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Abstract—The tracking of motion targets occupies a central 

position in sports video analysis. To further understand athletes' 

movements, analyze game strategies, and evaluate sports 

performance, a 3D posture estimation and tracking model is 

designed based on Graphical Convolutional Neural Network and 

the concept of "cross-vision". The outcomes revealed that the loss 

function curve of the 3D tracking model designed for the study 

had the fastest convergence with a minimum convergence value 

of 0.02. The average precision mean values for the four different 

publicly available datasets were above 0.90. The maximum 

improvement reached 21.06% and the minimum average 

absolute percentage error was 0.153. The higher order tracking 

accuracy of the model reached 0.982. Association intersection 

over union was 0.979. Association accuracy and detection 

accuracy were 0.970 and 0.965 respectively. During the volleyball 

video analysis, the tracking accuracy and tracking precision 

reached 89.53% and 90.05%, respectively, with a tracking speed 

of 33.42 fps. Meanwhile, the method's trajectory tracking 

completeness was always maintained at a high level, with its 

posture estimation correctness reaching 0.979. Mostly tracked 

and mostly lost confirmed the tracking ability of the method in a 

long time and cross-view state with high model robustness. This 

study helps to promote the development and application of 

related technologies, promote the intelligent development of 

volleyball in training, competition and analysis, and improve the 

efficiency of the sport and the level of competition. 

Keywords—Graphical Convolutional Neural Network; posture 

estimation; volleyball; motion analysis model; 3D tracking 

I. INTRODUCTION 

In recent years, AI vision technology has begun to be 
widely used in the sports industry, accelerating the change of 
the sports industry. This is of key significance in enhancing the 
level of competitive sports, promoting national fitness 
activities, expanding the scale of the sports industry, and 
accelerating the dissemination of sports culture [1-2]. Artificial 
intelligence technology can develop a more personalized and 
precise training plan by collecting the training and competition 
videos of athletes and using visual technology to identify and 
analyze the movements. Athletes may benefit from it by 
improving their technical movement proficiency and training 
effectiveness. Simultaneously, a great deal of game data 
analysis helps to increase the effectiveness of tactics and 
strategies [3–4]. Multiple object tracking (MOT) is an 
important branch in the field of sports video (SV) analytics, 
which involves techniques such as human activity recognition 
(HAR), position estimation and target localization [5]. By 
tracking sports targets, such as players, balls, etc., key data 
such as their positions, velocities, accelerations, etc., can be 

obtained in real-time, providing accurate data support for 
action analysis, tactics development and athletes' performance 
evaluation [6]. However, there are still a range of practical 
challenges for MOTs in the sports arena. On the one hand, 
lighting changes, background interference and occlusion in real 
ball SVs increase the difficulty of target tracking (TT). Players 
between the same team are extremely similar in appearance, 
leading to easy identity exchange of tracking targets. At the 
same time, the changing body postures of the movement lead 
to the difficulty of existing MOT methods to distinguish and 
track the target only by relying on the appearance features [7-
8]. On the other hand, multi-camera views in real sports arenas 
require precise calibration and alignment to ensure that images 
from different camera views can be accurately aligned and 
fused. Meanwhile, in order to capture key events, the multi-
camera system needs to switch viewpoints frequently, which 
increases the difficulty of tracking targets continuously and 
accurately. Therefore, there is a need to develop new MOT 
technologies to meet the real challenges. 

In order to solve the difficulty of target tracking due to the 
similarity of appearance and constant change of position in 
multi-camera viewpoints, the study takes volleyball as an 
example, and proposes a 3D posture estimation (3D-PE) and 
tracking model (TM) based on graph convolutional network 
(GCN) and cross-view matching for the TT difficulties caused 
by the athletes' similar appearance and changing postures. The 
study is expected to significantly improve the accuracy of 
athlete tracking by introducing 3D pose estimation and cross-
view matching techniques, which will help to deeply analyse 
athletes' movement characteristics, exercise habits and 
potential problems, as well as promote the development and 
innovation of related technologies. 

The research innovatively proposes a 3D pose estimation 
and tracking model based on GCN and cross-view matching, 
which provides a new technical idea and method for multi-
camera viewpoint sports MOT, which can be realised for the 
expansion of applications in ball sports. The study provides a 
new theoretical perspective for the field of video analysis by 
deeply exploring the target tracking in multiphase viewpoints, 
which can help to improve the athletes' competitive level and 
provide a more solid technical support for the sports field. 

The research is broken up into five sections. In Section II, 
the state of the art of motion recognition, posture estimation 
and visual tracking is summarized. In Section III and Section 
IV a two-dimensional TM for athletes with a single camera and 
a three-dimensional posture estimation and TM with cross-
view matching are designed. In the third part, the performance 
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of the 3D-PE and TM is tested and analyzed. Section V 
summarizes the main conclusions and future work of the study. 

II. LITERATURE REVIEW 

HAR has become one of the popular researches in the field 
of Artificial Intelligence, HAR is a complex and 
multidimensional problem, which has been extensively studied 
by many researchers and scholars. DL techniques have 
application limitations in monitoring and recognizing elderly 
people living alone in the face of estimating missing or rare 
poses in the training dataset. To solve the 3D-PE fuzzy 
problem, Kim et al. [9] presented a loss function (LF) for the 
center of mass deviation from the center of the supporting foot 
and a penalty function for the range of rotation of the 
appropriate joint angle. The experimental results indicated that 
the average joint coordinate difference for posture estimation 
of this method was 0.097m with an execution time of 0.033s 
per frame. The wide range of human behavioral variations in 
daily life increases the difficulty of HAR recognition. Khan et 
al. [10] designed a fully automated HAR model by fusing deep 
neural networks (DNN), multi-view features, and a plain 
Bayesian classifier. The outcomes indicated that the maximum 
accuracy of the model is up to 99.4%. Changes in movements 
and different viewpoints cause difficulties in recognizing HAR. 
Guddeti [11] designed a multiple-learning framework for 
action data in depth and skeleton format from the perspective 
of multimodal visual data fusion. The framework could extract 
effective spatiotemporal features from skeleton data and utilize 
attention-guided DL techniques to accomplish model 
classification. According to experimental findings, this 
method's accuracy in multi-view datasets can reach 89.75%. It 
has been proved that GCN can be better for action recognition 
based on human skeleton. Aiming at the problems of GCN and 
the complexity between joints, Yang et al. [12] designed a 
hybrid network. The network integrated GCN and 
convolutional neural network (CNN), which could focus on the 
structural information and the complex relationship between 
nodes at the same time. The public dataset verified the 
superiority of the method. HAR is a key technology in 
wearable sensors and mobile technology, but existing HAR 
frameworks are only developed for a single data modality. To 
effectively recognize activities, Islam et al. [13] combined a 
multi-head CNN with a convolutional long and short-term 
memory network to analyze visual data and multi-source 
sensor information. The technique performs better in the 
multimodal HAR framework, according to the experimental 
data. HAR classification precision based on wearable sensor 
data is still insufficient, so Sarkar et al. [14] proposed a new 
hybrid HAR architecture. The architecture integrated spatial 
attention-assisted CNNs, filters, and techniques such as genetic 
algorithms and k-nearest neighbor classifiers. The public 
dataset confirmed the high recognition precision of the method. 
Due to its academic and commercial potential, MOT is a 
fundamental computer vision task that has drawn a lot of 
attention. Its associated multi-target detection, recognition, and 
tracking have become the focus of computer vision research 
and are being used more and more in a variety of fields. Li et 
al. [15] conducted a study on table tennis trajectory tracking in 
sports and designed a table tennis trajectory extraction network 
based on a target detection algorithm. The network 

incorporated a feature reuse module, enhanced the feature 
richness of the feature mapping using the Transformer model, 
and was lightweighted. The experimental results indicated that 
the network had a detection accuracy of 89.1% for target 
localization. Zhang and Dai [16] designed a model for tracking 
athletes' motion trajectories based on computer vision 
technology. Firstly, the study acquired a motion target based on 
a generalized background eliminator, and then used a 
kernelized correlation filter to construct a TT model by fusing 
it with relevant depth information. Through experiments on 
gymnasts and badminton players, it was found that the model 
could effectively reduce the motion trajectory prediction error. 
Mukhtar and Khan [17] constructed a new MOT method based 
on vision-Transformer architecture, variable scale pyramid, 
recursive pyramid structure, spatiotemporal memory encoder, 
and spatiotemporal memory decoder. The method could predict 
the object state through the attention mechanism. According to 
the trial results, the method's performance was much enhanced, 
and the ID switching rate was lowered by 21.05% and 5.79%, 
respectively. The traditional correlation filtering conventional 
feature technique was difficult to fully express the variable 
target morphology in complex scenes during the process of 
target localization, which led to inaccurate target localization. 
In this regard, Liu et al. [18] realized high quality visual 
monitoring and localization based on location fusion 
mechanism based on visual cognition flows (LFVC). In 
contrast to the most advanced visual tracking algorithms now 
in use for intricate scenes, this approach demonstrated superior 
performance at a reduced computational expense. An et al. [19] 
suggested a robust UAV TM based on dynamic feature weight 
selection to increase the flexibility of visual TT to complicated 
settings. The model contained multiple weights for different 
features and utilized dynamic feature weight selection to 
provide model tracking performance. The model fared better in 
experiments than previous cutting-edge trackers. The Kernel 
Correlation Filter (KCF) algorithm has achieved good results 
in short-term visual TT. To realize long-term TT with target 
occlusion or loss, Fan et al. [20] designed a long-term KCF and 
accelerated robust feature TT algorithm. Target matching was 
accomplished by the algorithm by introducing a random 
sample consistent target retrieval matching approach. The 
experimental results confirmed that the method could realize 
long-term stable TT. In summary, domestic and international 
research on HAR, positional analysis and MOT has made 
technical breakthroughs in terms of the main performance. 
Motion TT relies on the synergy of multiple technologies such 
as motion recognition, position estimation and target 
localization. However, the complex and changing game 
environment, the fast movement of motion targets and the 
occlusion of deformed other athletes or objects lead to the 
performance of the existing bit-pose analysis and MOT in SV 
still needs to be improved. In this regard, the study unfolds the 
design of 3D TT model based on DL and cross-view. 

III. GCN-BASED AND CROSS-VIEW 3D ATTITUDE 

TRACKING TECHNOLOGY 

To solve the multi-camera multi-volleyball player tracking 
problem, facing the complex sports field environment and 
similar player identity information, the study firstly designs a 
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2D athlete TM based on GCN and posture alignment. Then, the 
3D-PE and posture TM are proposed on this basis. 

A. Two-Dimensional Tracking Modeling of Athletes with a 

Single Camera 

Volleyball sports action analysis needs to recognize and 
track the player's position on the playing field and estimate the 
movement posture, but the similarity of player identity 
information and the large variation of movement posture 
increase the difficulty of MOT [21-22]. Therefore, the study 
realizes the recognition and tracking of players' movements 
from the perspective of appearance feature representation and 
contextual information differentiation, and the proposed 2D 
TM framework is shown in Fig. 1. 

In Fig. 1, the 2D TM mainly consists of player detection 
and posture estimation, feature extraction, contextual graph 
model and similarity association matching module. The study 
adopts posture alignment to complete the feature extraction, 

including extracting the global feature map C H W

gM    of 

the player image to construct the global feature branch, and 

extracting the posture heat map 
i

H W

pM   to construct the 

posture alignment feature branch. Among them, C H W   

denotes the feature map channels × height × width. K  denotes 
the number of joint points, i K . The feature extraction 

model based on pose alignment is shown in Fig. 2. 

In Fig. 2, the feature extraction framework uses a variant of 

residual network (ResNet), ResNet50, to extract C H W

gM  

. With 50 layers deep, ResNet50 is able to resolve gradient 
vanishing and gradient explosion issues in DNN training.  The 
framework uses cascaded pyramid network (CPN) to extract 

i

H W

pM  . CPN is a common DL model for posture 

estimation, which can effectively recognize key points in 
human postures, including the head, shoulders, elbows, wrists, 
and other key parts [23-24]. CPN utilizes cascading pyramids 
to construct multi-scale feature representations, which can 
realize human posture estimation at different scales. The CPN 
structure composition is shown in Fig. 3. 

In Fig. 3, the CPN ontology includes GlobalNet and 
RefineNet, GlobalNet completes the coarse extraction of key 
points, and RefineNet completes the fusion of different layers 
of information to obtain more comprehensive and accurate 
posture estimation results [25]. The feature map process of the 
feature extraction framework is shown in Eq. (1). 
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Fig. 1. Player 2D tracking model framework. 
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Fig. 2. Schematic diagram of the feature extraction model based on attitude alignment. 
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Fig. 3. Schematic diagram of CPN structure composition. 

In Eq. (1), 
gF  and 

pF  denote the global features extracted 

from the global feature map and the pose heat map and the 
pose-aligned features, respectively. GAP  and GMP  denote 

the global maximum and global average pooling respectively. 

ipm  is the pose heat map. 
ipf  denotes the corresponding 

feature. Considering that there are various kinds of occlusions 
in the real field environment, the feature extraction framework 
splices the two kinds of features as the final feature extraction 

result. The splicing feature catF  calculation process is shown in 

Eq. (2). 

 cat g pF F F  (2)

The end of the feature extraction framework uses a fully 
connected layer to predict features. Eq. (3) computes the LF of 
the network. 

 cat g ploss loss loss loss    (3)

In Eq. (3), catloss , gloss  and ploss  denote the LFs 

corresponding to splicing features, global features and pose 
alignment features, respectively. The context graph model first 
learns the target athlete and the nearest neighbor athletes to 

complete the construction of the context graph  ,V E . V  

and E  represent the "nodes" and "edges" respectively. Then 
GCN is used to learn the similarity of different athletes. A DL 
model called GCN is used to process graph-structured data. It 
carries out feature extraction and learning of node interactions 
and connections. GCN introduces a process similar to 
convolutional operation in graph data to update the 
representation of nodes through information transfer and 
aggregation between neighboring nodes to achieve learning 
and inference of graph-structured data [26-27]. The target 
athlete is regarded as the master node, the nearest neighbor 
athletes are regarded as branch nodes, and the branch nodes are 

connected to the master node. The node feature ix  expression 

is shown in Eq. (4). 
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In Eq. (4), n  denotes the number of athletes. N  denotes 

the preset constant, n N . The adjacency matrix 
N NA   is 

used to represent the "edges", as shown in Eq. (5). 
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Fig. 4 depicts the node feature update mechanism. The 
study uses GCN to integrate node information. The GCN 
working mechanism mainly contains two parts: information 

dissemination and information aggregation. Node ix  is coded 

as 
 

i

l
x  in the propagation process and its coded as ix  in the 

information aggregation process. The node features obtained 
after GCN integration have a stronger ability to represent 
contextual features. 

Information 
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Information 
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l
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Fig. 4. Feature update mechanism for GCN integrating node information. 

There is a difference in the importance of different nearest 
neighbor athletes to the target athlete. The study introduces the 
linear distance between athletes as weights into the contextual 
graph model. The feature aggregation process is shown in Eq. 
(6). 

 
      11l l l

X D AX W


  (6) 

In Eq. (6), D  and A  denote the distance matrix and the 

normalization result of "edge" A , respectively.  l
X  denotes 

the set of node features 
 

i

l
x . 

 l
W  denotes the network 

parameter matrix, and   denotes the nonlinear activation 

function. Therefore, the GCN network with the introduction of 
weighting information has a stronger feature representation 
ability. The study uses cosine distance to measure the similarity 
between athletes. The cosine LF is shown in Eq. (7). 
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In Eq. (7), y  denotes true similarity labeling and 1y   

denotes similarity. 1 2,x x  denotes different athletes. The 

similarity association matching module mainly accomplishes 
the matching between the current detection and the tracking 
trajectory. The working mechanism is shown in Fig. 5. 
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Fig. 5. Working mechanism of similarity correlation matching module. 

In F. 5, "age" indicates the number of unmatched frames in 
the trajectory. The matching mechanism involves four different 
kinds of matching information, including contextual features, 
individual features, martensitic distance of motion states, and 
intersection ratio. Finally, Hungarian algorithm (HA) is used to 
complete the matching solution [28-29]. HA is mainly used for 
the solution of assignment problems and is applicable to 
problems related to bipartite graphs. 

B. 3D-PE and Tracking Model Construction Based on Cross-

View Matching 

Real field videos are mainly captured by multiple cameras. 
To solve the complexity and challenge of real field video due 
to the multi-camera shooting environment, the research unfolds 
the 3D TM design of the target in multi-phase view based on 
single-camera TT. The model framework is shown in Fig. 6. 
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Fig. 6. Cross view matching 3D pose estimation and tracking model architecture. 

In Fig. 6, the architecture contains the main modules of 2D 
tracking, 2D posture estimation, cross-camera matching, 3D 
tracking and posture estimation. Among them, 2D tracking is 
accomplished by the architecture shown in Fig. 1, and 2D 
posture estimation is accomplished by CPN network. The core 
of cross-camera matching lies in the similarity measure and 
matching of athletes from different cameras. Therefore, the 
study considers both geometric constraints and appearance 
features for similarity metrics. 

Define that there are C  cameras and M  athletes under 

cross-view matching. The similarity scores between the 

athletes form matrix 
M MA  , and output the matching result 

 0,1
M M

P


 . "1" indicates the same athlete, and a "0" 

indicates different athletes. The study introduces the principle 
of "polar line constraint", which judges the similarity of 
athletes by determining whether the corresponding joints of 

different athletes are "homonymous image points". The 

geometric distance  ,gD i j  across the camera of different 

athletes is calculated in Eq. (8). 

        
1

1
, , ,

2

Q
q q q q

g g i ij j g j ji i

q

D i j d p l p d p l p
Q 

 
  (8) 

In Eq. (8), ip  and 
jp  denote the two-dimensional attitude 

coordinates of different athletes. Q  denotes the number of 

joint points, q Q .  q

ij jl p  denotes the pole line 

corresponding to point q

jp  and point q

ip  in different cameras. 

 ,gd l  denotes the distance from the point to the polar line. 

The distance matrix M M

gD   is calculated from Eq. (8). 

The sigmoid function is used to normalize the distance matrix, 
and the process is shown in Eq. (9). 
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In Eq. (9),  ,gD i j  denotes the normalized distance 

matrix. 
g  denotes the set cross-camera distance threshold. 

Standard deviation normalization is also required due to the 
presence of some anomalous values taken. The calculation 
process is shown in Eq. (10). 

    , /g gD i j D     (10) 

In Eq. (10),  ,   denote the mean and standard deviation, 

respectively. The normalized similarity matrix 
gA  is shown in 

Eq. (11). 

  ggA sigmoid D   (11) 

Relying on a single similarity matrix cannot distinguish the 
athlete identity information well. The study introduces two-
dimensional trajectory information on this basis and proposes a 
similarity matrix based on trajectory information. The 
calculation process is shown in Eq. (12). 

  
g g

T TA sigmoid C   (12) 

In Eq. (12), T  denotes the past video frame. 
g

TC  denotes 

the count matrix. The study used GCN to construct a graph 
model across viewpoints for matching between athletes. Fig. 7 
illustrates the procedure for determining how similar athletes 
are from various angles using the graph model. 

Camera 1

Camera 2

Camera 3

Multi perspective scene Two dimensional detection and tracking

Matching  result
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GCN Appearance Similarity Learning

 
Fig. 7. Figure model learning cross perspective athlete similarity. 

In Fig. 7, the study first extracts the appearance features of 

athletes using pedestrian re-identification (ReID) 
aA . The 

obtained appearance feature vectors form the nodes of the 
graph model, and the athletes with different camera planes are 
connected to form the edges of the graph model. The process 
of applying the graph model to determine how similar athletes 
are from different perspectives is shown in Fig. 7. The 
realization process is shown in Eq. (13). 
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 (13) 

In Eq. (13), D  denotes the degree matrix. A  denotes the 

self-looping adjacency matrix.  1l
H


 and  l

H  denote the 

node features of layer 1l   and layer l , respectively. After 

graph convolution, the more robust appearance similarity 

matrix 
a

AΚ  is obtained, and finally the matching is completed 

based on the average value of the two similarity matrices 
g aA 

. 

The calculation process is shown in Eq. (14). 

   / 2
a

T

g a gA A A   Κ
 (14) 

According to the study, matching athletes across viewpoint 
states is an optimization problem that has to be resolved. The 
matching process is shown in Eq. (15). 

      
1 1

min
M M

ij ij
p

i j

f P A P rank P
 

     (15) 

In Eq. (15), A , P  denote the similarity matrix, binary 

matching matrix respectively.  rank P  denotes the rank of 

matrix P . To ensure the cyclic consistency of the matching 

results,  rank P  needs to satisfy certain constraints. That is, 

 rank P m  and m  denote the number of athletes in a multi-

camera scene. After completing the 2D tracking and cross-
camera matching, the study utilizes the triangulation algorithm 
to further obtain the 3D pose information. The triangulation 
algorithm recovers the coordinates of the 3D points from the 
projected coordinates of the two cameras and the 
transformation matrix [30-31]. The computational procedure 
for projection to the normalization plane is shown in Eq. (16). 
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In Eq. (16), d  is the depth of the 3D point X . T  is the 

transformation matrix of the camera. Finally, the results of the 
2D processing are combined to realize the athlete tracking in 
3D cross-camera view. The new tracking IDs are clustered for 
different athletes. 

IV. 3D-PE AND TRACKING MODEL PERFORMANCE 

ANALYSIS 

To verify the validity of the 3D-PE and TM, the study is 
centered on the testing of the model performance and 
application effects, and the results are analyzed and discussed. 

A. 3D-PE and Tracking Model Performance Testing 

The study launches performance testing and application 
analysis experiments, which are conducted based on Centos 7 
operating system. The DL framework is Tensorflow-gpu-
1.10.3. The graphics card is Tesla P100-PCIE with 125 GB of 
RAM. The central processing unit is 2.7 GHz dual core Intel 
Core i5. SportsMOT, UA-DETRAC dataset, DukeMTMC and 
MOTChallenge20 are selected as experimental datasets. 
SportsMOT is a large-scale multi-TT dataset for multi-sport 
scenarios, consisting of 240 videos. In total, it consists of about 
150,000 frames and 1.6 million labeled borders. These are 
tracking targets that are fast changing, variable and have a 
similar but distinguishable appearance. The UA-DETRAC 
dataset is a collection of video clips containing 10 hours of 
video footage from 24 different roadways taken with a Cannon 
EOS 550D camera. The videos are shot at 25 frames per 
second with a resolution of 960 x 540 pixels, while three 
different levels of occlusion are included in the dataset. The 
DukeMTMC dataset is a pedestrian recognition dataset that 
provides a collection of more than 7,000 single-camera tracks 
recorded by eight synchronized cameras and more than 2,700 
individual characters. MOTChallenge20 focuses on the 
pedestrian multi-TT task. The data required for selecting the 
experiments are divided into training and test sets in the ratio 
of 8:2. The comparative analysis models include depth-
informed KCF tracking method based on literature [16], 
spatiotemporal memory networks and multi-scale attention 
pyramids (STMMOT) from literature [17] and LFVC from 
literature [18]. The LF curves of different TMs in the test set 
and training set are shown in Fig. 8. 

The LF curves are a useful tool for evaluating the model's 
generalization capacity and learning efficiency since they may 
show how the model's loss value changes during training. The 
LF curve of the improved GCN integration model designed by 
the study converges with the smallest number of iterations and 
the smallest convergence value. On the training set, the 
research-designed model reduces 0.27 compared to the 

STMMOT model, 0.08 compared to the LFVC model, and 
0.07 compared to the KCF model. Moreover, the fluctuation of 
the LF curves of the other models is more obvious, and the 
research-designed model has a more stable loss value. Fig. 9 
displays the mean absolute percentage error (MAPE) and mean 
average precision (MAP) for each of the models. 

In Fig. 9(a), the optimal performance of the research-
designed method is achieved on four different datasets. The 
value levels are all above 0.90, with the best model 
performance. Its maximum improvement can be up to 21.06%, 
16.28%, and 17.20% compared to STMMOT model, LFVC 
model, and KCF model, respectively. From Fig. 9(b), the 
method designed by the study is at the lowest level in terms of 
error take, with a minimum MAPE of only 0.153 on the 
SportsMOT dataset, whereas the other three models take 
MAPE values above the 0.250 level. The target localization 
precision of the model is higher and the discrepancy between 
the tracking results and the true value is smaller when the 
model's MAPE value is lower. The experiments examined the 
higher order tracking accuracy (HOTA) of different models 
and the corresponding association intersection over union 
(AssIOU), association accuracy (AssA), and detection 
accuracy (DetA). Table I displays the experiment's statistical 
findings. 
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Fig. 8. Comparison of LF curves for different models. 
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Fig. 9. Comparison of average precision mean and average absolute percentage error for different models. 

TABLE I.  COMPARISON OF DETECTION AND ASSOCIATION PERFORMANCE OF DIFFERENT MODELS 

Model Index SportsMOT UA-DETRAC DukeMTMC MOTChallenge20 

Our 

AssIOU 0.929 0.979 0.970 0.934 

AssA 0.941 0.970 0.964 0.937 

DetA 0.922 0.957 0.965 0.946 

HOTA 0.924 0.943 0.929 0.982 

STMMOT 

AssIOU 0.800 0.722 0.802 0.778 

AssA 0.754 0.797 0.728 0.802 

DetA 0.754 0.770 0.780 0.741 

HOTA 0.819 0.751 0.700 0.783 

LFVC 

AssIOU 0.736 0.751 0.792 0.734 

AssA 0.708 0.738 0.718 0.807 

DetA 0.759 0.712 0.819 0.804 

HOTA 0.789 0.808 0.800 0.720 

KCF 

AssIOU 0.783 0.735 0.726 0.747 

AssA 0.775 0.738 0.791 0.775 

DetA 0.744 0.750 0.805 0.796 

HOTA 0.823 0.770 0.794 0.779 
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The maximum AssIOU value of the models designed for 
the study is 0.979, the maximum AssIOU value of the 
STMMOT model is 0.802, the maximum AssIOU value of the 
LFVC model is 0.792, and the maximum AssIOU value of the 
KCF model is 0.783. AssIOU can be used to measure the 
degree of overlap between the predicted and real frames. Its 
association between the trajectory and the true trajectory in the 
tracking task can be reflected in the MOT task. The research 
design model has the highest overlap between prediction and 
truth. The tracking algorithm's accuracy in identifying the 
target is evaluated by AssA; the greater the value, the more 
accurate the association. The more accurately a target is 
recognized, the greater the DetA value, which indicates the 
accuracy of the connection. In the same experimental 
environment, the model designed by the study has the highest 
AssA and DetA values of 0.970 and 0.965, respectively. In 
addition, the model has the highest HOTA value of 0.982, 
which is a maximum improvement of 40.28% compared to the 
STMMOT model. HOTA is the accuracy of both detection and 
association, and the higher value taken indicates better overall 
tracking performance. It can be concluded that the model 
designed by the study has some performance advantages over 
the most current models. 

B. 3D-PE and Tracking Model Application Analysis 

A volleyball game dataset is collected at a stadium in 
China, synchronized by six cameras evenly distributed around 
the venue. The acquisition frame rate of each camera is 20fps, 
the resolution is set to 900*900, and the acquisition time is five 
minutes. The acquired data is divided into five video 
sequences. Comparisons of multiple object tracking accuracy 
(MOTA), tracking speed (fps) and multiple object tracking 
precision (MOTP) for different models are shown in Fig. 10. 

In Fig. 10(a), the method designed by the study takes the 
highest level of 89.53% on MOTA. The model performance is 
optimal when considering the tracking accuracy, false 
detection and missed detection. In Fig. 10(b), the tracking 
speed of the model designed by the study, STMMOT model, 
LFVC, and KCF model are 33.42fps, 84.61fps, 102.88fps, and 
153.37fps, respectively. The tracking speed is improved by up 
to 129.95fps, and the designed by the study has a significant 
advantage in the rate of processing video frames. In Fig. 10(c), 
the method designed by the study also has a significant 
advantage in MOTP with a maximum fetch of 90.05%. It has a 
minimum improvement of 10.06 percentage points compared 
to other models, with a high precision in estimating the target 
location. Percentage of correct keypoint (PCK) evaluates the 
accuracy of the model's prediction of keypoint locations in 
posture estimation. The higher the value of PCK the more 
accurate the posture estimation. Also compare the ability of the 
model in maintaining trajectory continuity and integrity, the 
experimental results are shown in Fig. 11. 

In Fig. 11(a), the accuracy of key point locations predicted 
by the research designed method is higher compared to other 
models. The PCK floats roughly in the 0.85-0.95 range. In Fig. 
11(b), the research-designed method summarizes the TT 
process. The trajectory tracking completeness is consistently 
high, with the vast majority of completenesses above 0.7. To 
further analyze the degree of contribution of the improvement 
strategy to the quality of human posture estimation and 
tracking, the study introduces the posture estimation 
correctness, the number of times the tracking trajectory 
changes its matched real identities (IDs), and the ID F1 score 
(ID F1). Table II displays the outcomes of the experiment. 
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Fig. 10. Comparison of MOTA, tracking speed, and MOTP. 
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Fig. 11. Comparison between PCK and trajectory integrity preservation. 

TABLE II.  COMPARISON OF ATTITUDE ESTIMATION AND 3D TRACKING RESULTS 

Similarity model 
3D 2D 

Accuracy IDs ID F1 Accuracy IDs ID F1 

Geometric similarity 
gA

 
0.661 54 0.446 0.643 82 0.619 

g

TA
 

0.794 19 0.713 0.697 42 0.646 

Appearance similarity 
aA

 0.613 135 0.606 0.706 234 0.708 

a
AΚ

 
0.764 21 0.761 0.791 19 0.747 

Geometry+Appearance g aA   
0.813 10 0.847 0.846 8 0.814 

True similarity 0.979 0 0.974 0.972 0 0.981 
 

The similarity matrix 
g

TA  based on the trajectory 

information shows a significant improvement on the estimation 
correctness rate, IDs, and ID F1 over the pre-improvement 
period. In 3D state, the correct rate is improved by 0.133, IDs 
are reduced by 35, and ID F1 scores are improved by 0.267. It 
can be observed that the improved model is more accurate in 
estimating the positional pose, and it is less likely to happen 
that the trajectory of one target is incorrectly assigned to 
another target, and the target identity consistency is maintained 
better. The introduction of GCN improved appearance 

similarity 
a

AΚ  likewise improves the estimation correctness, 

IDs, and the value of ID F1. Finally, a posture estimation 
correctness of 0.979 is achieved in the 3D tracking state. The 
IDs and ID F1 scores take the values of 0 and 0.974, 
respectively. The tracking algorithm designed in the study 
matches the real trajectories of all the targets almost perfectly. 
Continuing to compare the mostly tracked (MT) and mostly 
lost (ML) of the different models. Fig. 12 presents the 
outcomes of the experiment. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
o

st
ly

 T
ra

ck
ed

20 40 60 80 100 120

Iterations 

(a) MT comparison

0

KCF
LFVC

STMMOT

Our 

10

20

30

40

50

60

70

80

M
o

st
ly

 L
o

st
 (

%
)

20 40 60 80 100 120

Iterations 

(b) ML  comparison

0

KCF
LFVC

STMMOT
Our 

 
Fig. 12. Comparison of MT and ML for different models. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

814 | P a g e  

www.ijacsa.thesai.org 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
o

n
g

 t
er

m
 o

b
st

ru
ct

io
n

20 40 60 80 100 120

Time (min)

(a) Long term comparison

0

KCF
LFVC

STMMOT

Our 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
h

o
rt

 t
er

m
 o

b
st

ru
ct

io
n

2 4 6 8 10 12

Time (min)

(b) Short term obstruction

0

KCF
LFVC

STMMOT
Our 

 
Fig. 13. Comparison of model robustness. 

In Fig. 12(a), the research design model is able to track the 
target continuously, with the percentage of tracked frames 
exceeding 80% of the total number of video frames reaching 
0.924. In contrast, the other models have MT values below the 
0.90 level, with the highest value of 0.813. The research design 
has a better ability to maintain continuity of the TT over a long 
period of time. In Figure 12(b), the model of the studied design 
corresponds to the smallest ML, and the percentage of lost 
tracking exceeding 20% of the total number of video frames is 
only 10.36%, which maintains a strong TT stability. In 
summary, the two complementary metrics, MT and ML, 
confirm the tracking ability of the research design model over a 
long period of time and across viewpoint states. Finally, the 
robustness of the model is compared and analyzed, and the 
ratio of recovered tracks from short-term occlusion and long-
term occlusion is compared, and the experimental results are 
shown in Fig. 13. 

The research-designed method is still able to maintain good 
trajectory continuity when facing challenges such as target 
occlusion. The ratio of recovered tracking trajectories in short-
term occlusion is above 0.90. Compared to other methods, the 
research design has a better performance in terms of tracking 
robustness. However, the ratio of recovering tracking trajectory 
under long-term occlusion is only 0.765. Although the 
performance is comparable to other models, the model still has 
more room for improvement. 

V. CONCLUSION 

The continuous progress of vision technology and the 
expansion of application scenarios have brought great 
convenience to human life. To cope with the complexity and 
richness of SVs and to improve the precision and speed of 
MOT, the research has modeled and analyzed the 3D position 
estimation and TT, and proposed a new cross-view 3D-PE and 
TM. The outcomes revealed that the LF values of the research 
design model were reduced by 0.27 compared to the STMMOT 
model, 0.08 compared to the LFVC model, and 0.07 compared 
to the KCF model. The MAP and MAPE took better values 
than the other baseline models. The maximum AssIOU value 
was 0.979. The maximum on AssA and DetA values were 
0.970 and 0.965 respectively. The maximum HOTA value was 
0.982. In real volleyball video analysis, the method fetched the 
highest level of 89.53% on MOTA. Its tracking speed was 

improved by up to 129.95fps, and the maximum fetch level on 
MOTP reached 90.05%. The improved strategy designed by 
the study improved the correct rate in 3D by 0.133, IDs by 35, 
and ID F1 scores by 0.267. The MT value achieved was 0.924, 
the ML minimum was only 10.36%, and the rate of short-term 
occlusion to recover the tracking trajectory was above 0.90. 
The study realizes the tracking of complex SVs, which helps to 
deepen the theory and methodology of cross-view 3D pose 
tracking techniques. However, the rate at which the model 
designed by the study can successfully recover the tracking 
trajectory under long-term occlusion is still insufficient. The 
algorithm still needs to be investigated in maintaining a long-
time memory of the target identity. 

In addition, facing real application scenarios, the study still 
has some limitations. First, the computational efficiency and 
model response speed of the model may be limited when 
dealing with complex scenes and large-scale data. Second, in 
order to improve the generalisation ability of the model, a large 
amount of video data from different motion scenes is required, 
but there are difficulties in obtaining diverse annotated 
datasets. Whether the model can be adapted to other motion 
fields needs to be further verified. 
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