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Abstract—Machine learning techniques in smart agriculture 

for yield prediction involve using algorithms to analyze historical 

and real-time data to forecast crop yields. These approaches aim 

to optimize agricultural practices, improve resource efficiency and 

enhance productivity, this paper reviews the application of 

machine learning techniques in smart agriculture for predicting 

agricultural yields. With the advent of data-driven technologies, 

machine learning algorithms have become instrumental in 

analyzing vast amounts of agricultural data to forecast crop yields 

accurately. Various machine learning models such as regression, 

classification, and ensemble methods have been employed to 

process historical and real-time data on weather patterns, soil 

conditions, crop types, and farming practices. These models 

enable farmers and stakeholders to make informed decisions, 

optimize resource allocation, and mitigate risks associated with 

agricultural production. Furthermore, the integration of Internet 

of Things devices and remote sensing technologies has facilitated 

data collection and improved the precision of yield predictions, 

this paper discusses the key machine learning approaches, 

challenges, and future directions in leveraging data analytics for 

enhancing agricultural productivity and sustainability in smart 

farming systems. to ensure stability and tracking. Simulations is 

carried out to verify the theoretical results, The study found that 

different machine learning techniques had varying accuracy for 

predicting agricultural yields. ViT-B16 achieved the highest F1-

SCORE (99.40%), followed by ResNet-50 (99.54%) and CNN 

(97.70%), while RPN algorithms had lower accuracy (91.83%). 

Correlation analysis showed a strong positive relationship 

between humidity and soil moisture, favoring crop growth, while 

production had minimal correlation with temperature and area. 

The AdaBoost Regressor was the best performer, with the lowest 

MAE (0.22), MSE (0.1), and RMSE (0.31), and Random Forest 

showed strong predictive power with an R2 score of 0.89, Seasonal 

data indicated that autumn had the highest agricultural 

production, followed by spring, while summer and winter had 

much lower yields due to weather conditions. Seasonal 

temperature variations from 1997 to 2014 showed autumn was the 

warmest (34.43°C), boosting crop production, and winter the 

coldest (34.31°C), reducing yields. These temperature shifts 

significantly impacted agricultural productivity, with warm 

seasons enhancing growth and extreme temperatures in summer 

and winter limiting it, machine learning techniques in smart 

agriculture are pivotal for predicting crop yields by leveraging 

historical and real-time data, thus optimizing practices and 

resource use while boosting productivity. This involves deploying 

diverse machine learning models like regression, classification, 

and ensembles to analyze extensive data on weather, soil, crops, 

and farming methods. Such models empower stakeholders with 

insights for informed decisions, efficient resource allocation, and 

risk mitigation in agricultural operations. The integration of 

Internet of Things and remote sensing further refines data 

accuracy, aiding precise yield predictions. Despite advancements, 

challenges persist, including data quality assurance, model 

complexity, scalability, and interoperability, driving ongoing 

research and simulations to validate and improve ML applications 

for sustainable and productive smart farming systems. 
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I. INTRODUCTION 

The field of agriculture has been profoundly shaped by 
technological advancements over the centuries, evolving from 
simple tools to complex machinery and now to the integration 
of sophisticated data-driven technologies. The advent of 
machine learning (ML) in agriculture marks a pivotal shift 
towards more precise and automated farming practices, known 
as precision agriculture. This transition began with the 
mechanization of farms during the Industrial Revolution, 
followed by the introduction of chemical fertilizers and 
genetically modified organisms in the 20th century. 

This paper explores the various machine learning 
approaches applied in smart agriculture specifically for the 
prediction of agricultural yields. It delves into the types of ML 
models commonly used, the data sources utilized, challenges 
faced, and the potential impact of these predictive analytics on 
agricultural sustainability and efficiency. 

In the first paragraph, this paper explores the transformative 
role of machine learning (ML) in smart agriculture, especially in 
predicting agricultural yields. With advancements in data-driven 
technologies, ML has revolutionized traditional farming by 
enhancing precision, resource efficiency, and sustainability. 
Agriculture evolved from manual labor to mechanized 
operations during the Industrial Revolution, followed by the 
introduction of chemical fertilizers and genetically modified 
organisms. More recently, digital tools such as GPS and remote 
sensing have laid the groundwork for ML applications in 
agriculture [1][2][15]. 

In the second paragraph, the collection of agricultural data 
has progressed significantly, from manual observations to 
modern technologies like the Internet of Things (IoT) and 
remote sensing. These technologies provide real-time, high-
resolution data, which sophisticated ML algorithms analyze to 
predict outcomes like crop yields and optimize farming 
practices. IoT sensors monitor variables like soil moisture, 
temperature, and crop health, generating vast datasets that aid in 
making data-driven decisions [3]. These insights help farmers 
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manage resources efficiently and mitigate risks associated with 
agricultural production [4]. 

In the third paragraph, the focus shifts to key ML algorithms 
used in smart agriculture, including regression, classification 
techniques, and ensemble models such as Decision Trees [9], 
Random Forests [10], Linear Regression [11], K-Nearest 
Neighbors (KNN) [12], XGBoost [13], and AdaBoost [14]. 
These algorithms have been widely applied for tasks like yield 
prediction and optimizing resources like water and fertilizer, 
offering accurate and actionable insights for modern farming [5] 
[6]. 

In the fourth paragraph, deep learning has also made 
significant strides in smart farming, particularly for image-based 
tasks. Models like Convolutional Neural Networks (CNNs) 
[17], advanced architectures such as ResNet [18], and support 
vector networks [15] have proven effective in detecting pests, 
diagnosing plant diseases, and optimizing greenhouse 
conditions. By combining satellite data with deep learning 
techniques [3], there has been a marked improvement in 
agricultural monitoring and yield prediction [1][16][17]. 

In the fifth paragraph, despite the advancements, challenges 
remain. Issues such as ensuring data quality, scaling models for 
large datasets, and dealing with complex agricultural data 
continue to pose significant barriers [7][16]. Ongoing research 
and refinement of existing models, alongside the development 
of new techniques, are essential to addressing these hurdles and 
unlocking the full potential of smart farming systems [5][8][18]. 

In conclusion, the integration of ML into agriculture is 
reshaping the industry, providing farmers with advanced tools to 
make informed decisions, optimize resource use, and improve 
productivity. Leveraging real-time data and advanced analytics, 
ML is set to drive agriculture toward a more sustainable and 
productive future. 

II. MACHINE LEARNING ALGORITHMS 

Machine learning algorithms have become indispensable 
tools in various domains, including agriculture, where they are 
applied to predict agricultural yields with increasing accuracy 
and efficiency [4]. 

These algorithms enable farmers and agricultural 
stakeholders to make data-driven decisions, optimize resource 
allocation, and improve overall productivity.  We will explore 
some of the fundamental machine learning algorithms used in 
smart agriculture for yield prediction. 

Machine learning regression algorithms play a pivotal role 
in various industries, including agriculture, by enabling the 
prediction of continuous numerical values such as crop yields. 

These algorithms utilize historical data to establish 
relationships between input variables (e.g., weather conditions, 
soil quality) and the target output (e.g., crop yield), allowing for 
accurate forecasting and decision-making. 

A. Decision Tree Regressor 

Decision Tree Regressor is a type of machine learning 
algorithm used for regression tasks, including predicting 
continuous numerical values such as crop yields in smart 

agriculture. It belongs to the family of decision tree algorithms, 
which make predictions based on a series of binary decisions [9]. 

B. Random Forest Regressor 

Random Forest Regressor is an ensemble learning algorithm 
used for regression tasks, including predicting continuous 
numerical values such as agricultural yields in smart agriculture. 
It is an extension of the Random Forest algorithm, which 
combines multiple decision trees to improve prediction accuracy 
and robustness [10]. 

C. Linear Regression 

Linear regression is a fundamental machine learning 
algorithm used for regression tasks, including predicting 
continuous numerical values such as crop yields in smart 
agriculture. It models the relationship between independent 
variables (features) and a dependent variable (target) by fitting a 
linear equation to the data [11]. 

D.  KNN Regressor 

K-Nearest Neighbors (KNN) Regressor is a machine 
learning algorithm used for regression tasks, including 
predicting continuous numerical values such as agricultural 
yields in smart agriculture. It belongs to the family of instance-
based or lazy learning algorithms, where predictions are made 
based on the similarity of input data points to the training 
instances [12]. 

E. XGB Regressor 

XGBoost (Extreme Gradient Boosting) Regressor is a 
powerful machine learning algorithm used for regression tasks, 
including predicting continuous numerical values such as 
agricultural yields in smart agriculture. 

XGBoost is an ensemble learning technique that combines 
the strengths of gradient boosting and tree-based models to 
achieve high predictive accuracy [13]. 

Overall, XGBoost Regressor is a versatile and powerful tool 
in smart agriculture, offering high predictive accuracy, 
scalability, and interpretability. Its ability to handle complex 
datasets and capture nonlinear relationships makes it a preferred 
choice for yield prediction and optimization in agricultural 
operations. 

F.  Adaboost Regressor 

AdaBoost (Adaptive Boosting) Regressor is a machine 
learning algorithm used for regression tasks, including 
predicting continuous numerical values such as agricultural 
yields in smart agriculture. 

AdaBoost belongs to the family of ensemble learning 
methods and is particularly effective in combining weak learners 
(base models) to create a strong predictive model [14]. 

Overall, AdaBoost Regressor is a valuable tool in smart 
agriculture, offering benefits such as improved predictive 
accuracy, adaptive learning, model diversity, and robustness to 
overfitting. Its ability to combine weak learners effectively 
makes it a popular choice for regression tasks requiring precise 
numerical predictions. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

834 | P a g e  

www.ijacsa.thesai.org 

III. ALGORITHMS USED 

In semi-arid regions, water scarcity presents significant 
challenges to sustainable agriculture. A case study investigating 
the use of a Random Forest model to optimize irrigation 
practices demonstrated how integrating data from soil moisture 
sensors, weather forecasts, and crop yield predictions can 
effectively dictate irrigation schedules. The model's ability to 
analyze complex datasets enabled the formulation of watering 
strategies that reduced water use by 25% while maintaining or 
enhancing agricultural yields. While the model showcases 
significant improvements in water efficiency, the financial and 
logistical considerations of setting up extensive sensor networks 
could pose challenges to widespread adoption. 

A. Predicting Pest Infestations in Large-Scale Farms Using 

AdaBoost 

Another case study focused on large-scale farms utilized the 
AdaBoost Regressor to forecast pest infestations by analyzing 
environmental conditions and historical data. The model's high 
accuracy rate of 85% in predicting pest activities allowed 
farmers to proactively implement control measures, 
significantly minimizing crop damage. AdaBoost's sensitivity to 
subtle data variations helps in accurately detecting potential 
infestations, highlighting its potential in precision agriculture. 
However, its performance can be detrimentally affected by noisy 
data, which is a common issue in agricultural environments. 

B. Enhancing Yield Predictions in Organic Farms with 

XGBoost 

Organic farming, which eschews synthetic chemicals, relies 
heavily on precise yield predictions for effective management. 
Using the XGBoost Regressor, a case study demonstrated a 30% 
improvement in yield prediction accuracy by integrating diverse 
data sources like drone imagery and organic soil health 
indicators. XGBoost's ability to handle complex, non-linear 
datasets proved essential in environments where traditional 
farming models falter [5]. 

The primary challenge lies in the data collection and 
preprocessing stages, which require significant effort to 
maintain the high accuracy of the model predictions. 

C. Linear Regression Models for Smallholder Farms in 

Developing Countries 

Smallholder farms in developing countries often lack access 
to advanced technological resources, making simple, effective 
solutions like Linear Regression models particularly valuable. 
This model has shown potential in improving agricultural yield 
predictions with minimal computational resources [6]. Its 
simplicity allows farmers to make better-informed decisions 
regarding resource allocation and crop management. However, 
the model's limitation in capturing complex, non-linear 
relationships could reduce its effectiveness in more variable 
agricultural conditions. 

D. KNN for Real-Time Crop Health Monitoring 

The use of K-Nearest Neighbors (KNN) for real-time crop 
health monitoring through mobile devices presents a practical 
application of machine learning in agriculture. Farmers can 
capture images of their crops using smartphones, and the KNN 
model processes this data to provide immediate health 

diagnostics. This method offers about 80% accuracy in detecting 
crop health issues, facilitating rapid response to potential threats. 
While highly beneficial for on-the-spot decision-making, the 
model requires extensive and diverse training data to maintain 
accuracy and is computationally intensive, which may limit its 
use in resource-constrained settings. 

E. Random forest Models for Smallholder Farms in 

Developing Countries 

Random Forest models are highly beneficial for smallholder 
farms in developing countries due to their ability to handle 
complex and noisy data, which is common in agricultural 
contexts. These models excel at capturing nonlinear 
relationships between variables such as weather patterns, soil 
characteristics, crop types, and yields, providing accurate 
predictions and insights for farmers [7]. The ensemble learning 
approach of Random Forests mitigates overfitting and improves 
generalization, making them suitable for situations with limited 
data availability. Additionally, Random Forest models offer 
feature importance analysis, allowing farmers to prioritize 
interventions and resource allocation based on the most 
influential factors affecting crop yields. Their scalability, 
interpretability, and ability to operate efficiently with modest 
computational resources make Random Forest models a 
practical and impactful choice for enhancing productivity and 
decision-making on smallholder farms in developing countries. 

F. Decision Tree Regressor Models for Smallholder Farms in 

Developing Countries 

Decision Tree Regressor models are advantageous for 
smallholder farms in developing countries due to their 
simplicity, interpretability, and effectiveness in handling 
nonlinear relationships in agricultural data. These models can 
easily accommodate categorical and continuous variables, 
making them suitable for analyzing diverse factors influencing 
crop yields, such as weather conditions, soil properties, and 
farming practices. Decision trees offer a clear decision-making 
process that farmers can understand and trust, aiding in resource 
allocation and management decisions. Despite their tendency to 
overfit with complex data, techniques like pruning and ensemble 
methods can improve their robustness and generalization ability. 
Their low computational requirements and ability to operate 
without extensive data preprocessing make Decision Tree 
Regressors a practical and accessible choice for smallholder 
farms seeking to enhance productivity and optimize farming 
practices in developing countries. 

IV. PERFORMANCE MEASURES 

When evaluating regression models such as those used in 
smart agriculture for predicting crop yields, several performance 
measures can assess their effectiveness. Here are some 
commonly used metrics: 

A. Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) holds paramount 
importance in smart agriculture for predicting agricultural yields 
as it quantifies the average magnitude of errors between 
predicted and actual yield values. This metric serves as a crucial 
indicator of the accuracy and reliability of machine learning 
models utilized in yield prediction systems. 
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In the context of smart agriculture, where precise yield 
forecasts are essential for optimizing resource allocation, 
mitigating risks, and enhancing productivity, MAE plays a 
pivotal role in evaluating model performance. Lower MAE 
values signify higher accuracy in yield predictions, enabling 
farmers and stakeholders to make data-driven decisions 
regarding crop management practices, resource allocation 
strategies, and risk mitigation measures. 

Additionally, MAE facilitates continuous model 
improvement and refinement, ensuring that yield prediction 
systems in smart agriculture remain effective, reliable, and 
aligned with the dynamic agricultural landscape. 

MAE measures the average absolute difference between the 
predicted values and the actual values. It gives an indication of 
how close the predictions are to the actual targets without 
considering the direction of errors [19]. 

𝑚𝑎𝑒 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|    

𝑛
𝑖=1        (1) 

B. Mean Squared Error (MSE) 

Mean Squared Error (MSE) is a crucial metric in smart 
agriculture for predicting agricultural yields as it quantifies the 
average squared difference between predicted and actual yield 
values. 

While MSE and Mean Absolute Error (MAE) measure 
prediction accuracy differently, MSE is particularly important in 
scenarios where larger errors should be penalized more heavily. 
In the context of smart agriculture, where precise yield forecasts 
are imperative for optimizing resource allocation, mitigating 
risks, and enhancing productivity, MSE provides valuable 
insights into the overall performance of machine learning 
models. Lower MSE values indicate higher accuracy and 
consistency in yield predictions, enabling farmers and 
stakeholders to make informed decisions regarding crop 
management practices, resource allocation strategies, and risk 
mitigation measures. 

Additionally, MSE aids in identifying areas for model 
improvement and refinement, ensuring that yield prediction 
systems in smart agriculture remain robust, reliable, and 
effective in addressing the dynamic challenges of agricultural 
production. 

MSE calculates the average of the squared differences 
between predicted and actual values. Squaring the errors gives 
higher weight to large errors, making MSE more sensitive to 
outliers [20]. 

𝑚𝑠𝑒 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛

𝑖=1
      (2) 

C. Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is a critical metric in 
smart agriculture for predicting agricultural yields as it provides 
a measure of the average magnitude of errors between predicted 
and actual yield values, while also considering the variability of 
these errors. RMSE is particularly important in scenarios where 
both the magnitude and spread of errors are essential 
considerations. In smart agriculture, precise yield forecasts are 
fundamental for optimizing resource allocation, mitigating risks, 
and enhancing productivity. 

RMSE offers valuable insights into the overall accuracy and 
consistency of machine learning models used for yield 
prediction. Lower RMSE values indicate higher precision in 
yield predictions, enabling farmers and stakeholders to make 
informed decisions regarding crop management practices, 
resource allocation strategies, and risk mitigation measures. 
Furthermore, RMSE helps identify areas for model 
improvement and refinement, ensuring that yield prediction 
systems in smart agriculture remain reliable, effective, and 
aligned with the evolving needs of agricultural production. 

RMSE is the square root of MSE and provides a measure of 
the standard deviation of the errors. It is in the same units as the 
target variable, making it more interpretable [21]. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1             (3) 

D. R2 Scores 

R2 Score, or the coefficient of determination, is a critical 
metric in smart agriculture for assessing the goodness-of-fit of 
regression models used in predicting agricultural yields. It 
measures the proportion of the variance in the dependent 
variable (yields) that is predictable from the independent 
variables (e.g. weather data, soil conditions). In the context of 
smart agriculture, where accurate yield forecasts are crucial for 
optimizing resource allocation, mitigating risks, and improving 
productivity, R2 Score plays a pivotal role in evaluating the 
overall performance and predictive power of regression models. 
A higher R2 Score indicates that the model can explain a larger 
portion of the variance in yields, providing farmers and 
stakeholders with confidence in the model's ability to make 
informed decisions regarding crop management practices, 
resource allocation strategies, and risk mitigation measures. 
Additionally, R2 Score helps in comparing different models and 
selecting the most suitable one for yield prediction, ensuring that 
smart agriculture systems are equipped with reliable and 
effective tools for addressing the challenges of agricultural 
production. 

R2 measures the proportion of variance in the target variable 
that is explained by the regression model. It ranges from 0 to 1, 
where 1 indicates a perfect fit and 0 indicates no improvement 
over a baseline model [22]. 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

        (4) 

V. RELATED WORK 

The global agricultural landscape faces numerous 
challenges, including climate change, resource scarcity, and the 
need for increased food production to meet growing population 
demands. In this context, the application of machine learning 
techniques offers promising solutions by leveraging data-driven 
insights to enhance agricultural practices. 

The global agricultural landscape confronts multifaceted 
challenges, from climate change impacts to the imperative of 
increasing food production sustainably. In response, machine 
learning techniques are proving pivotal, leveraging data-driven 
insights to revolutionize agricultural practices. These models 
delve into extensive datasets encompassing climate patterns, soil 
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attributes, crop genetics, and historical yield data, crafting 
predictive models that enhance decision-making and resource 
allocation in farming. 

The evaluation of strengths and limitations inherent in each 
method is pivotal for identifying the most effective techniques 
in yield prediction. Such insights are instrumental in advancing 
precision agriculture, where optimized resource utilization and 
informed decision-making are paramount. 

This comparative study aims to analyze and compare 
different machine learning approaches applied in smart 
agriculture for the prediction of agricultural yields. By 
evaluating the strengths and limitations of each approach, this 
study seeks to provide insights into the most effective methods 
for yield prediction, contributing to advancements in precision 
agriculture and sustainable food production. 

The dataset was created to train and test prediction models 
using the different attributes. The data was obtained from 
previous studies, the data was extracted from charts using 
ORIGIN software or collected from tables in recently published 
works.  The dataset included various biomass characteristics, 
such as Crop year, Crop, Soil moisture, state name, district 
name, season, temperature, humidity, area, production. 

In the related work presented in Table I of the research paper, 
various machine learning and deep learning techniques were 
evaluated for their performance in agricultural applications, 
highlighting the broad spectrum of methodologies and their 
respective efficiencies. The table encapsulates results from 
different studies that have applied models like CNN, ViT-B32, 
ViT-B16, RPN algorithms, and ResNet-50 to agriculture-related 
datasets. Notably, the CNN model [17] achieved an accuracy of 
97.70%, while the ViT-B16 model excelled with an F1-SCORE 
of 99.40%, indicating its superior capability in handling plant 
classification tasks. The RPN algorithms showed a relatively 
lower accuracy of 91.83%, and the ResNet-50 model 
demonstrated a high accuracy of 99.54%, underscoring its 
robustness in image-based agricultural applications. 
Additionally, the table included comparisons involving 
semantic image segmentation techniques such as UNet with 
different configurations, which achieved MeanIoU scores 
ranging from 0.58 to 0.75, showing the potential for detailed 
phenotyping of vine leaves. This diverse array of techniques and 
results emphasize the importance of selecting the appropriate 
model based on the specific needs and characteristics of the 
agricultural data, as well as the performance metrics crucial to 
the success of the application [18]. 

TABLE I. RELATED WORK 

Reference 

article 

Year of 

publication 
Database Context Technique used Performance achieved 

[1] 2022 

Agricultural 

dataset for the 

plant classification 

Deep Learning for 

Agriculture 

Precision: A 

Bibliometric 
Analysis 

Deep Learning : 

- CNN Model 

- ViT-B32 

- ViT-B16 

- RPN algorithmes 

- ResNet-50 

 

CNN accuracy : 97.70% 

ViT-B32 F1-SCORE : 99.20% 

ViT-B16 F1-SCORE : 99.40% 

RPN algorithms Accuracy : 91.83% 

ReseNet-50 Accuracy : 99.54% 

 

[2] 2022 
Plants and fruits 

images 

Semantic image 

segmentation with 
deep learning 

For the phenotyping 

of vine leaves 

Deep Learning : 

- UNet 

-UNet (MobileNetV2-weights) 

- UNet (Xception-like) 

- UNet MeanIoU : 0.74 

-UNet (MobileNetV2-weights) 
MeanIoU : 0.75 

-UNet (Xception-like) MeanIoU : 0.58 

 

[3] 2022 
EO-1 Hyperion 

satellite data 

A systematic review 

of hyperspectral 

imaging technology 

with a deep and 
machine learning 

methodology for 

agricultural 
applications. 

 

Deep Learning : 

-CNN 

Machine Learning : 

-SVM 

-ANN 

-KNN 

- ANN 389.96 RMSE 

- CNN accuracy : 98.76% 

VI. ENGINEERING CASE STUDIES 

In this section, we will talk about the dataset and the different 
results obtained. 

A. About Database 

Our dataset contains 50000 rows and 10 columns, the dataset 
named data1, its Size is 4306 ko, for the attributes it contains 10 
attributes are the following: 

 State name: typically refers to the name of a state within 
a country or a region. It is a term used to identify and 

refer to a specific political subdivision or administrative 
region within a larger geopolitical entity. 

 District name: refers to the name of a district, which is 
an administrative division or geographic area within a 
larger political or administrative region. Districts are 
often used for purposes such as local governance, 
electoral representation, statistical reporting, and 
resource allocation. 

 Crop year: refers to a specific period of time during 
which crops are grown, harvested, and typically 
marketed. The duration of a crop year can vary 
depending on the type of crop, geographical location, 
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and agricultural practices. It is an important concept in 
agriculture and is used for planning, record-keeping, and 
analyzing crop production and market trends. 

 Season: refers to a period of time characterized by 
distinct weather conditions, environmental changes, or 
cultural activities. Seasons are typically associated with 
variations in temperature, precipitation, daylight hours, 
and natural phenomena such as plant growth, animal 
behavior, and climate patterns. The concept of seasons 
is observed in different contexts, including 
meteorology, agriculture, astronomy, and cultural 
traditions. 

 Crop: refers to any cultivated plant or agricultural 
produce that is grown and harvested for human 
consumption, animal feed, industrial use, or other 
purposes. Crops are a fundamental component of 
agriculture and play a crucial role in providing food, 
fiber, and raw materials for various industries. 

 Temperature: In agriculture, temperature refers to the 
measurement of thermal conditions in the environment 
that directly influence the growth, development, and 
productivity of crops, livestock, and other agricultural 
activities. Temperature plays a critical role in shaping 
agricultural practices, determining suitable crop types, 
planting schedules, and livestock management 
strategies. 

 Humidity: Humidity in agriculture refers to the amount 
of moisture or water vapor present in the air within a 
farming or growing environment. It is a critical 
environmental factor that influences plant growth, crop 
health, pest and disease dynamics, as well as various 
agricultural operations. Humidity levels are typically 
measured as relative humidity (RH), expressed as a 
percentage, which indicates the moisture content of the 
air relative to its maximum capacity at a given 
temperature. 

 Soil-moisture: Soil moisture refers to the amount of 
water held in the soil, which is crucial for supporting 
plant growth, nutrient uptake, and overall soil health. It 
is a key factor in agriculture, influencing crop 
development, irrigation scheduling, soil fertility, and 
water conservation practices. 

 Area: refers to a specific piece of land or a defined 
region where agricultural activities take place. This 
could include farmland, cropland, pasture, orchards, 
vineyards, or any other area used for cultivating crops, 
raising livestock, or conducting agricultural operations. 

 Production: refers to the branch of agriculture focused 
on the large-scale cultivation of crops and the raising of 
livestock for commercial purposes. It encompasses the 
systematic and organized management of agricultural 
activities to produce food, fiber, fuel, and other 
agricultural products on a significant scale. Production 
agriculture plays a vital role in meeting global food 
demand, supporting rural economies, and contributing 
to the agricultural sector's overall productivity. 

B.  Number of Productions by Season 

The number of agricultural productions can vary 
significantly by season due to factors such as climate, crop 
cycles, and farming practices. Here's a general of agricultural 
productions that occur during different seasons: 

 
Fig. 1. Number of productions by season. 

Fig. 1 provides a visual representation of the number of 
agricultural productions categorized by season between 1997 
and 2014 in India, illustrating the seasonal impact on agricultural 
output. This graph is pivotal for understanding how different 
times of the year affect crop yields, potentially guiding farmers 
in planning planting and harvesting activities. 

The data visualized here can assist in determining which 
seasons are most productive and which ones may require 
additional resource allocation such as irrigation during drier 
months or more robust pest management during warmer periods. 

Such seasonal insights are crucial for optimizing agricultural 
strategies and ensuring sustainable production levels throughout 
the year. 

The graph delineates the average production of various 
plants across the seasons in India, offering a comprehensive 
snapshot of the country's agricultural output throughout the year. 
Notably, autumn emerges as the most prolific season, with an 
average production of 18,326 tones, showcasing the peak 
productivity experienced during this period. This heightened 
production likely correlates with favorable weather conditions, 
such as moderate temperatures and adequate rainfall, conducive 
to robust plant growth. 

Spring follows closely behind, boasting an average 
production of 15,583 tones, indicating another significant period 
for plant cultivation and yield. 

Spring is typically characterized by increasing daylight 
hours and rising temperatures, triggering plant growth after the 
winter dormancy period. 

However, as the graph transitions to summer, there is a 
noticeable decline in average production, plummeting to 2,105 
tones. The summer season in India is marked by soaring 
temperatures and often dry conditions, which can adversely 
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affect plant health and productivity, leading to this stark drop in 
average production. Winter, similarly, exhibits lower production 
levels compared to autumn and spring, with an average of 1,128 
tones. 

C. Temperature by Season 

Seasonal temperature variations significantly impact 
agricultural activities and crop yields. 

In spring, moderate temperatures foster optimal conditions 
for seed germination, root development, and vigorous plant 
growth, promoting higher yields. 

Summer brings challenges with heat stress, water scarcity, 
and potential yield reductions if crops are not adequately 
managed. Autumn's cooler temperatures slow plant growth but 
also mark the harvest season for many crops, contributing to 
overall yield. 

Winter's cold temperatures can lead to frost damage and 
shorter growing periods, necessitating protective measures for 
maintaining productivity. Managing these temperature 
fluctuations is crucial for agricultural success, requiring careful 
planning, resource allocation, and the use of adaptive practices 
to optimize yields across seasons. 

Seasonal temperature variations profoundly influence 
agricultural activities and crop outcomes. In India, autumn 
typically experiences the highest average temperature, signaling 
the transition from monsoon rains to drier conditions. This 
warmth in autumn fosters favorable environments for certain 
crops, aiding in their growth and yield. 

Spring follows closely with slightly lower temperatures, 
marking the beginning of warmer weather suitable for planting 
and cultivation. 

Summer, characterized by higher heat levels, can pose 
challenges such as water stress and heat damage to crops if not 
managed effectively. 

Winter, with cooler temperatures, impacts crop selection and 
growth rates, favoring cool-season crops while requiring 
protective measures against frost or cold damage. These 
temperature dynamics shape agricultural calendars, impacting 
planting schedules, harvest times, and overall crop productivity 
throughout the year. 

The temperature dynamics during winter are crucial in 
determining agricultural calendars. The onset of cooler weather 
signals the need to adjust planting schedules to ensure that crops 
can mature and be harvested before the most severe conditions 
set in. Additionally, the timing of these schedules can affect the 
overall yield and quality of the crops, making it essential for 
farmers to carefully plan their activities throughout the year. 

In conclusion, the temperature dynamics of winter are a 
crucial determinant of agricultural calendars, requiring careful 
planning and adaptation by farmers. These adjustments ensure 
that crops can thrive despite the challenges posed by cooler 
weather, optimizing yield and quality while maintaining the 
health of the farm ecosystem. By aligning their practices with 
seasonal changes, farmers can achieve sustainable productivity 
throughout the year. 

 
Fig. 2. Temperature by season. 

By processing data from our database and data visualization 
for the temperature attribute, the graph in the Fig. 2 detailing the 
average temperature according to the seasons in India from 1997 
to 2014 reveals a nuanced understanding of how temperature 
variations impact agricultural production. With autumn 
exhibiting the highest average temperature at 34.43 degrees 
Celsius, this season's warmth likely correlates with the transition 
from the monsoon season to drier conditions, fostering 
conducive environments for certain crops' growth. The overall 
average temperature across all seasons, standing at 34.48 
degrees Celsius, underscores India's generally warm climate, 
which plays a crucial role in determining suitable crops and 
agricultural practices throughout the year. Spring, with an 
average temperature of 34.47 degrees Celsius, signals the 
beginning of warmer weather, prompting the planting and 
growth of various crops. However, the slight increase in 
temperature from autumn to spring could also indicate shifts in 
weather patterns affecting crop cycles and yields. Summer, 
characterized by an average temperature of 34.36 degrees 
Celsius, experiences higher heat levels, which can both benefit 
and challenge agriculture. While warm-season crops may thrive, 
excessive heat can lead to water stress, heat stress in plants, and 
reduced yields if not managed effectively. Winter, with the 
lowest average temperature at 34.31 degrees Celsius, introduces 
cooler conditions, impacting crop selection and growth rates. 
Certain crops like winter wheat and leafy greens may perform 
better during this period, while others may require protective 
measures against frost or cold damage. 

The impact of these temperature variations on agriculture 
production is multifaceted. Warmer temperatures in autumn and 
spring can extend growing seasons, allowing for multiple crop 
cycles and increased yields for heat-tolerant crops. However, 
they may also accelerate pest and disease pressures, 
necessitating robust pest management strategies. Summer's heat 
can lead to water evaporation, soil moisture depletion, and stress 
on crops, requiring efficient irrigation systems and drought-
resistant crop varieties. Conversely, cooler temperatures in 
winter can limit crop options but may also provide relief from 
heat stress, benefitting cool-season crops and contributing to 
overall crop diversity. 
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Moreover, temperature fluctuations influence the timing of 
planting, harvesting, and crop management practices, impacting 
agricultural calendars and strategies. Farmers must adapt to 
these temperature dynamics by employing climate-smart 
agricultural techniques, leveraging technology for weather 
monitoring and forecasting, and diversifying crop portfolios to 
mitigate risks associated with temperature extremes. Overall, the 
graph's depiction of average temperatures across seasons 
underscores the intricate relationship between climate patterns 
and agricultural production in India, highlighting the need for 
resilient and adaptive agricultural systems to ensure food 
security and sustainability in a changing climate. 

D. Correlation Processing 

Correlation processing refers to the analysis and calculation 
of correlation coefficients between variables or data sets. 
Correlation is a statistical measure that quantifies the strength 
and direction of the relationship between two or more variables. 

Correlation processing is a powerful tool for exploring data 
relationships, identifying predictive factors, and making 
informed decisions. 

We used this treatment to keep just the most correlated 
attributes. 

Correlation processing plays a vital role in smart agriculture 
for predicting agricultural yields by identifying and quantifying 

the relationships between various factors influencing crop 
production. 

This process involves analyzing correlations between factors 
such as weather patterns, soil characteristics, crop genetics, and 
historical yields. By understanding the degree and direction of 
these correlations, machine learning models can effectively 
capture and utilize this information to make accurate 
predictions. 

For example, strong positive correlations between certain 
weather conditions and crop yields may indicate favorable 
conditions for crop growth, while negative correlations could 
highlight potential risks or challenges. 

Correlation processing enables smart agriculture systems to 
prioritize relevant factors, optimize resource allocation, and 
implement targeted interventions to enhance yield prediction 
accuracy and promote sustainable food production practice. 

In terms of yield prediction, correlation processing enhances 
accuracy by integrating data from various sources, such as 
remote sensing, weather forecasts, and historical crop 
performance. By understanding how different variables interact 
and influence crop growth, smart agriculture systems can predict 
yields more reliably, allowing farmers to make better-informed 
decisions regarding harvest timing, storage, and market 
planning.

TABLE II. CORRELATION BETWEEN ATTRIBUTES 

 Crop_Year Temperature Humidity Soil moinsture Area Production 

Crop_Year 1 0 0 0 0 0.01 

Temperature 0 1 -0.7 -0.29 0 0.01 

Humidity 0 -0.7 1 0.81 0 0 

Soil moinsture 0 -0.29 0.81 1 0 0 

Area 0 0 0 0 1 0.03 

Production 0.01 0.01 0 0 0.03 1 

Using a correlation treatment, Table II explores the 
correlation between the different agricultural attributes using a 
correlation matrix that summarizes the different correlations 
existing between the attributes in our database., offering 
valuable insights into how different variables interact with each 
other. This matrix helps identify which factors most 
significantly affect crop yields, such as the relationships 
between soil moisture, temperature, and crop health. 
Understanding these correlations is essential for developing 
more accurate predictive models and for making informed 
decisions regarding soil management, crop selection, and 
resource allocation. By highlighting the strongest correlations, 
this figure directs research and practice towards the most 
impactful factors, facilitating more targeted and effective 
agricultural interventions [23]. 

This correlation matrix offers a comprehensive view of the 
relationships between key attributes related to crop production, 
including Crop_Year, Temperature, Humidity, Soil Moisture, 
Area, and Production [24]. Starting with Crop_Year, it shows a 
negligible correlation with all other variables except for a 
minimal positive correlation of 0.01 with Production, implying 
a very weak association between the years and production 

levels. Moving to Temperature, it exhibits a perfect positive 
correlation with itself (1.0), as expected, and a minor positive 
correlation of 0.01 with Production, indicating a slight influence 
of temperature on crop yield. Humidity and Soil Moisture, on 
the other hand, demonstrate a strong positive correlation of 0.81, 
highlighting a significant relationship between these two factors 
crucial for plant growth and development. This correlation 
suggests that higher humidity levels are generally associated 
with increased soil moisture content, which is favorable for crop 
growth. In contrast, both Humidity and Temperature show 
negative correlations with Soil Moisture (-0.7 and -0.29, 
respectively), albeit not as strong as the positive correlation 
between Humidity and Soil Moisture, indicating that higher 
humidity or temperature may slightly decrease soil moisture 
levels. The correlation between Area and other variables is 
notably minimal, except for a minor positive correlation of 0.03 
with Production, suggesting that while cultivation area may have 
a minor impact on production levels, it is not strongly correlated 
with other attributes. Lastly, Production displays weak positive 
correlations with Temperature (0.01), Humidity (0.01), and Area 
(0.03), implying minor influences of these factors on crop 
production. Overall, this analysis elucidates the interplay 
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between temperature, humidity, soil moisture, cultivation area, 
and production levels, providing valuable insights into the 
factors influencing crop yield and agricultural outcomes [25]. 

E. Evaluation of Machine Learning Models 

Machine learning models play a pivotal role in evaluating 
and enhancing agriculture yield by providing valuable insights 
and predictive capabilities. These models enable the analysis of 
vast amounts of data, including climate patterns, soil conditions, 
crop types, and management practices, to identify key factors 
influencing yield. By leveraging algorithms such as regression, 
decision trees, and neural networks, machine learning can 
uncover complex relationships between variables and predict 
future outcomes with a high degree of accuracy. This predictive 
power is especially crucial in agriculture, where optimizing crop 
production, minimizing resource use, and mitigating risks are 
paramount. Machine learning models can help farmers make 
data-driven decisions regarding planting schedules, irrigation 
strategies, pest management, and crop selection based on 
historical data and real-time inputs. Moreover, these models 
facilitate precision agriculture techniques, such as satellite 
imaging, drone technology, and sensor data analysis, to monitor 

crop health, detect anomalies, and optimize resource allocation 
at a granular level. Overall, the importance of machine learning 
in agriculture yield lies in its ability to harness data-driven 
insights, enhance decision-making processes, and ultimately 
drive sustainable and efficient farming practices for improved 
productivity and food security. 

Before evaluating the performance of machine learning 
models, it is important to establish the metrics that best capture 
the accuracy and reliability of these models. Common 
evaluation metrics such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), and 
the R² score are widely used to quantify the prediction errors and 
variance explained by the models. These metrics provide 
insights into how well the model's predictions align with actual 
outcomes, helping to identify areas for optimization and 
improvement. Additionally, these measures allow for a direct 
comparison between models, highlighting their strengths and 
weaknesses. By analyzing the errors and the proportion of 
explained variance, researchers can make data-driven decisions 
on model selection and refinement. Below are the different 
results obtained based on these metrics:

TABLE III.  EVALUATION OF MACHINE LEARNING MODELS 

Performance Measures Rf regressor DT regressor LR Knn regressor XGBR ADR 

MAE 0,28 0,32 0,3 0,35 0,4 0,22 

MSE 0,16 0,18 0,31 0,36 0,16 0,1 

RMSE 0,39 0,42 0,56 0,6 0,41 0,31 

R2 SCORE 0.89 0.87 0.13 0.13 0,62 0,6 
 

In the Table III, this predictive power is especially crucial in 
agriculture, where optimizing crop production, minimizing 
resource use, and mitigating risks are paramount. Machine 
learning models can help farmers make data-driven decisions 
regarding planting schedules, irrigation strategies, pest 
management, and crop selection based on historical data and 
real-time inputs [8]. 

F. Discussion 

By applying the various machine learning models shows in 
the Table III to our database, the choice of the best model 
depends on the specific requirements of your application, the 
importance of different evaluation metrics, and the trade-offs 
between model complexity and interpretability. 

The comparative analysis of various machine learning 
models employed in the research document for predicting 
agricultural yields underscores distinct characteristics and 
performance outcomes for each model. The Random Forest 
Regressor emerged as the top performer with an R² Score of 
0.89, indicating excellent predictive accuracy and robustness.  

This model is particularly adept at managing the balance 
between bias and variance, thanks to its ensemble learning 
approach which combines multiple decision trees to enhance 
performance and guard against overfitting. However, despite its 
effectiveness, the model's computational demands and the 
slower training times due to its complex nature pose practical 
limitations. 

However, practical considerations such as computational 
demands and slower training times due to its complexity present 
challenges for widespread adoption, highlighting the need for 
further optimization and exploration of alternative models in 
smart agriculture applications. 

The performance measures for various regression models 
including Random Forest (Rf), Decision Tree (DT), Linear 
Regression (LR), K-Nearest Neighbors (Knn), Extreme 
Gradient Boosting (XGBR), and AdaBoostRegressor (ADR) are 
evaluated based on several metrics: Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), and R2 Score. The MAE metric measures the average 
magnitude of errors between predicted and actual values, with 
lower values indicating better model performance. Among the 
models, ADR stands out with the lowest MAE of 0.22, followed 
by Rf with 0.28, LR with 0.3, DT with 0.32, Knn with 0.35, and 
XGBR with 0.4. Moving to MSE, which penalizes larger errors 
more heavily, ADR again performs the best with the lowest 
MSE of 0.1, while Rf also shows strong performance with an 
MSE of 0.16. However, LR and Knn exhibit higher MSE values 
of 0.31 and 0.36, respectively, indicating comparatively poorer 
performance in terms of squared errors. RMSE, which is the 
square root of MSE, further emphasizes ADR and Rf's 
superiority, as they have the lowest RMSE values of 0.31 and 
0.39, respectively. Conversely, DT and Knn have higher RMSE 
values of 0.42 and 0.6, respectively, highlighting their tendency 
to produce larger errors. 
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Lastly, the R2 Score measures the proportion of variance in 
the dependent variable that is predictable from the independent 
variables, with values closer to 1 indicating a better fit. Here, Rf 
and ADR demonstrate excellent performance with R2 scores of 
0.89 and 0.6, respectively, showcasing their ability to explain a 
significant portion of the variance in the data. Conversely, LR, 
DT, and Knn exhibit lower R2 scores of 0.13, indicating weaker 
predictive capabilities. Overall, these performance measures 
provide a comprehensive evaluation of the regression models, 
highlighting ADR and Rf as top performers based on their MAE, 
MSE, RMSE, and R2 Score metrics. 

Comparing the performance measures of various regression 
models for predicting farm yields in India, we can deduce the 
best-performing model based on the provided metrics. Among 
the models evaluated – Random Forest (Rf), Decision Tree 
(DT), Linear Regression (LR), K-Nearest Neighbors (Knn), 
Extreme Gradient Boosting (XGBR), and AdaBoostRegressor 
(ADR) – the model with the most consistently superior 
performance across multiple metrics appears to be 
AdaBoostRegressor (ADR). 

Firstly, looking at the Mean Absolute Error (MAE), ADR 
has the lowest MAE of 0.22, indicating that, on average, its 
predictions are closest to the actual farm yields. This suggests a 
higher level of accuracy compared to other models like Rf 
(MAE of 0.28), LR (MAE of 0.3), DT (MAE of 0.32), Knn 
(MAE of 0.35), and XGBR (MAE of 0.4). 

Moving on to Mean Squared Error (MSE), ADR again 
performs exceptionally well with the lowest MSE of 0.1, 
indicating that its predictions have the smallest squared errors 
on average. 

Rf also shows strong performance with an MSE of 0.16, but 
ADR outperforms it in this metric. LR and Knn exhibit higher 
MSE values of 0.31 and 0.36, respectively, indicating 
comparatively poorer performance in terms of squared errors. 

Root Mean Squared Error (RMSE), which is the square root 
of MSE, further emphasizes ADR's superiority with the lowest 
RMSE of 0.31, followed by Rf with an RMSE of 0.39. This 
indicates that ADR's predictions have the smallest overall errors 
among the models. 

Lastly, the R2 Score measures the proportion of variance in 
the dependent variable that is predictable from the independent 
variables. Here, Rf and ADR demonstrate excellent 
performance with R2 scores of 0.89 and 0.6, respectively. While 
Rf has a higher R2 score, indicating a better fit, ADR's R2 score 
of 0.6 is still respectable and combined with its superior 
performance in other metrics, it showcases ADR's ability to 
predict farm yields effectively. 

Based on these comparisons, AdaBoostRegressor (ADR) 
emerges as the best-performing model for predicting farm yields 
in India due to its consistently low MAE, MSE, and RMSE 
values, indicating higher accuracy and smaller errors in 
predictions compared to other models. 

Its respectable R2 score further supports its effectiveness in 
capturing variance and predicting farm yields reliably, 
demonstrating its potential to enhance decision-making in 
agricultural practices. This capability allows farmers to optimize 

their operations and improve overall productivity. Moreover, it 
fosters a data-driven approach that can lead to more sustainable 
farming practices. 

VII. CONCLUSION 

The use of these semantic segmentation approaches based on 
deep learning enables farmers to obtain detailed information 
about their crops, such as the state of health of the plants, the 
presence of diseases or pests, estimated yields, and so on. This 
enables them to make more informed decisions about crop 
management, resource use and optimizing farming practices. 

The application of machine learning approaches in smart 
agriculture for predicting agricultural yields offers significant 
benefits, including improved accuracy, optimized resource 
management, enhanced decision-making, early risk detection, 
precision agriculture implementation, and integration with IoT 
and big data technologies. These advancements contribute to 
sustainable and efficient agricultural practices, addressing the 
challenges of food security, climate change, and resource 
scarcity in modern agriculture. 

The integration of machine learning approaches in smart 
agriculture for predicting agricultural yields marks a 
transformative leap in agricultural innovation. This 
comprehensive application of advanced technologies leverages 
data-driven insights to revolutionize traditional farming 
practices and address the complex challenges faced by the global 
agricultural landscape. Through the analysis of vast and diverse 
datasets encompassing climate patterns, soil characteristics, 
crop genetics, and historical yields, machine learning models 
emerge as powerful tools capable of generating precise and 
actionable predictions. The comparative analysis of various 
machine learning techniques further underscores the importance 
of selecting the most suitable models for specific agricultural 
contexts, considering factors such as accuracy, robustness, 
computational efficiency, and scalability. 

Among the diverse range of machine learning models 
explored, the Random Forest Regressor has shown remarkable 
performance, demonstrating excellent predictive accuracy and 
robustness with an R² Score of 0.89 in our analysis. Its ensemble 
learning approach, which combines multiple decision trees, 
effectively manages the trade-off between bias and variance, 
guarding against overfitting and ensuring generalization to new 
data. However, practical constraints such as computational 
demands and slower training times due to its complexity 
highlight the ongoing need for optimization and exploration of 
alternative models tailored to the unique requirements of smart 
agriculture applications. 

Machine learning approaches in smart agriculture improve 
yield prediction accuracy and promote precision agriculture, 
sustainable food production, and resource optimization. By 
providing data-driven insights, these technologies enhance 
decision-making, resource allocation, and productivity while 
supporting global efforts to tackle food security, climate change, 
and sustainable agricultural development. Comparing the 
performance measures of various regression models for 
predicting farm yields in India, we can deduce the best-
performing model based on the provided metrics. Among the 
models evaluated – Random Forest (Rf), Decision Tree (DT), 
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Linear Regression (LR), K-Nearest Neighbors (Knn), Extreme 
Gradient Boosting (XGBR), and AdaBoostRegressor (ADR) – 
the model with the most consistently superior performance 
across multiple metrics appears to be AdaBoostRegressor 
(ADR). 

Firstly, looking at the Mean Absolute Error (MAE), ADR 
has the lowest MAE of 0.22, indicating that, on average, its 
predictions are closest to the actual farm yields. This suggests a 
higher level of accuracy compared to other models like Rf 
(MAE of 0.28), LR (MAE of 0.3), DT (MAE of 0.32), Knn 
(MAE of 0.35), and XGBR (MAE of 0.4). 

Moving on to Mean Squared Error (MSE), ADR again 
performs exceptionally well with the lowest MSE of 0.1, 
indicating that its predictions have the smallest squared errors 
on average. 

Rf also shows strong performance with an MSE of 0.16, but 
ADR outperforms it in this metric. LR and Knn exhibit higher 
MSE values of 0.31 and 0.36, respectively, indicating 
comparatively poorer performance in terms of squared errors. 

Root Mean Squared Error (RMSE), which is the square root 
of MSE, further emphasizes ADR's superiority with the lowest 
RMSE of 0.31, followed by Rf with an RMSE of 0.39. This 
indicates that ADR's predictions have the smallest overall errors 
among the models. 

Lastly, the R2 Score measures the proportion of variance in 
the dependent variable that is predictable from the independent 
variables. Here, Rf and ADR demonstrate excellent 
performance with R2 scores of 0.89 and 0.6, respectively. While 
Rf has a higher R2 score, indicating a better fit, ADR's R2 score 
of 0.6 is still respectable and combined with its superior 
performance in other metrics, it showcases ADR's ability to 
predict farm yields effectively. 

Based on these comparisons, AdaBoostRegressor (ADR) 
emerges as the best-performing model for predicting farm yields 
in India due to its consistently low MAE, MSE, and RMSE 
values, indicating higher accuracy and smaller errors in 
predictions compared to other models. Its respectable R2 score 
further supports its effectiveness in capturing variance and 
predicting farm yields reliably. 

In conclusion, machine learning is crucial for the future of 
smart agriculture, promoting innovation and sustainability in 
production systems. Ongoing research and widespread adoption 
of these technologies are vital for unlocking their full potential 
and enhancing agricultural productivity globally. 

NOMENCLATURES 

ML   Machine learning  

DL   Deep learning 

Rf regressor Random forest regressor  

DT regressor Decision Tree regressor 

LR    Linear Regression 

KNN Regressor K-Nearest Neighbors Regressor 

XGBR  XGBoost Regressor 

ADR  AdaBoost Regressor 

IOT  Internet of Things 
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APPENDICES 

Appendix 1. Comparative Study 

Table I show the different results obtained in the  articles and the different 
databases used and general context, also the different techniques used. 

Appendix 2. Correlation Between Attributes 

Table II describe the correlation between various agricultural attributes 
through a correlation matrix. 

Appendix 3. Evaluation of Machine Learning Models 

Table III describe the different results obtained in our study and the 
different algorithms used. 

Appendix 4. Number of Productions by Season 

Fig. 1 shows the number of agricultural productions by season. 

Appendix 5. Temperature by season 

Fig. 2 illustrates the temperature variations by season, showing that 
autumn has the highest average temperature, while winter exhibits the lowest. 


