcomes. This integrative 

approach ensures a cohesive learning experience, reinforcing 
key concepts across both areas of study. Table V presents a 
partial mapping of these connections, demonstrating how the 
properties and types of cryptocurrencies are integrated with 
specific learning outcomes.

TABLE V.  RELATIONSHIP BETWEEN THE PROPERTIES AND TYPES OF CRYPTOCURRENCIES AND LEARNING OUTCOMES 

№ Learning outcomes Properties of 

cryptocurrencies 

Types of cryptocurrencies 

1.  Using oracles and simplified programming 

languages in blockchain 

Cross-Chain 

 

Polkadot (DOT), Chainlink (LINK) 

2.  Development of decentralized applications 

(DApps) 

3.  Blockchain architecture and algorithms Decentralization 

 

Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Monero (XMR), Cardano (ADA), 

Polkadot (DOT), Chainlink (LINK) 
4.  Legal aspects of decentralized autonomous 

organizations (DAO) 

5.  Blockchain architecture and algorithms 

6.  Security of smart contracts and decentralized 

applications (DApps) 

7.  Application of blockchain in notarial 

activities and public administration 

8.  Development of smart contracts Developer 

Community 

Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), Monero (XMR), 

Cardano (ADA), Polkadot (DOT), Chainlink (LINK) 
9.  Technological innovation and development 

of blockchain ecosystems 

10.  Ensuring the security of blockchain systems Energy Efficiency Ripple (XRP), Cardano (ADA), Polkadot (DOT), Chainlink (LINK) 

11.  Security of hardware wallets and other 

storage media 

12.  Cryptocurrency market analysis and 

forecasting 

Exchange 

Availability 

Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), Monero (XMR), 

Cardano (ADA), Polkadot (DOT), Chainlink (LINK) 
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From an analysis of Table VI, it emerges summarized 
information of the connections between all topics, required 
learning outcomes, specializations, and data on 

cryptocurrencies, comprises 2,054 rows and 5 columns. This 
table serves as an extensive resource, capturing the intricate 
relationships among these elements.

TABLE VI.  FINAL TABLE INDICATING CONNECTIONS BETWEEN TOPICS, LEARNING OUTCOMES, SPECIALTIES, PROPERTIES AND TYPES OF CRYPTOCURRENCIES 

Theme Learning_Outcome Specialty Crypto 

Properties 

Supporting 

Cryptocurrencies 

Anomaly monitoring and detection 
methods 

Cryptographic methods and protocols in 
blockchain 

Information 
security Privacy Monero (XMR) 

Anomaly monitoring and detection 

methods 

Cryptographic methods and protocols in 

blockchain 

Information 

security Security  

Anomaly monitoring and detection 

methods 

Security of hardware wallets and other storage 

media 

Information 

security Security  

Anomaly monitoring and detection 

methods 

Security of hardware wallets and other storage 

media 

Information 

security Energy Efficiency Ripple (XRP) 

Anomaly monitoring and detection 

methods 

Security of hardware wallets and other storage 

media 

Information 

security Energy Efficiency Cardano (ADA) 

Anomaly monitoring and detection 

methods 

Security of hardware wallets and other storage 

media 

Information 

security Energy Efficiency Polkadot (DOT) 

Anomaly monitoring and detection 

methods 

Security of hardware wallets and other storage 

media 

Information 

security Energy Efficiency Chainlink (LINK) 

Anonymous cryptocurrencies and 

their security 

Data protection and privacy in blockchain 

networks 

Information 

security Privacy Monero (XMR) 

Anonymous cryptocurrencies and 

their security 

Data protection and privacy in blockchain 

networks 

Information 

security Security  

Application of blockchain in banking 

Application of blockchain in banking and 

international transfers Economy 

Regulatory 

Compliance Bitcoin (BTC) 

Application of blockchain in banking 

Application of blockchain in banking and 

international transfers Economy 

Regulatory 

Compliance Ethereum (ETH) 

Application of blockchain in banking 

Application of blockchain in banking and 

international transfers Economy 

Mainstream 

Adoption Chainlink (LINK) 

As a result, an aggregated data set with all topics, learning 
outcomes, specialties and properties, and types of 
cryptocurrencies was used to build knowledge graph. 

A significant outcome of the experiment was the 
development of a visual representation of the blockchain 
educational program structure, as illustrated in Fig. 2. This 
knowledge graph facilitates course developers in 
comprehensively understanding the interrelationships among 

majors, learning outcomes, topics, and the properties and types 
of cryptocurrencies. For instance, the connection between the 
learning outcome "Smart Contract Development" and topics 
such as "Smart Contract Security" and "Using Blockchain 
Programming Languages" highlights the specific aspects that 
must be incorporated into the curriculum. This visualization 
enables a detailed and systematic approach to curriculum 
design.

 
Fig. 2. Interactive graph on blockchain topics.

Fig. 3 shows knowledge graph illustrating the relationships 
between various elements within a blockchain education 
program. Knowledge graph presents structure of nodes defined 
by categories and different colors: Specialties (pink), learning 
outcomes (green), topics (yellow), cryptocurrency properties 
(orange), and cryptocurrency types (blue). The interconnections 
between nodes depict how these different components interact 

and relate to each other, thereby providing a clear and 
comprehensive overview of the program's structure. 

Thus, the connections between nodes in knowledge graph 
provides the relationships among various components of the 
educational program: 

Links between Specialties and Learning Outcomes indicate 
relation between learning outcomes and specific specialties. For 
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instance, the learning outcome "Security and Cryptographic 
Methods in Blockchain" is associated with the specialty of 
"Information Security." 

Links between Learning Outcomes and Topics reveal the 
topics that must be covered for achieving particular learning 
outcomes. 

Links between Learning Outcomes and Cryptocurrency 
Properties demonstrate how specific properties of 
cryptocurrencies are incorporated into the educational 
framework. 

Links between Cryptocurrency Properties and 
Cryptocurrency Types illustrate the association between 
different types of cryptocurrencies and their properties. For 
example, the property of "Limited Supply" is exemplified by 
Bitcoin, showcasing how certain cryptocurrencies embody 
specific characteristics. 

Overall, these links provide a comprehensive view of how 
the components of the educational program interrelate, 
facilitating a structured approach to curriculum development. 

Fig. 2 presents a visualization of the structure of the 
educational program dedicated to the study of blockchain 
technologies. At the core of this visualization is the specialty 
"Information Security," represented by a prominent pink node. 
This central node is connected to various green nodes, which 
denote the learning outcomes associated with blockchain 
security. 

They were depicted among the key learning outcomes the 
aspects such as the security of hardware wallets, data protection 
and privacy within blockchain networks, and the security of 
smart contracts and decentralized applications (DApps). These 
connections illustrate the program’s focus on ensuring a 
comprehensive understanding of security issues pertinent to 
blockchain technology.

 

Fig. 3. List of learning outcomes related to the specialty "Information Security".

Fig. 4 reveals a segment of knowledge graph representing 
the blockchain educational program, with the learning outcome 
"Security and Cryptographic Methods in Blockchain" serving 
as the central node, highlighted in green. This node is 
interconnected with various topics that students are required to 
explore in relation to this outcome. 

The pop-up window appears detailing a list of topics 
associated with this learning outcome, including the key topics 
such as "Introduction to Blockchain and Its Basic Principles," 
"Cryptographic Methods in Blockchain," and "Smart Contract 
Security".

 
Fig. 4. Displaying a list of topics related to the learning outcome.
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As can be seen from Fig. 5, knowledge graph illustrates 
various types of cryptocurrencies, exemplified here by 
Chainlink (LINK), along with their associated characteristics 
and properties. To do this, it is activated a pop-up window over 
the "Chainlink (LINK)" node with the list of key properties and 

aspects pertinent to this cryptocurrency. This feature enhances 
the visualization by offering comprehensive information about 
Chainlink's specific attributes and its role within the broader 
context of cryptocurrency types.

 
Fig. 5. A type of cryptocurrency with associated cryptocurrency properties.

Knowledge graph facilitates the identification of related 
learning outcomes that encompass overlapping topics. It 
provides a valuable tool for educators specializing in 
cryptocurrencies by simplifying the process of compiling a 
comprehensive list of essential topics associated with specific 
cryptocurrency properties. This functionality aids instructors in 
effectively organizing and delivering curriculum content 
adapted to various aspects of cryptocurrency education. 

Following this, the association rules method is employed to 
determine the relationships between topics by utilizing the 
parameters of support, confidence, and lift. The effectiveness 
of this method for evaluating the significance of parameters 
within a dataset has been demonstrated by the authors in [42]. 
Analyzing these indicators enables the identification of the 
most critical and interrelated topics that should be incorporated 
into the course curriculum. The identified relationships can 
assist in structuring the course content more effectively. For 
instance, the course modules can be organized to initially cover 
foundational concepts such as blockchain and decentralization, 
before progressing to more advanced topics like smart contracts 
and their applications. To calculate Support, we use formula 
(10): 

Support(A→B)=(Number of transactions containing 

(A∪B))/(Total number of transactions)   (10) 

Support quantifies the frequency with which elements A 
and B co-occur within the dataset. It is defined as the ratio of 
the number of transactions containing both elements to the total 
number of transactions. Confidence, on the other hand, assesses 
the likelihood that element B appears in transactions that 

already include element A. This is calculated as the ratio of the 
support for A∪B (the joint occurrence of A and B) to the 
support for A. The formula for this metric is provided in 
Formula (11): 

Confidence (A→B) = (Support (A∪B))/(Support(A))   (11) 

In association rule analysis, lift measures the strength of the 
relationship between two events or data sets. Specifically, for 

an association rule of the form A→B, lift quantifies how 

frequently elements A and B occur together compared to their 
expected co-occurrence if they were statistically independent. 
The formula for calculating lift is presented in Formula (12). 

Lift(A→B) = (Support(A∪B))/(Support(A)*Support(B)) (12) 

The interpretation of lift values is as follows: 

 If  Lift=1, then events A and B are independent, meaning 
the occurrence of one event does not influence the 
probability of the occurrence of the other. 

 If Lift>1, then events A and B co-occur more frequently 
than would be expected under conditions of 
independence, indicating a positive association between 
them. 

 If Lift<1, then events A and B co-occur less frequently 
than would be expected if they were independent, 
suggesting a negative association between them. 

Table VI presents a selection of the results obtained from 
applying the association rules, while the complete table can be 
found in Appendix. 
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Based on the obtained results, we have come to the 
following conclusions: 

 The rule linking 'Privacy' and 'Security' shows high 
confidence (Confidence = 0.8) and significant support 
(Support = 0.16). This indicates a frequent relationship 
between these concepts in the data, which is logical 
given that improved privacy is often associated with 
stronger security measures. 

 The rules linking 'Decentralization' and 'Smart Contract' 
have moderate confidence (Confidence = 0.400) and 
support (Support = 0.16). This emphasizes their role in 
the context of each other, but does not indicate as close 
a relationship as in the case of 'Privacy' and 'Security'. 

 The rule between 'Smart Contracts: Principles and 
Applications' and 'Smart Con-tract' has the highest 
confidence value (Confidence = 1.000), indicating a 
direct dependence of these concepts. The high level of 
confidence and support (Support = 0.16) shows that 
there is a clear and frequent relationship between these 
concepts in the data, which is logical since the principles 
and applications of smart contracts are closely related to 
the concept of a smart contract itself. 

These findings underscore the significance of the 
relationships between key concepts in blockchain technologies 
and provide insight into which aspects require particular 
emphasis when learning about or developing blockchain 
solutions. 

Analyzing the distribution of support scores for association 
rules provides insight into the frequency of various concept 
combinations within the dataset. This analysis is particularly 
valuable for selecting study topics, as infrequent combinations 
may high-light specialized or unique areas of knowledge that 
warrant further exploration. Consequently, the distribution of 
support scores assists in prioritizing the content of educational 
programs, enabling a focus on the most significant and 
frequently occurring concepts. 

In the context of designing a blockchain course, analyzing 
the confidence values in the association rule table is 
instrumental in identifying critical topics and their 
interrelationships for inclusion in the syllabus. High confidence 
values, such as 1.0, denote concepts that are strongly related 
and should ideally be taught together. For instance, a high 
confidence value between 'smart contracts' and 'their principles 
and applications' suggested that these topics should be 
integrated into a single module to facilitate a comprehensive 
understanding of their interdependencies. 

Conversely, topics with lower confidence values, such as 
'decentralization' and 'smart contracts,' indicate a less direct 
relationship. Although these concepts are still relevant, their 
connection is not as evident and may warrant separate modules. 
Nonetheless, it remains important to highlight potential 
intersections in various use cases. 

Thus, the analysis of confidence values can guide the 
structuring of a blockchain curriculum by organizing modules 
to reflect real-world connections and dependencies among key 

concepts. This approach enhances students' understanding by 
aligning the course content with practical and conceptual 
relationships. 

An analysis of the distribution of lift values for association 
rules reveals a marked predominance of rules with elevated lift 
values, signifying a strong relationship between the antecedents 
and consequences within the dataset. Lift values exceeding 1.0 
indicate that the co-occurrence of antecedent and consequence 
is more frequent than would be expected under conditions of 
independence, thereby underscoring the significance of 
examining these relationships within the realm of blockchain 
technologies. The distribution diagram demonstrates that a 
substantial number of rules exhibit a considerable degree of 
association. This finding enables the identification of key topics 
and concepts for inclusion in educational curricula and 
highlights areas that may benefit from further research and 
detailed investigation. 

For illustrative purposes, we present the most significant 
connections, such as 'Blockchain Data Protection' and 'Fair Use 
and Data Protection in Blockchain,' in current graphical 
representations (see Fig. 6 and Fig. 7). These connections are 
characterized by a maximum lift score of 8.33, indicating a 
strong relationship between the topics. This high lift score 
suggests that these subjects are closely related and should be 
incorporated into the syllabus together to effectively address the 
same learning outcomes. 

 
Fig. 6. Theme 'Blockchain data protection' with learning outcomes. 

 
Fig. 7. Theme 'Fair use and data protection in blockchain' with learning 

outcomes.
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The graph-based learning method demonstrates significant 
advantages over traditional and modern methods such as text 
mining and conceptual clustering (FCA). Firstly, the graph 
approach allows for flexible optimization of the duration and 
work-load depending on the specialty, while standard programs 
are rigidly fixed. It also offers an adaptive number of topics and 
learning outcomes, which ensures personalization of the 
educational process for the specific needs of students. An 
important aspect is the support of experts and the flexibility of 
choosing topics both by specialty and by learning outcomes. 
Teachers have more freedom in adapting courses, which 
increases the effectiveness of training. Due to its high flexibility 
and adaptability, the graph method creates a more dynamic and 
optimized educational environment that better meets modern 
challenges in education. 

V. DISCUSSION 

The study demonstrated the effectiveness of formal concept 
analysis (FCA) and clustering methods for optimizing 
educational programs in the field of blockchain technologies. 
The results of the study showed that the use of an interactive 
knowledge graph simplifies the process of curriculum 
development and provides flexibility in the selection of topics, 
which is especially important for courses covering a wide range 
of disciplines, such as blockchain. 

Currently, the Coursera platform offers more than 1,000 
blockchain courses, covering a wide range of topics - from the 
basics of the technology to specialized courses such as smart 
contracts, decentralized applications (dApps), and blockchain 
security. The average duration of such courses is from 8 to 14 
weeks for basic programs and from 3 to 6 months for advanced 
specializations, which makes training accessible to students 
with different levels of training and employment. The main 
blockchain courses relate to such specializations as Business, 
Computer Science, Information Technology, Data Science, etc. 
[43]. With such a wide range of courses, it can be difficult for 
students to choose the right program that best suits their 
educational needs. In this context, an interactive knowledge 
graph developed based on FCA will be a powerful tool to 
simplify the course selection process. It will help students 
analyze the connections between different topics and learning 
outcomes presented in blockchain courses. This is especially 
relevant in the context of constantly changing content in the 
blockchain technology field, where it is necessary to consider 
both basic knowledge and emerging trends such as 
decentralized finance (DeFi), cryptography, and smart contract 
security [4-8]. 

By visualizing the relationships between topics, a 
knowledge graph can help students and teachers navigate the 
materials more easily, compare them with their existing 
knowledge and skills, and identify gaps in their knowledge. For 
example, a student who is already familiar with the basics of 
cryptography can use the graph to quickly identify which 
courses cover advanced aspects of this topic, thereby avoiding 
the need to re-learn concepts already known. In addition, the 
graph allows you to systematize not only educational programs, 
but also types of blockchain technologies, which helps students 
better understand their application in real life. This is important 
for those who want to get more practical training and learn 

about specific technologies, such as the use of blockchain in 
financial systems or smart contracts. 

 Approach of this article differs from traditional text 
mining and curriculum analysis methods. Unlike standard 
syllabi, where the topics are fixed for all specialties, our method 
allows for flexible adaptation of course duration and teaching 
load depending on the specialty and learning outcomes. This is 
confirmed by comparison with works [17-21], where a 
simplified concept lattice improved information extraction 
while preserving the data structure. 

One of the key results of the study is the development of an 
adaptive curriculum model based on formal conceptual analysis 
and clustering. This solution provides teachers and curriculum 
developers with the opportunity not only to automate the course 
planning process, but also to ensure its relevance in light of the 
rapidly changing requirements of the educational process in the 
field of blockchain and cryptocurrency. 

In the future, it is planned to expand the capabilities of the 
knowledge graph and use it to assess students' knowledge, as 
provided by the authors of [17]. This will allow automatic 
matching of the studied topics with the learning outcomes and 
determine how fully students have mastered the key concepts of 
the course. Such an assessment system would be based on 
association rules identified during the construction of the graph, 
which would allow for a more accurate assessment of the level 
of understanding of the material and the identification of 
potential knowledge gaps. Despite the significant advantages of 
the proposed approach, there are certain limitations, such as the 
need for expert support at the stage of model setup and limited 
ability to automate the analysis of new topics. Future research 
will focus on developing more versatile algorithms that can 
automatically update the knowledge graph taking into account 
new data and trends in the blockchain field. In addition, the 
development of a student assessment system based on the graph 
will be an important step in improving the learning process. 

VI. CONCLUSION 

In conclusion, the conducted study shows that the 
application of FCA and clustering methods to create an 
interactive knowledge graph in educational programs on 
blockchain technologies is highly effective. The work 
developed an approach that allows teachers to flexibly adapt 
curricula depending on the level of students' training and their 
specialization, which is especially important in the context of 
blockchain technologies, covering a wide range of topics from 
cryptography to smart contract development. The interactive 
knowledge graph helps to systematize information on learning 
outcomes, topics, and key skills, which makes the course 
planning process more transparent and simplified. As a result of 
the study, it was possible to significantly reduce the teaching 
load by focusing on the main topics, which helps to reduce 
student overload and prevent them from dropping out due to 
difficulties. This is especially important for courses covering 
complex and multi-layered topics, as is the case with 
blockchain, where the amount of information can easily become 
excessive. The knowledge graph not only simplifies the 
selection of topics for teaching, but also helps teachers create 
more flexible and adaptive curricula that meet the rapidly 
changing requirements of the market and new technologies. It 
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was also found that the use of association rules and clustering 
methods helps to identify key relationships between topics and 
learning outcomes. This allows teachers and students to see a 
clearer picture of how various aspects of blockchain technology 
are interconnected and helps to better structure the learning 
process. The experiments demonstrated the possibility of using 
the knowledge graph not only for developing curricula, but also 
for further assessment of the level of students' knowledge. In 
the future, it is planned to use this tool to automatically assess 
the extent to which students have mastered key topics and 
learning outcomes, which will allow teachers to more 
effectively adjust educational materials and improve the 
educational process. 

Despite the obvious advantages of the proposed approach, 
the study also revealed certain limitations. In particular, 
significant efforts are required from experts at the stage of 
developing the knowledge graph and setting up its structure. 
Further research is planned to develop algorithms that will 
automate the process of updating the knowledge graph and 
adapting its structure to new educational requirements and 
trends in the field of blockchain. 

Thus, the proposed approach to organizing educational 
programs using formal conceptual analysis and clustering 
methods is an innovative tool that can significantly improve the 
effectiveness of blockchain technology training courses. The 
interactive knowledge graph makes the process of developing 
educational programs easier, more flexible and adaptive, which 
is especially important for such rapidly developing areas as 
blockchain. 
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