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Abstract—To address the depletion of traditional energy 

sources and the increasingly severe environmental pollution, 

countries around the world have accelerated the deployment of 

renewable energy generation equipment. Energy optimization 

management for microgrids can address the randomness of 

factors such as renewable energy generation and load, ensuring 

the safe and stable operation of the system while achieving 

objectives such as cost minimization. Therefore, this paper 

conducts an in-depth study of energy optimization management 

schemes for microgrids and designs a multi-microgrid energy 

optimization management model and algorithm based on deep 

reinforcement learning. For the joint optimization problem 

among multiple microgrids with power flow between them, a 

two-layer energy optimization management scheme based on the 

multi-agent proximal policy optimization (PPO) algorithm and 

optimal power flow (BMAPPO) is proposed. This scheme is 

divided into two layers: first, the lower layer uses the multi-agent 

proximal policy optimization algorithm to determine the output 

of various controllable power devices in each microgrid; then, 

based on the lower layer's optimization results, the upper layer 

uses a second-order cone relaxation optimal power flow model to 

solve the optimal power flow between multiple microgrids, 

achieving power scheduling among them; finally, the total cost of 

the upper and lower layers is calculated to update the network 

parameters. Experimental results show that compared with other 

schemes, the proposed scheme achieves multi-microgrid energy 

optimization management at the lowest cost while ensuring 

online execution speed. 

Keywords—Microgrid; energy optimization management; deep 

reinforcement learning; multi-agent; Proximal Policy Optimization 

(PPO) 

I. INTRODUCTION 

Electric power is an indispensable driving force in modern 
society. In recent years, with the rapid development of 
technology and the continuous growth of the global population, 
the demand for electricity has been increasing year by year [1]. 
To meet this demand, the current smart grid is transitioning 
towards a more structured system based on microgrids. This 
transition, which optimizes energy storage systems through 
collaboration and self-organization, is key to driving the 
existing energy system towards being more intelligent, robust, 
and green. 

Microgrid-based smart grids are not only better at 
integrating emerging distributed components but also position 
microgrids as an effective part of distribution and transmission 
system management through the evolving flexibility markets 

and new grid management concepts. The flexibility provided 
by microgrids, as well as their ability to operate in both grid-
connected and island modes, are crucial solutions to the 
challenges faced by future transmission and distribution 
networks. The introduction of microgrids helps improve the 
reliability of power systems, reduce emissions, and expand the 
energy options for future power systems. Furthermore, the 
multi-microgrid structure formed by the interconnection of 
microgrids enhances the resilience, security, and intelligence of 
energy systems, supporting energy systems that incorporate 
large amounts of variable renewable energy. 

Although the technologies related to components such as 
renewable energy generation and storage systems in microgrids 
have matured, joint optimization in microgrids remains 
challenging due to uncertainties in renewable energy 
generation, load, and energy prices. In addition to dealing with 
the fluctuations in renewable energy and load, storage devices 
must be optimized and controlled according to their operating 
costs or physical constraints. When multiple microgrids need to 
be optimized simultaneously, the complexity of the algorithms 
also increases. Given the technical and economic advantages of 
microgrids in future energy systems, ensuring the efficient and 
stable operation of microgrids has become a hot research topic. 

A multi-microgrid refers to a system where multiple 
individual microgrids within a certain area are interconnected 
to achieve power mutual assistance. Compared to a single 
microgrid, a multi-microgrid has several advantages: First, a 
multi-microgrid can integrate large-scale renewable energy 
generation equipment, achieving a higher penetration rate of 
renewable energy through power flow between microgrids; 
second, it allows for the shared use of devices such as energy 
storage and generation, enabling a microgrid with large-
capacity energy storage or high-power generation equipment to 
supply energy to other microgrids when the main grid's 
electricity price is high, further reducing costs; third, it 
enhances system robustness, allowing energy to be sourced 
from other microgrids if a microgrid's supply equipment fails 
or if the main grid experiences a power outage. Therefore, 
from the perspective of economic efficiency and future 
development trends, it is necessary to conduct research on 
energy optimization management for multi-microgrids. 

Microgrid energy optimization management is an important 
research area in the power industry, aiming to achieve 
intelligent control and autonomous scheduling decisions for 
microgrids through optimization techniques. Under the premise 
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of ensuring the safe operation of equipment, the output of 
controllable power devices in microgrids is optimized to cope 
with fluctuations in renewable energy generation, load, and 
real-time electricity prices, meet load demand, avoid power 
waste, and minimize operational costs. 

For the scenario of multiple microgrids, this paper proposes 
an energy optimization management scheme based on multi-
agent proximal policy optimization. Since a single microgrid 
has limited capacity to deal with system uncertainties and often 
needs to trade with the main grid, joint optimization of multiple 
microgrids is expected to become a future development trend. 
To this end, this paper proposes a dual-layer structure for 
multi-microgrid energy optimization management. In the lower 
layer, the output of devices in each microgrid is decided based 
on a multi-agent proximal policy optimization algorithm, 
where centralized training ensures optimization effectiveness 
and decentralized decision-making protects user privacy. In the 
upper layer, the optimal power flow between microgrids is 
solved using a second-order cone relaxation optimal power 
flow model, ensuring power mutual assistance between 
microgrids. 

The organization of this paper is as follows: Section II 
provides a detailed review of existing microgrid energy 
optimization management schemes; Section III proposes a 
dual-layer energy optimization management scheme based on 
multi-agent reinforcement learning to further improve the 
stability of microgrid operation and reduce costs; Section IV 
verifies the feasibility of the proposed method through case 
studies; Section V summarizes the contributions of the entire 
paper. 

II. LITERATURE REVIEW 

This section will review existing work related to resource 
management to highlight the gaps in current research. 

A. Related Works 

Energy optimization management in microgrids is 
essentially a constrained optimization problem with uncertain 
factors. Currently, the methods used in the field of microgrid 
energy optimization management mainly include metaheuristic 
algorithms (e.g., genetic algorithms), mathematical 
programming methods (e.g., mixed-integer linear 
programming), robust optimization, stochastic optimization, 
model predictive control, and deep reinforcement learning 
algorithms. 

Metaheuristic algorithms have been widely applied in the 
field of microgrid energy optimization management. Among 
them, genetic algorithms and particle swarm optimization are 
the most commonly used, with similar techniques including ant 
colony optimization [2], crow search algorithm [3], and 
simulated annealing algorithm [4], among others. Torkan et al. 
[5] applied a multi-objective genetic algorithm to the 
optimization management of microgrids, considering the 
uncertainties brought by demand response (DR) programs, 
reactive power loads, and renewable energy. They optimized 
microgrid operations with energy cost and greenhouse gas 
emissions as objective functions, while this optimization 
objective function was constrained by a series of system 
constraints and was solved using a genetic algorithm. 

In mathematical programming-based schemes, mixed-
integer linear programming (MILP) can handle optimization 
problems where variables are continuous and discrete, making 
it highly suitable for application in microgrid energy 
optimization management. MILP can be used to establish 
mathematical models of microgrid components and optimize 
the cost function. Sigalo et al. [6] proposed an energy 
management scheme for grid-connected microgrids focused on 
battery storage systems, considering changes in grid electricity 
prices, renewable energy generation, and load demand, and 
determined the charging and discharging power of the battery 
to minimize the overall energy loss cost. 

Stochastic and robust optimization-based microgrid energy 
optimization management schemes have been proposed to 
address the stochastic factors and prediction errors inherently 
present in microgrids. Chen et al. [7] proposed a new 
cumulative regret-based robust optimization method for the 
optimal management of grid-connected multi-energy 
microgrids considering uncertainty factors. Compared to 
traditional robust optimization methods, the proposed strategy 
ensures the robustness of microgrids and reduces the 
conservatism of microgrid operations. Additionally, by 
considering the demand response of thermal loads, the 
optimization model for microgrid energy management was 
improved. Abunima et al. [8] proposed a two-stage microgrid 
optimization scheduling method that coordinates microgrid 
assets under uncertainty, allowing microgrid operators to save 
operational costs without increasing investment costs, while 
meeting load demand. Nair et al. [9] considered an islanded 
microgrid composed of photovoltaic generation, 
supercapacitors, and regenerative fuel cells, utilizing a model 
predictive control algorithm. The goal was to enhance the 
utilization of renewable energy, improve microgrid operational 
efficiency, and reduce the degradation rate of the storage 
system. 

A common feature of the above model-based methods is 
their reliance on precise predictions of uncertain factors in 
microgrids. Once prediction errors occur, the performance of 
these methods can be significantly impacted. Additionally, the 
computational cost of these methods is typically high, facing 
the issue of "curse of dimensionality"; as the complexity of the 
optimization problem increases, the computational cost 
multiplies, making it difficult to meet the real-time 
requirements of microgrid energy optimization management. 
To address these issues, some researchers have employed deep 
reinforcement learning (DRL) to solve the problem of 
microgrid energy optimization management. Deep 
reinforcement learning is a data-driven or model-free algorithm 
that does not rely on precise modeling of the microgrid 
environment. Thanks to the powerful perception capabilities of 
deep learning algorithms, DRL can effectively learn the 
microgrid environment model. Additionally, due to the strong 
decision-making ability of reinforcement learning, it can 
efficiently solve optimization problems. Alabdullah et al. [10] 
proposed a microgrid energy management solution based on 
the Deep Q-Network (DQN) algorithm, considering the 
stochastic behavior of various factors in the microgrid and 
modeling different grid components, while adhering to various 
power flow constraints in real-world environments. 
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B. Research Gaps and Motivation 

Based on the above literature review, the following 
conclusions can be drawn: 

1) Real-time performance and stability challenges: 

Current microgrid energy optimization methods, including 

mathematical programming, stochastic optimization, robust 

optimization, and MPC, struggle with high computational 

complexity and real-time performance due to the handling of 

uncertainties. MPC, in particular, faces difficulties in ensuring 

stability and has not fully accounted for model uncertainties. 

2) Dependency on accurate predictions: Model-based 

methods rely heavily on accurate predictions of uncertainties 

in microgrids. Prediction errors and high computational costs 

can lead to performance issues and the "curse of 

dimensionality," making real-time energy optimization 

challenging. 

3) Need for further research in deep reinforcement 

learning: While deep reinforcement learning offers potential 

advantages such as real-time scheduling and a general 

framework, its applicability across different microgrid 

architectures and its effectiveness in online optimization 

require further research and validation. 

Addressing these issues is critical for improving the 
effectiveness and applicability of microgrid energy 
management, which is the focus of this paper. 

III. MULTI-MICROGRID DUAL-LAYER ENERGY 

OPTIMIZATION MANAGEMENT MODEL BASED ON 

REINFORCEMENT LEARNING 

A. Multi-Microgrid Dual-Layer Energy Optimization 

Management Model 

The structure of the multi-microgrid dual-layer energy 
optimization management model designed in this chapter is 
shown in Fig. 1. The lower layer consists of N microgrids, each 
containing photovoltaic generation equipment, wind power 
generation equipment, energy storage devices, micro gas 
turbines, loads, and a control center. The microgrids are 
interconnected through energy routers. 

TOP

BOTTOM
power wave

information flow
 

Fig. 1. Schematic diagram of the multi-microgrid dual-layer structure. 

The upper layer is an abstracted topology based on the 
lower layer, which facilitates power flow analysis. In the 
process of one round of multi-microgrid energy optimization 
management, the lower layer first uses multi-agent deep 
reinforcement learning to decide the output of controllable 
power devices [11]. Then, the upper layer calculates the 
optimal power flow based on the regulated results of the lower 
layer. Finally, based on the results of the two-layer 
optimization, the reward value is calculated, and the neural 
network parameters are updated. Therefore, the following 
sections will first introduce the multi-agent deep reinforcement 
learning algorithm MAPPO in the lower layer, then explain the 
optimal power flow model for the multi-microgrid in the upper 
layer, and finally present the overall algorithm flow and 
experimental results. 

B. Lower Layer Multi-Agent Deep Reinforcement Learning 

Algorithm 

As shown in Fig. 2, MAPPO is a multi-agent variant of 
PPO (Proximal Policy Optimization) and operates using a 
Centralized Training with Decentralized Execution (CTDE) 
approach. In centralized training, the Critic network of each 
agent can use global information during the offline training 
phase to achieve better convergence. In decentralized 
execution, each agent’s Actor network can only observe its 
own state to make decisions during the online execution phase. 
Extensive experiments have shown that the clipped form of 
PPO consistently outperforms the penalized form, and hence, 
the clipped form is adopted in this work. The optimization 
objective can be written as follows:  

max�̂�𝑡[min(𝑟𝑡(𝜃)�̂�𝑡 , clip(𝑟𝑡(𝜃),1 − 𝜀, 1 + 𝜀)�̂�𝑡)]         (1) 

clip(𝑟𝑡(𝜃),1 − 𝜀, 1 + 𝜀) = {

1 − 𝜀, 𝑟𝑡(𝜃) < 1 − 𝜀
1 + 𝜀, 𝑟𝑡(𝜃) > 1 + 𝜀

𝑟𝑡(𝜃), other

         (2) 

Here, clip(⋅) is the clipping function. When �̂�𝑡 > 0 , it 
indicates that the action a_t taken at this moment is better than 
the average, so maximizing Eq. (1) will increase  𝑟𝑡(𝜃) , 
meaning the probability of action a_t in the new policy will 
increase. However, 𝑟𝑡(𝜃)  will not increase beyond 1+ε. 

Conversely, when  �̂�𝑡 < 0, it indicates that the action 𝑎𝑡 taken 
at this moment is worse than the average, so maximizing Eq. 
(1) will decrease 𝑟𝑡(𝜃), meaning the probability of action a_t in 
the new policy will decrease. However, 𝑟𝑡(𝜃) will not decrease 
below 1-ε. 

Critic network1

Actor network1

Local 

environment1

Global environment

Critic networkN

Actor networkN

Local 

environmentN

Local statement N

Action N

Local statement 1

Action 1

Value NValue 1

Reward 1 Reward N

 
Fig. 2.  MAPPO algorithm architecture. 
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C. Upper-Layer Optimal Power Flow Model 

Currently, distribution networks are primarily radial in 
structure. A radial structure with multiple microgrids can be 
modeled using the Branch Flow Model (BFM). Fig. 3 
illustrates a schematic diagram of the Branch Flow Model. For 
node j: 

 𝑉𝑗 represents the voltage at the node; 

 𝑠𝑗 = 𝑝𝑗 + 𝑖𝑞𝑗represents the power injection at the node. 

For the branch from node i to node j (i→j): 

 𝐼𝑖𝑗  represents the branch current; 

 𝑆𝑖𝑗 = 𝑃𝑖𝑗 + 𝑖𝑄𝑖𝑗  represents the power at the sending end 

of the branch; 

 𝑍𝑖𝑗 = 𝑟𝑖𝑗 + 𝑖𝑥𝑖𝑗  represents the branch impedance. 

The topology of the upper-level multi-microgrid system is 
denoted as G(N,E)G(N,E). Finally, by applying angle 
relaxation and second-order cone relaxation, the optimal power 
flow problem is transformed into a convex optimization 
problem. Specifically: 

𝑙𝑖𝑗 ≥
𝑃𝑖𝑗
2 + 𝑄𝑖𝑗

2

𝑣𝑖
, ∀(𝑖, 𝑗) ∈ 𝐸 ⇔

∥
∥
∥
∥
∥

[

2𝑃𝑖𝑗
2𝑄𝑖𝑗

𝑙𝑖𝑗 − 𝑣𝑖

]

∥
∥
∥
∥
∥

2

≤ 𝑙𝑖𝑗 + 𝑣𝑖 , 

∀(𝑖, 𝑗) ∈ 𝐸  (3) 

At this point, the optimization variables for the optimal 

power flow problem become {𝑝𝑖 , 𝑞𝑖 , 𝑃𝑖𝑗 , 𝑄𝑖𝑗 , 𝑙𝑖𝑗 , 𝑣𝑖} . For a 

radial network, the literature has proven that angle relaxation is 
tight; under the conditions that the objective function is strictly 
increasing and convex, the second-order cone relaxation is also 
tight. At this stage, the optimal power flow problem has been 
modeled as a convex optimization problem, which can be 
conveniently solved using commercial solvers like Gurobi. 

V0

S0

Vi Vj Vk

Si Sj Sk

Zij Zjk

Iij,Sij Ijk,Sjk

 

Fig. 3.  Schematic diagram of branch flow structure. 

D. BMAPPO: Multi-Microgrid Dual-Layer Energy 

Optimization Management Algorithm 

The constraints in a multi-microgrid system arise from 
three aspects: the electrical boundary constraints of various 
devices in the microgrid, the power balance constraints of each 
microgrid, and the power flow constraints between microgrids 
[12]. For convenience, unless otherwise stated, i represents the 
ith microgrid in the multi-microgrid system; t represents the tth 
round of optimization management; N represents the set of 
microgrid nodes; E represents the set of edges (power lines) 
between microgrids. 

1) Device boundary constraint 

a) Micro gas turbine boundary constraints: 

𝑃𝑖,min
𝑀𝑇 < 𝑃𝑖,𝑡

𝑀𝑇 < 𝑃𝑖,max
𝑀𝑇 , ∀𝑖 ∈ 𝑁                  (4) 

In the above formula, 𝑃𝑖,𝑡
𝑀𝑇  is the output power of the micro 

gas turbine (kW); 𝑃𝑖,min
𝑀𝑇  and 𝑃𝑖,max

𝑀𝑇  are the lower and upper 

bounds of the micro gas turbine's output power (kW). 

b) Energy storage device boundary constraints: 

𝑃𝑖, min 
𝐸𝑆𝑆 < 𝑃𝑖,𝑡

𝐸𝑆𝑆 < 𝑃𝑖, max 
𝐸𝑆𝑆 , ∀𝑖 ∈ 𝑁                  (5) 

𝑆𝑂𝐶𝑖, min ≤ 𝑆𝑂𝐶𝑖,𝑡 ≤ 𝑆𝑂𝐶𝑖, max ∀𝑖 ∈ 𝑁            (6) 

In the above formulas, 𝑃𝑖,𝑡𝑆
𝐸𝑆𝑆  is the charging/discharging 

power of the energy storage device (kW); 𝑃𝑖,min
ESS  and 𝑃𝑖,max

𝐸𝑆𝑆  are 

the lower and upper bounds of the charging/discharging power 
of the energy storage device (kW); 𝑆𝑂𝐶𝑖,𝑡 is the state of charge 

of the energy storage device; 𝑆𝑂𝐶𝑖,min  and 𝑆𝑂𝐶𝑖,max  are the 

lower and upper bounds of the state of charge of the energy 
storage device. 

c) Main grid boundary constraints 

𝑃𝑖, min 
𝑀𝐺 < 𝑃𝑖,𝑡

𝑀𝐺 < 𝑃𝑖, max 
𝑀𝐺 , ∀𝑖 ∈ 𝑁                 (7) 

𝑄𝑖, min 
𝑀𝐺 < 𝑄𝑖,𝑡

𝑀𝐺 < 𝑄𝑖,max
𝑀𝐺 , ∀𝑖 ∈ 𝑁                 (8) 

In the above formulas, 𝑃𝑖,𝑡
𝑀𝐺  is the active power traded 

between the microgrid and the main grid (kW); 𝑃𝑖,min
𝑀𝐺  and 

𝑃𝑖,max
𝑀𝐺  are the lower and upper bounds of the active power 

traded between the microgrid and the main grid (kW); 𝑄𝑖,𝑡
𝑀𝐺   is 

the reactive power traded between the microgrid and the main 

grid (kVar); 𝑄𝑖,min
𝑀𝐺  and 𝑄𝑖,max

𝑀𝐺  are the lower and upper bounds 

of the reactive power traded between the microgrid and the 
main grid (kVar). 

2) Power balance constraints 

a) Active power balance constraint 

𝑝𝑖,𝑡 = 𝑃𝑖,𝑡
𝑃𝑉 + 𝑃𝑖,𝑡

𝑊𝑇 + 𝑃𝑖,𝑡
𝑀𝑇 + 𝑃𝑖,𝑡

𝐸𝑆𝑆 + 𝑃𝑖,𝑡
𝑀𝐺 − 𝑃𝑖,𝑡

𝐿𝑜𝑎𝑑 , ∀𝑖 ∈ 𝑁 (9) 

In the above formula, 𝑝𝑖,𝑡 is the injected active power (kW); 

𝑃𝑖,𝑡
𝑃𝑉  and 𝑃𝑖,𝑡

𝑤𝑇  are the active power outputs of photovoltaic and 

wind power generation, respectively (kW); 𝑃𝑖,𝑡
𝑀𝑇  is the output 

power of the micro gas turbine (kW); 𝑃𝑖,𝑡
𝐸𝑆𝑆  is the 

charging/discharging power of the energy storage device (kW); 

𝑃𝑖,𝑡
𝑀𝐺  is the active power traded between the microgrid and the 

main grid (kW); 𝑃𝑖,𝑡
Load 

 is the active power of the load (kW). 

b) Reactive power balance constraint 

𝑞𝑖,𝑡 = 𝑄𝑖,𝑡
𝑀𝐺 − 𝑄𝑖,𝑡

𝐿𝑜𝑜𝑑 , ∀𝑖 ∈ 𝑁                  (10) 

In the above formula, 𝑞𝑖,𝑡  is the injected reactive power 

(kVar); 𝑄𝑖,𝑡
MG is the reactive power from the main grid (kVar); 

𝑄𝑖,𝑡
Load 

 is the reactive power of the load (kVar). 

3) Power flow constraints 

𝑣𝑗 = 𝑣𝑖 − 2(𝑟𝑖𝑗𝑃𝑖𝑗 + 𝑥𝑖𝑗𝑄𝑖𝑗) + (𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 )𝑙𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸  (11) 

𝑝𝑗 = ∑  𝑘:𝑗→𝑘  𝑃𝑗𝑘 − ∑  𝑖:𝑖→𝑗   (𝑃𝑖𝑗 − 𝑟𝑖𝑗𝑙𝑖𝑗), ∀𝑗 ∈ 𝑁        (12) 

𝑞𝑗 = ∑  𝑘:𝑗→𝑘  𝑄𝑗𝑘 − ∑  𝑖:𝑖→𝑗   (𝑄𝑖𝑗 − 𝑥𝑖𝑗𝑙𝑖𝑗), ∀𝑗 ∈ 𝑁       (13) 
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𝑙𝑖𝑗 ≥
𝑃𝑖𝑗
2+𝑄𝑖𝑗

2

𝑣𝑖
, ∀(𝑖, 𝑗) ∈ 𝐸                   (14) 

|𝐼𝑖𝑗| ≤ 𝐼𝑖�̅�, ∀(𝑖, 𝑗) ∈ 𝐸                  (15) 

𝑉𝑖 ≤ |𝑉𝑖| ≤ 𝑉‾𝑖 , ∀𝑖 ∈ 𝑁                   (16) 

𝑠𝑖 ≤ 𝑠𝑖 ≤ 𝑠�̅�, ∀𝑖 ∈ 𝑁                 (17) 

E. Optimization Objective Function 

In this chapter, considering the uncertainties in renewable 
energy generation, load, and electricity prices, the objective is 
to minimize the cooperative operation cost of multiple 
microgrids. An energy optimization management model for 
multiple microgrids is constructed, and the objective function 
is as follows: 

min𝐹𝑡 = min∑  𝑇
𝑡=1   (∑  𝑁

𝑖=1   (𝐹𝑖,𝑡
𝑀𝐺 + 𝐹𝑖,𝑡

𝑀𝑇 + 𝐹𝑖,𝑡
𝐸𝑆𝑆) + 𝐹𝑡

Loss) (18) 

Where: 

 𝐹𝑡  is the total operating cost of the multi-microgrid 
system. 

 t represents the t-th round of optimization management. 

 T is the total number of rounds within an energy 
optimization management period. 

 𝐹𝑖,𝑡
𝑀𝐺  represents the cost of trading with the main grid. 

 𝐹𝑖,𝑡
𝑀𝑇  represents the generation cost of the micro gas 

turbine. 

 𝐹𝑖,𝑡
𝐸𝑆𝑆  represents the loss cost of the energy storage 

device. 

 𝐹𝑡
Loss 

 represents the power transmission loss between 

microgrids. 

For simplicity, in this chapter, ΔtΔt represents the time 
length of one round of optimization management (hours). 

a) Cost of trading between microgrid and main grid 

𝐹𝑖,𝑡
𝑀𝐺 = 𝑐𝑡

𝑀𝐺𝑃𝑖,𝑡
𝑀𝐺 ⋅ Δ𝑡                     (19) 

In the above formula, ctMGctMG is the electricity price of 
the main grid during the tt-th round of optimization 
management ($/kWh), and P(i,t)MGP(i,t)MG is the active 
power purchased by the microgrid from the main grid (kW). 

b) Micro gas turbine generation cost 

𝐹𝑖,𝑡
𝑀𝑇 = (𝑎 ⋅ (𝑃𝑖,𝑡

𝑀𝑇)
2
+ 𝑏 ⋅ 𝑃𝑖,𝑡

𝑀𝑇 + 𝑐) ⋅ Δ𝑡          (20) 

In the above formula, aa, bb, and cc are cost coefficients. 

c) Energy storage device loss cost 

𝐹𝑖,𝑡
𝐸𝑆𝑆 = (𝑐ESS ⋅ (𝑃𝑖,𝑡

𝑐ℎ𝑎 ⋅ 𝜂cha + 𝑃𝑖,𝑡
𝑑𝑖𝑠/𝜂𝑑𝑖𝑠)) ⋅ Δ𝑡       (21) 

In the above formula, cESScESS is the loss coefficient; 
P(i,t)chaP(i,t)cha and P(i,t)disP(i,t)dis are the charging and 
discharging powers of the energy storage device, respectively 
(kW); ηchaηcha and ηdisηdis are the charging and discharging 
efficiencies of the energy storage device, respectively. 

d) Transmission loss between microgrids 

𝐹𝑡
Loss = ∑  𝑖𝑗∈𝐸  𝑐𝑡

𝑀𝐺|𝐼𝑖𝑗,𝑡|
2
𝑟𝑖𝑗 ⋅ Δ𝑡                 (22) 

In the above formula, 𝐼𝑖𝑗,,  and 𝑟𝑖𝑗  are the current (A) and 

impedance (Ω) between microgrid i and microgrid j, 
respectively. 

Based on the above description, solving the optimization 
problem in Eq. (19) requires handling optimization variables 
that can be divided into lower-layer and upper-layer 
optimization variables. The lower-layer optimization variables 
include: 

 The generation power of micro gas turbines in 

microgrids {𝑃𝑖,𝑡
𝑀𝑇}. 

 The charging and discharging power of energy storage 

devices in microgrids {𝑃𝑖,𝑡
𝐸𝑆𝑆}. 

 The active power traded between the microgrid and the 

main grid {𝑃𝑖,𝑡
MG}. 

 The reactive power traded between the microgrid and 

the main grid {𝑄𝑖,𝑡
MG}. 

The upper-layer optimization variables include: 

 Node voltage {𝑣𝑗,𝑡}. 

 Node injected power {𝑝𝑗,𝑡 , 𝑞𝑗,𝑡}. 

 Branch current {𝑙𝑖𝑗,𝑡} and branch power {𝑃𝑖𝑗,𝑡 , 𝑄𝑖𝑗,𝑡}. 

F. Construction of a Partially Observable Markov Decision 

Process 

The multi-agent reinforcement learning algorithm MAPPO 
(Multi-Agent Proximal Policy Optimization) is used to solve 
the multi-microgrid energy optimization management problem, 
which can be modeled as a Partially Observable Markov 
Decision Process (POMDP). POMDP can be defined as a five-
tuple (𝒮, {𝒪𝑖}𝑖=1

𝑛 , {𝒜𝑖}𝑖=1
𝑛 , 𝒫, {𝑟𝑖}𝑖=1

𝑛 ), where: 

 𝒮 is the global state space. 

 𝒫 is the state transition function. 

 For agent 𝑖, the observation space is 𝒪𝑖, the action space 
is  𝒜𝑖, and the reward function is  𝑟𝑖. 

Further, in multi-agent reinforcement learning, the 
interaction process between agents and the environment is as 
follows: 

 At time step t, each agent i obtains an observation state 
𝑜𝑖,𝑡 ∈ 𝒪𝑖  and selects an action 𝑎𝑖,𝑡 ∈ 𝒜𝑖  according to 

the policy 𝜋𝑖: 𝒪𝑖 ×𝒜𝑖 → [0,1]. 

 Then, the system transitions to the next state 𝑜𝑖,𝑡+1 

according to the state transition probability 𝒫  and 

receives a reward (𝑠𝑡 , 𝑎𝑖,𝑡). 

The objective of multi-agent reinforcement learning is to 

maximize the cumulative return: 𝐽(𝜋) = 𝔼 [∑𝑡=0
𝑇  

1

𝑛
𝛾𝑡∑𝑖=1

𝑛  𝑟𝑖,𝑡]. 
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Therefore, the multi-microgrid energy optimization 
management problem is modeled as a POMDP below. 

a) Observation space definition 

𝑜𝑖,𝑡 = [𝑃𝑖,𝑡
𝑃𝑉 , 𝑃𝑖,𝑡

𝑊𝑇 , 𝑃𝑖,𝑡
𝐿𝑜𝑎𝑑 , 𝑐𝑡

𝑀𝐺 , 𝑆𝑂𝐶𝑖,𝑡]            (23) 

In the above formula: 

 𝑃𝑖,𝑡
𝑃𝑉  and 𝑃𝑖,𝑡

𝑊𝑇   are the photovoltaic and wind power 

generation outputs, respectively. 

 𝑃𝑖,𝑡
𝐿𝑜𝑎𝑑 is the load power. 

 𝑐𝑡
𝑀𝐺  is the real-time electricity price of the main grid. 

 𝑆𝑂𝐶𝑖,𝑡   is the state of charge of the energy storage 

device. 

b) b) State Space Definition 

𝑠𝑡 = [𝑜1,𝑡 , 𝑜2,𝑡 K, 𝑜𝑛,𝑡]               (24) 

The state space contains the observation space of all agents 
and represents the global information of the multi-agent 
environment. 

c) Action space definition 

𝑎𝑖,𝑡 = [𝑃𝑖,𝑡
𝑀𝑇 , 𝑃𝑖,𝑡

𝐸𝑆𝑆 , 𝑃𝑖,𝑡
MG, 𝑄𝑖,𝑡

MG]             (25) 

In the above formula: 

 𝑃𝑖,𝑡
𝑀𝑇  is the power output of the micro gas turbine. 

 𝑃𝑖,𝑡
𝐸𝑆𝑆  is the charging/discharging power of the energy 

storage device. 

 𝑃𝑖,𝑡
MG is the active power traded between the microgrid 

and the main grid. 

 𝑄𝑖,𝑡
MG is the reactive power traded between the microgrid 

and the main grid. 

d) Reward function definition 

𝑟𝑖,𝑡 = −(𝛼 ⋅ (𝐹𝑖,𝑡
𝑀𝐺 + 𝐹𝑖,𝑡

𝑀𝑇 + 𝐹𝑖,𝑡
𝐸𝑆𝑆) + 𝛽 ⋅ ∑  𝑁

𝑖=1  cons(𝑆𝑂𝐶𝑖,𝑡)) (26) 

𝑟𝑡 = −𝐹𝑡
Loss 

+ ∑  𝑁
𝑖=1  𝑟𝑖,𝑡                 (27) 

Eq. (26) is the reward function for agent ii, where α and β 
are coefficients, and cons (⋅) is a penalty function introduced in 
the previous chapter. Eq. (27) is the total reward for the multi-
microgrid system. Since the algorithm designed in this chapter 
is a dual-layer optimization, the total reward is calculated after 
the upper-layer optimization is completed. It includes the sum 
of all lower-layer agent rewards and the upper-layer 

optimization objective 𝐹𝑡
Loss 

. It is worth mentioning that Eq. 

(23) can also be decomposed using the vectorization approach 
proposed in the previous chapter, but for simplicity, the 
traditional reward function is used here. Online Decision-
Making Process of the MAPPO-Based Multi-Microgrid Dual-
Layer Energy Optimization Management Scheme. The online 
decision-making process is shown in Algorithm 1. 

Algorithm 1: Multi-Microgrid Energy Optimization 

Management Algorithm Online Decision-Making Process 

Input: Actor network weights θπθπ 

Output: Values of all optimization variables in the tt-th round of 
multi-microgrid energy optimization 

Step 1: Obtain the initial state of all agents. 

For t=1,2,…,T do: 

Step 1: Each agent i∈N in the lower layer observes state 𝑜𝑡
𝑖 and 

selects an action 𝑎𝑖,𝑡 based on the policy, obtaining the optimization 

variables {𝑃𝑖,𝑡
𝑀𝑇 , 𝑃𝑖,𝑡

𝐸𝑆𝑆, 𝑃𝑖,𝑡
MG, 𝑄𝑖,𝑡

MG}, 𝑖 ∈ 𝑁. 

Step 2: The upper layer solves the optimal power flow problem 
using a commercial optimizer, obtaining the optimization variables 

{𝑣𝑗,𝑡} ∖ {𝑝𝑗,𝑡, 𝑞𝑗,𝑡} ∖ {Δ𝑃𝑖,𝑡
𝑀𝐺 , Δ𝑄𝑖,𝑡

𝑀𝐺}, 𝑖 ∈ 𝑁 and {𝑙𝑖𝑗,𝑡} ∖

{𝑃𝑖𝑗,𝑡, 𝑄𝑖𝑗,𝑡}, 𝑖𝑗 ∈ 𝐸. 

Step 3: Apply all optimization variables to the multi-microgrid 
system and obtain the next state 𝑠𝑡+1. 

End for 

IV. EXPERIMENTAL RESULTS ANALYSIS 

A. Simulation Environment and Parameter Settings 

The IEEE 33-bus system structure, as shown in Fig. 4, is 
used as the upper-level topology for the dual-layer energy 
optimization management of multiple microgrids. Microgrids 
can be placed at any node, and the impedance value between 
two adjacent nodes is the average of the branch impedances 
between the nodes. For example, if microgrids are connected at 
nodes 1 and 21 to form a system with two microgrids, the 
impedance between nodes 1 and 21 would be the average 
impedance of branches 1-18, 18-19, 19-20, and 20-21. This 
setup allows the generation of various simulation environments 
on the IEEE 33-bus system. In this chapter, nodes 1, 2, 5, and 
24 are selected to connect microgrids 1 to 4, forming a multi-
microgrid structure with four microgrids. Energy optimization 
management is performed every hour. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

22 23 24 25 26 27 28 29 30 31 32

18 19 20 21

 

Fig. 4. Schematic diagram of the IEEE 33-bus system structure. 

The experimental equipment used in this chapter includes 
an Intel(R) Core(TM) i5-10210U CPU @1.60GHz 2.10 GHz 
and an NVIDIA GeForce RTX2060. The compiler used is 
Pycharm 2022.3, and the programming language is Python 3.8. 
The commercial optimizer used for solving the upper-level 
optimal power flow is the Python version of Gurobi 10.0.1. 
The implementation framework for the lower-level multi-agent 
deep reinforcement learning algorithm is the mainstream neural 
network development framework Pytorch. The MAPPO 
parameters are set as shown in Table I: 
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TABLE I.  MAPPO PARAMETER SETTINGS 

Parameter Value 

Discount Factor γ 0.95 

Number of Neurons in Hidden Layer 128 

Actor Network Learning Rate 𝑙𝑎  0.0003 

Critic Network Learning Rate 𝑙𝑐  0.0001 

Clipping Function Hyperparameter 𝜀 0.2 

Size of Experience Replay Pool D 10000 

Mini-batch Size B 96 

Maximum Number of Training Epochs 20000 
 

B. Optimization Management Results Analysis 

1) Convergence analysis: As shown in Fig. 5, during the 

offline training process, the BMAPPO algorithm proposed in 

this chapter converges at around 9000 iterations. The 

smoothed cumulative reward oscillates around -2250. Since 

the reward function is a negative function of the optimization 

management cost, the convergence curve shows an upward 

trend, indicating that during the iteration process, the agent 

learns effective strategies to reduce the cost of multi-microgrid 

optimization management. During offline training, 80% of the 

dataset was used. Next, the network parameters after training 

are saved, and the remaining 20% of the dataset is used to 

simulate the online optimization management process to test 

the effectiveness of the algorithm. 
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Fig. 5. Convergence curve of the BMAPPO algorithm during offline 
training. 

2) Effectiveness analysis: Fig. 6 shows the lower-level 

optimization results for Microgrid 1 and Microgrid 2. 

Fig. 6(a1) and 6(a2) represent the output curves of 
controllable power devices in Microgrid 1 and Microgrid 2, 
respectively, including the power generation of micro gas 
turbines, the charging and discharging power of energy storage 
devices, and the power regulation results of transactions with 
the main grid. Combined with the real-time electricity price 

fluctuations of the main grid shown in Fig. 5, it can be seen 
that when the main grid electricity price is low from 1 to 5 
hours, the power of the energy storage devices in both 
microgrids is negative (except for a discharge of about 40 kW 
in Microgrid 1 at 5 hours), representing charging of the energy 
storage devices. During this period, a large amount of 
electricity is purchased from the main grid, while the micro gas 
turbines almost do not output power. When the main grid price 
is moderately high from 9 to 17 hours, the trend of output from 
controllable power devices is similar to that from 1 to 5 hours, 
but the load power gap in this period is also relatively low, so 
the power purchased from the main grid is also relatively less. 
When the electricity price is high from 6 to 8 hours and 18 to 
22 hours, the output of the energy storage devices is generally 
positive, representing discharging of the energy storage 
devices. During these periods, the power purchased from the 
main grid is at a low point, and the micro gas turbines output a 
large amount of power to fill the load power gap. Therefore, 
the BMAPPO proposed in this chapter is effective in cost 
savings. 

Fig. 6(b1) and 6(b2) show the state of charge (SoC) curves 
of the energy storage devices in Microgrid 1 and Microgrid 2, 
respectively, with the upper and lower bounds of the SoC 
indicated, set at 0.9 and 0.1. An SoC less than 0.1 indicates an 
over-discharging condition, while an SoC greater than 0.9 
indicates an over-charging condition. It can be seen that the 
energy storage device in Microgrid 2 is in a safe state during 
the typical day, with no over-charging or over-discharging 
occurring. However, Microgrid 1 shows a slight over-charging 
condition from 16 to 19 hours. 

Fig. 7 illustrates the upper-level optimization results for 
Microgrid 1 and Microgrid 2. 

Fig. 7(a1) and 7(a2) display the power injection curves for 
Microgrid 1 and Microgrid 2, respectively. Positive power 
injection indicates that there is excess power within the 
microgrid that is not being consumed, while negative power 
injection indicates that there is an unsatisfied power deficit 
within the microgrid. The upper-level power flow optimization 
will balance the power injection between microgrids, ensuring 
power balance in each microgrid. From Fig. 7(a1), it can be 
seen that Microgrid 1 has positive power injection from 17 to 
21 hours, which can be transmitted to other microgrids. From 
Fig. 7(a2), it can be seen that Microgrid 2 has negative power 
injection from 18 to 22 hours, which can be obtained from 
other microgrids. This shows that the upper-level microgrids 
can achieve mutual support. 
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(a1) Power output curve of controllable devices in Microgrid 1 (b1) SoC curve of energy storage devices in Microgrid 1

(b1) SoC curve of energy storage devices in Microgrid 1 (b2) SoC curve of energy storage devices in Microgrid 2  
Fig. 6. Lower-level optimization results of Microgrid 1 and Microgrid 2.
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Fig. 7. Upper-level optimization results of Microgrid 1 and Microgrid 2. 

V. CONCLUSION 

This paper proposes a dual-layer optimization management 
scheme based on the multi-agent reinforcement learning 
algorithm MAPPO for the energy optimization management 
problem of multiple microgrids. The lower layer uses MAPPO 
to make decisions on the power output of each microgrid 
device, handling power imbalances, while the upper layer 
achieves overall power balance of multiple microgrids through 
a second-order cone relaxation optimal power flow model. The 
experimental results show that the designed BMAPPO 
algorithm effectively achieves mutual support between 
microgrids and significantly reduces the energy optimization 
management costs of multiple microgrids. 

Although the deep reinforcement learning-based energy 
optimization management scheme proposed in this paper 
shows significant advantages in cost savings, there is still room 
for improvement: 

The deep reinforcement learning method relies on a large 
amount of historical data for training, which may be difficult to 
obtain in practical applications. Therefore, future research 
should focus on reducing dependence on historical data or 
improving data utilization efficiency. 

This paper only studies the situation where microgrids are 
connected to the main grid, while islanded microgrids have 
widespread applications in remote areas, where their 
optimization management cost control is of significant 
importance. Therefore, how to reduce the management costs of 
islanded microgrids while ensuring safety is an important 
direction for future research. 
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