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Abstract—Deep learning technology has promoted the rapid 

development of visual object tracking, among which algorithms 

based on twin networks are a hot research direction. Although this 

method has broad application prospects, its performance is often 

greatly reduced when encountering target occlusion or similar 

objects in the background. In response to this issue, a method is 

proposed to integrate channel and spatial dimension attention 

mechanisms into the backbone architecture of twin networks, to 

optimize the algorithm's recognition accuracy for tracking targets 

and its stability in changing environments. Then, a region 

recommendation network based on adaptive anchor box 

generation is adopted, combined with twin networks to enhance 

the network's modeling ability for complex situations. Finally, a 

new visual tracking algorithm is designed. Through comparative 

experiments, the success rate of the former increased by 0.6% and 

0.9% respectively on the two datasets, and its accuracy also 

increased by 1.2% and 1.8% accordingly. The success rate of the 

latter increased by 1.5% and 1.2% respectively in the two datasets, 

and the accuracy also increased by 1.2% and 0.6% respectively. 

From this, the improved algorithm can improve the performance 

of target tracking and has certain application potential in visual 

target tracking. 

Keywords—Visual tracking; twin network; integration; attention 

mechanism; self-adaption 

I. INTRODUCTION 

Fatigue driving has become an important factor in causing 
traffic accidents, posing a serious threat to social safety and 
public health. Currently, although there are various fatigue 
driving detection models based on computer algorithms, they 
still face many challenges in practical applications, such as poor 
comfort, susceptibility to external factors such as lighting, 
masks, sunglasses, low detection accuracy, and poor real-time 
performance [1]. With the successful application of deep 
learning in object detection, some studies have begun to use 
detection techniques to guide the development of object 
tracking technology [2]. Xin et al. proposed a new Siamese 
adaptive learning network for visual tracking to address the 
manually adjusting parameters. The designed method took 
spatial alignment and model learning state as criteria for anchor 
quality evaluation, and employed Gaussian mixture distribution 
for adaptive allocation instead of IoU-based anchor allocation. 
The experimental results showed that the tracker had 
superiority on benchmarks GOT-10k, and LaSOT [3]. In order 
to address the issue of retaining much unfavorable background 
information in association operations, Jun W et al. proposed an 
effective feature recognizer that included channel and spatial 
attention modules to focus on key information. The 
representation capability was optimized. Experiments on six 

benchmark tests showed that the designed tracker outperformed 
other trackers. Especially, it achieved 80.4% AUC on 
TrackingNet and 68.4% AUC on GOT-10k during real-time 
operation [4]. Due to the insufficient control accuracy and 
stability of current virtual vision tracking technology, Jianbin et 
al. designed a new intelligent algorithm on the basis of human-
computer interaction and virtual vision tracking technology to 
improve the overall performance of virtual vision tracking. The 
designed model was efficient, with tracking accuracy more than 
10% higher than traditional methods [5]. Di et al. found that the 
discriminative model for predicting object tracking models was 
susceptible to interference from similar objects and required 
much-labeled data for training during actual use. Therefore, two 
methods were proposed to enhance the robustness of target 
tracking against interference from similar objects: multi-scale 
region search and response map processing based on Gaussian 
convolution. A large number of experiments showed that the 
enhancement function implemented in the tracking framework 
enhanced its robustness. The tracker based on self-supervised 
training had excellent tracking performance [6]. The existing 
Siamese trackers are insufficient to effectively distinguish 
between targets and the fluctuation interference embedded in 
the two branches of information, resulting in inaccurate 
classification and localization. Therefore, Liu et al. proposed 
two novel sub-network spaces for spatial feature embedding to 
optimize the discriminative ability of trackers in the embedding 
space and their adaptability to complex tracking scenarios. 
Compared with the most advanced trackers, the proposed 
tracker had competitive tracking performance in background 
clutter and similar object attributes, verifying the effectiveness 
of the method [7]. To solve the tracking drift caused by 
inaccurate initial positions in most existing trackers, Han et al. 
proposed a deep learning method that could generate accurate 
positions of objects given their rough positions. The proposed 
method was applied in the tracking process to improve the 
accuracy. A large number of experiments in object tracking 
benchmark testing verified its effectiveness [8]. Due to the lack 
of attention on the channel dimension in current trackers, their 
potential tracking capabilities are hindered. Therefore, 
Shaochuan et al. used a novel spatial channel converter that 
integrated information conveyed by features along both spatial 
and channel directions. To quantify temporal smoothness, a 
jitter metric that measured the cross-frame variation of 
predicted bounding boxes was proposed as a function of 
parameters like center displacement, area, and aspect ratio. 
Several well-known benchmark datasets demonstrated its 
robustness [9]. 

In the field of computer vision tracking, although some 
progress has been made in research, fatigue driving detection 
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technology still faces multiple challenges. Firstly, existing 
models have shortcomings in terms of comfort, which may 
cause unnecessary interference to drivers. Secondly, sensitivity 
to external factors such as lighting, masks, sunglasses, etc. 
affects the accuracy and robustness of detection. In addition, 
detection accuracy and real-time performance are also key areas 
that need to be improved in current technology. For example, 
although the Siamese adaptive learning network proposed by 
Xin et al. performed well on GOT-10k and LaSOT benchmark 
tests, further optimization is still needed to improve tracking 
accuracy and stability. The effective feature recognizer 
proposed by the military and others has optimized its 
representation ability, but there is still room for improvement 
in real-time performance. The new spatial feature embedding 
subnetwork proposed by Liu et al. has optimized the 
recognition ability of trackers, but its adaptability in complex 
tracking scenarios still needs further verification. Although the 
deep learning method proposed by Han et al. can generate 
accurate positions of objects, there is still room for 
improvement in dealing with tracking drift caused by inaccurate 
initial positions. 

To address these drawbacks, this study proposes a visual 
tracking algorithm based on traditional dual networks, 
combining attention mechanism and adaptive anchor box 

generation to improve the algorithm performance. The attention 
mechanism helps the algorithm to focus on key information and 
improve the efficiency of target feature extraction, while the 
adaptive anchor box generation is able to evaluate the anchor 
quality more accurately, using a Gaussian mixture distribution 
for adaptive allocation, thus improving the target tracking 
performance in complex environments. 

II. COMPUTER VISION ALGORITHM BASED ON TWIN 

NETWORK TRACKING 

A. Twin Network Visual Tracking Based on Attention 

Mechanism 

In fatigue driving detection, the characteristic of computer 
vision algorithms is that they can analyze the driver's behavior 
and physiological signals in real time, such as blink frequency, 
head posture, etc., to determine whether they are in a fatigue 
state. However, existing algorithms often have low detection 
accuracy due to factors such as background interference and 
lighting changes [10]. To this end, an improved algorithm is 
proposed by introducing an attention mechanism to extract 
useful features. The designed structure utilizes multi-layer 
linear fusion to integrate different levels of feature information, 
thereby enhancing the recognition accuracy and robustness for 
fatigue states. Its structure is shown in Fig. 1. 
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Fig. 1. Structure diagram of twin network target tracking algorithm incorporating attention mechanism. 
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From Fig. 1, the algorithm optimizes the feature extraction 
process in target tracking tasks by integrating channel and 
spatial attention mechanisms, thereby improving the 
performance of the tracking algorithm. Through analysis, it is 
found that striking a balance between accuracy and efficiency 
in target tracking is crucial [11]. Specifically, the research 
adopts the SiamRPN++ framework and makes improvements 
and adjustments based on it. Firstly, for the optimization of 
feature extraction, this method is similar to a fine filter. It can 
filter out feature information that is not conducive to target 
tracking, and only retain key information that helps improve 
tracking performance. This ensures the significant differences 
in feature responses across channels and spaces, providing a 
more accurate basis for subsequent similarity calculations. 
Secondly, in order to improve algorithm performance, effective 
fusion of feature information can be achieved through 
improvements to the backbone network. It includes two main 
parts: module branch and search branch. Both branches use 
Covin1-9 as the initial feature extraction layer and apply ECA 
attention mechanism and spatial attention mechanism to 
optimize feature representation capability. In the module 
branch, the features after passing through Covin1-9 are sent to 
the SiamRPN module for target tracking, and then the BBox 
regression is used to further accurately locate the position of the 
target [12]. In addition, the module branch also performs multi-
layer feature fusion operations, combining features of different 
depths to obtain richer information. In the search branch, multi-
layer feature fusion operations are also performed, but the 
fusion is performed after Covn1-9, indicating that this branch 
may be more focused on extracting and processing low-level 
features. This design fully utilizes the advantages of attention 
mechanism, enabling the network to output more accurate 
feature information, as shown in Fig. 2. 
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Fig. 2. Structure diagram of channel attention mechanism module. 

From Fig. 2, the main purpose of the channel attention 
mechanism is to capture key feature information. It 
significantly enhances the network's performance in feature 
extraction by assigning higher weights to the target feature 

channel [13]. Then, the weights of each channel are obtained 
through the activation function, as shown in Eq. (1). 
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In Eq. (1),  f z  represents the activation function. z  

represents the initial weight. The channel attention related 
feature map is shown in Eq. (2). 

,ECA i i iF F 
    (2) 

In Eq. (2), ,ECA iF  is the attention feature map. i  is the 

weight on channel i . iF  is the original feature map on 

channel i . The output i  of each channel is weighted and 

summed all the features j
iy  within its receptive field, and then 

generated by the activation function  , as shown in Eq. (3). 
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In Eq. (3), j
iy  represents the j -th element in k

i . j
i  

signifies the weight of the j -th element in the i -th channel. 

These weights are obtained through learning and are used for 
weighted combinations of different features. Then the 
corresponding weight of the size is generated, as shown in Eq. 
(4). 

  kCID y 
    (4) 

In Eq. (4), CID  is a one-dimensional convolution. The 

size of k  determines the coverage of interaction, and its 

relationship with the number of channels is shown in Eq. (5). 

 expD k b  
    (5) 

In Eq. (5), D  signifies the channels.   and b  

represent empirical values. k  can be determined by the 

number of channels D , as shown in Eq. (6). 

 2log D b
k

 
 

    (6) 

To reduce the impact of background noise on target tracking 
and make the network more focused on the target itself. The 
study introduces the spatial attention mechanism, which 
weights different spatial positions of the feature map to focus 
on the key areas of the target object, while suppressing 
interference from background or irrelevant areas [14-15]. This 
helps the network automatically learn and focus on the key 
spatial positions of the target object, such as edges, corners, etc., 
thereby improving the recognition and tracking accuracy of the 
target. Its structure is shown in Fig. 3. 
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Fig. 3. Structure diagram of spatial attention mechanism module. 

From Fig. 3, the input feature map first extracts deep 
features through convolutional layers, and then normalizes the 
output using the Sigmoid activation function, laying the 
foundation for subsequent spatial attention operations. The 
spatial attention mechanism multiplies the Sigmoid activated 
output with the original feature map through element 
multiplication operation. This operation achieves spatial 
position weighting of the feature map, focusing on key areas of 
the target (such as edges and corners) while reducing the 
interference of background noise. The weighted feature map is 
further processed through convolutional layers and combined 
with max pooling and average pooling techniques to extract 
global feature information. After these features are fused, they 
are refined again through convolutional layers. The generated 
spatial feature map significantly enhances the representation 
ability of the target area. 

Finally, the spatial attention features is shown in Eq. (7). 

    7 7
max;s s

S avgM F f F F   
 

   (7) 

In Eq. (7),   is the activation operation. 
s

avgF  is the 

average pooling feature. max
sF  is the maximum pooling 

feature. Then, multi-layer feature linear fusion is performed, 
and the fusion process is shown in Eq. (8). 
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In Eq. (8), 4F


 represents the fused mid-level feature map. 

4F  represents the mid-level feature map. 5F  represents the 

deep feature map. 3F


 represents the shallow feature map after 

fusion. 3F  represents the shallow feature map. 

B. Twin Network Visual Tracking Algorithm Integrating 

Adaptive Anchor Box Generation 

Although introducing attention mechanisms and multi-layer 
linear fusion can optimize the extraction accuracy and the 
robustness of algorithms, there are still some potential 
drawbacks. Firstly, the attention mechanism may increase the 
computational burden of the model, especially when dealing 
with rich channel and spatial position weights. Secondly, the 
model may overfit the training data, resulting in candidate 
boxes that cannot cover specific targets, thereby reducing its 
generalization ability on unseen data. Therefore, this study 
introduces a new adaptive anchor box to reduce manual 
intervention, enabling the model to automatically learn and 
generate candidate boxes based on the semantic information of 
the image itself, while reducing the computational burden of the 
attention mechanism. Its structure is displayed in Fig. 4. 
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Fig. 4. Network structure diagram of adaptive generation anchor box region 

recommendation. 
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Fig. 5. Structure diagram of learnable generation module. 

From Fig. 4, the input image generates feature maps through 
two convolutional layers F1 (A) and F1 (B), which are used for 
anchor box generation. Anchor boxes are generated at multiple 
scales (Adj 1 to Adj 4) through preset proportions and sizes to 
accommodate targets of different sizes and shapes. 
Subsequently, pixel level cross-correlation operations are 
performed between feature maps to generate Pixel Wise corr 1 
and Pixel Wise corr 2 feature maps by calculating the 
correlation of corresponding pixel points, enhancing the spatial 
position information and correlation between features. These 
processed feature maps are further fed into the Box Head and 
Cls Head modules. Box Head is responsible for accurately 
regressing the coordinates of the target bounding box, while Cls 
Head performs classification tasks and predicts the target 
category for each anchor box. By optimizing the position and 
size of the anchor box, a detection box is ultimately generated 
to complete object detection. Based on the finer grained cross-
correlation operations, the generated feature boundaries are 
made clearer [16]. This improves the success rate and accuracy 
of target tracking, thereby achieving more precise target 
tracking results. The core structure of generating anchor boxes 
is shown in Fig. 5. 

From Fig. 5, the module has two parts: one is the anchor box 
generation network, which is used to generate unique anchor 
boxes, and the other is the feature adaptive network. The input 
features are convolved to obtain a binary classification map, 
and then the probability of center existence is obtained through 
the Sigmoid activation function; Next, this probability value is 
input into the anchor box generation network to generate anchor 
boxes. At the same time, the input features are fed into the 
feature adaptive network to obtain three features: N1, N2, and 
N3. Finally, these three features are input together with the 
anchor box into the localization prediction and shape prediction 
to obtain the final offset field. This method can infer the 
position and shape of the anchor box, as displayed in Eq. (9). 

     , , , | , | , | , ,p x y w h I p x y I p w h x y I
 (9) 

In Eq. (9),  , , , |p x y w h I  represents the position and 

shape of the target.  , |p x y I  represents that anchor boxes 

have different probabilities of appearing at different positions 
[17]. Convolutional neural networks automatically learn feature 
representations of images through a series of convolutional 
layers. The study employs a two channel convolutional sub 

network, and these features are subsequently used for 
classification tasks. Two channels independently predict the 
width and height of the corresponding anchor box, allowing the 
predicted box to more accurately fit the actual size of the target 
object, as displayed in Eq. (10). 

dw

dh

w s e

h s e





   


       (10) 

In Eq. (10), w  is the width. h  is high.   is the 

empirical value. s  is the step size. This study conducts 

deformation convolution with offset to obtain adaptive feature 
maps based on anchor box shapes at different positions, as 
shown in Eq. (11). 

 '
3 , ,i i i if N f w h

   (11) 

In Eq. (11), '
if  is the convolved feature. 3N  is the 

deformable convolution. if  is the original feature.  ,i iw h  

is the shape of the anchor box corresponding to the position. In 
the application of adaptive anchor box region recommendation 
network, the loss function is one of the key factors in the 
training process, which is applied to measure the difference 
between the predicted and the true situation [18-19]. Therefore, 
the study combines learning position and shape branches to 
form an adaptive anchor box loss function. By minimizing this 
comprehensive loss, the model can learn more accurate object 
detection and tracking capabilities [20]. Its expression is shown 
in Eq. (12). 

1 2loc shape cls regL L L L L    
  (12) 

In Eq. (12), locL  is the position loss, which is used to 

measure the difference in position (i.e. the coordinates of the 
bounding box) between the predicted box and the real box. 

shapeL  signifies the shape loss, used to measure the difference 

in shape (i.e. the aspect ratio of the bounding box) between the 
predicted box and the real box. By optimizing this loss, the 
model can better learn the shape features of the target object. 

clsL  is the classification loss, and regL  is the regression loss, 

used in object tracking to measure the distance between the 
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predicted and the true boxes. 1  and 2  are used to balance 

the relative importance of position loss and shape loss in the 
total loss. In the position prediction branch, the loss function is 
displayed in Eq. (13). 

   1 loglocL p p


  
   (13) 

In Eq. (13),   and   represent the empirical values of 

the parameters. p  signifies the probability of positive 

samples. In the shape prediction branch, the loss function can 
be used to optimize shape prediction without calculating the 
objective, as shown in Eq. (14). 

1 11 min , 1 min ,
g g

shape
g g

w hw h
L L L

w w h h

      
         

      
        (14) 

In Eq. (14), 1L  represents the smoothing loss. gw  

signifies the real frame width, and gh  signifies the height. w  

signifies the candidate box width, and h  signifies the height. 

After generating adaptive anchor boxes, the study will also use 
pixel level cross-correlation operations to represent features 
with higher quality, as shown in Fig. 6. 
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Fig. 6. Pixel level cross-correlation specific process. 

From Fig. 6, in the object detection process, comparing the 
reference features with the test features generated after pre-
processing of the test image, each part acts as a kernel to 
achieve deep interaction at the pixel level. After pixel level 
cross-correlation operation, high-quality features are sent to the 
mapping module for further processing. After optimization by 
the feature extraction module, detection results containing the 
precise position and category of the target are generated to 
avoid the target feature blurring. The process of generating 
fused images is shown in Eq. (15). 

  1,..,
|i i i i n

A A A Z X


  
   (15) 

In Eq. (15), iZ  is the decomposed convolution kernel.   

signifies the convolution operation. X  signifies the feature of 
the search area. 

III. RESULTS AND DISCUSSION 

A. Analysis of Twin Network Visual Tracking Based on 

Attention Mechanism 

In order to solve the low accuracy and poor robustness in 
traditional fatigue driving recognition, a twin network visual 
tracking algorithm on the basis of attention mechanism is 
proposed. To verify the performance of the proposed TTFM in 
target tracking in complex environments, particularly its 
robustness against interference factors such as lighting changes, 

occlusion, and size variations, the study first conducts multiple 
comparative experiments to assess the advantages of TTFM 
algorithm in tracking accuracy and efficiency. Fig. 7 displays 
the results, taking the center position error of overlap rate as the 
evaluation index. 

From Fig. 7, the TTFM algorithm had the best overlap rate 
of 0.75, indicating the best performance. Compared with other 
algorithms, the optimized TTFM algorithm increased the 
average overlap rate by 0.156%, effectively optimizing the 
efficiency of feature expression and target feature extraction. 
This lays the foundation for improving target tracking 
performance in complex environments. The TTFM algorithm 
performed well in tracking error at the center position of the 
sequence, with the smallest error. Compared with other basic 
algorithms, the TTFM algorithm reduced the center position 
error by 5.84, 30.63, and 43.42 pixels, respectively. When the 
target was subject to complex background interference such as 
changes in lighting, occlusion, and size, the TTFM algorithm 
significantly reduced the center position error. To further 
validate the effectiveness and performance improvement of the 
TTFM algorithm in single target tracking tasks. This study 
tested the commonly used VOT dataset and IMIAGE dataset, 
which contain visual tracking data under different adverse 
conditions such as lighting, to evaluate the improvement of 
TTFM algorithm and its generalization ability. The results are 
shown in Fig. 8. 
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Fig. 7. Comparison analysis curve of overlap rate and center position. 

0 0.2 0.4 0.6 10.8

0.2

0.4

0.6

0.8

1

0 10 20 30 5040

0.2

0.4

0.6

0.8

1

TTFM SiamRPN18++

SiamRPN SiamFC

Position error threshold

A
cc

u
ra

c
y

(a) The accuracy changes of various 

algorithms on the VOT dataset

Overlap rate threshold

(b) The success rate changes of various 

algorithms on the VOT dataset

S
u

cc
e
ss

 r
at

e

TTFM SiamRPN18++

SiamRPN SiamFC

0 0.2 0.4 0.6 10.8

0.2

0.4

0.6

0.8

1

0 10 20 30 5040
0.2

0.4

0.6

0.8

1

TTFM SiamRPN18++

SiamRPN SiamFC

Position error threshold

A
cc

u
ra

c
y

Overlap rate threshold

S
u

cc
e
ss

 r
at

e

TTFM SiamRPN18++

SiamRPN SiamFC

(c) The accuracy changes of various 

algorithms on the IMIAGE dataset

(d) The Success Rate Changes of Various 

Algorithms in the IMIAGE Dataset  

Fig. 8. Success rate and accuracy on the VOT dataset. 

From Fig. 8, the TTFM algorithm had excellent 
performance on the VOT dataset. Compared with the other 
three methods, the TTFM achieved obvious improvements in 
overall success rate and accuracy. Specifically, on the VOT 
dataset, the overall success rate of the TTFM algorithm reached 

0.504, with an increase of 0.6% compared with the average 
success rate of other algorithms. Similarly, its accuracy also 
reached 0.642, with an increase of 0.9% compared with the 
average accuracy of other algorithms. However, the four 
algorithms do not change much in the IMIAGE dataset dataset, 
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indicating that these four algorithms have good generalization 
ability. The outstanding performance of the TTFM algorithm 
on the VOT dataset is mainly attributed to the feature extraction 
and fusion strategy proposed in the research. The algorithm 
significantly enhances the ability to extract useful features by 
introducing attention mechanisms, which is particularly 
important in complex scenarios. Secondly, the algorithm 
utilizes multi-layer linear fusion technology to integrate feature 

information from different levels, which not only enhances the 
richness of features, but also improves the accuracy and 
robustness in identifying fatigue states. To further validate the 
generalization ability of these algorithms, additional tests are 
conducted on the TrackingNet dataset, keeping hyper-
parameters such as learning rate unchanged. Fig. 9 presents the 
experimental results. 
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Fig. 9. Success rate and accuracy on the TrackingNet dataset. 

From Fig. 9, the TTFM performed better than the other three 
methods. For accuracy, the TTFM algorithm performed best 
when the position error threshold was low, ultimately 
converging to 0.830, while SiamFC performed better at higher 
position error thresholds. In the success rate, the TTFM 
algorithm performed well when the overlap rate threshold was 
high, while SiamFC performed well at lower overlap rate 
thresholds. The success rate and accuracy of the TTFM 
algorithm were 0.542 and 0.763, which were not significantly 
different from their performance in the VOT dataset. Overall, 
the TTFM algorithm performed the best on the TrackingNet 
dataset, especially for data containing occlusion attributes, 
averaging 0.4% and 3.3% higher than other algorithms. 
Compared with the VOT dataset, the performance of these three 
methods varied significantly. TTFM demonstrates superior 
tracking performance in complex environments. Therefore, the 
TTFM has better tracking performance and generalization 
ability, which is suitable for various complex tracking scenarios. 

B. Analysis of Twin Network Visual Tracking Algorithm 

Integrating Adaptive Anchor Box Generation 

From the analysis of the twin network visual tracking on the 
basis of attention mechanism, the tracking algorithm for 
preliminary components has good performance. Based on this, 
the study further optimizes it by introducing adaptive anchor 
box generation. To verify the repeatability and center position 
error of the twin network visual tracking algorithm that 
integrates adaptive anchor box generation, comparative 
analysis experiments are carried out on the VOT dataset, as 
presented in Fig. 10. 

From Fig. 10, the improved algorithm had the best overlap 
rate. The improved algorithm performed well in terms of 

overlap rate, with an average overlap rate increase of 0.126 and 
an average center position error reduction of 23.450 pixels. The 
excellent performance of the improved algorithm in terms of 
overlap rate is mainly attributed to its innovative structure and 
mechanism. Firstly, the algorithm enhances the extraction of 
key behavioral and physiological signal features, such as blink 
frequency and head posture, by introducing attention 
mechanisms. These features are crucial for determining 
whether the driver is fatigued. Secondly, the application of 
multi-layer linear fusion effectively integrates feature 
information from different levels, enhancing the richness of 
features and the robustness of algorithms. To verify the tracking 
performance, comparative experiments are performed on the 
VOT dataset, as shown in Fig. 11. 

From Fig. 11, the TTAAF algorithm performed best when 
the position error threshold was low, while SiamFC performed 
better when the position error threshold was high. In the success 
rate, the TTAAF algorithm performed well when the overlap 
rate threshold was high, while SiamFC performd well at lower 
overlap rate thresholds. Overall, the TTAAF algorithm 
performed the best on the VOT dataset, with an overall success 
rate and accuracy of 0.831 and 0.862, respectively, which were 
on average 0.3% and 0.5% higher than other algorithms. 
Especially for data containing occlusion attributes, the success 
rate and accuracy of the TTAAF algorithm were 0.642 and 
0.753, which were on average 0.2% and 0.4% higher than other 
algorithms. Therefore, the TTAAF has better tracking 
performance and generalization ability, which is suitable for 
various complex tracking scenarios. In addition, the results of 
the four algorithms on the TrackingNet dataset are shown in Fig. 
12. 
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(b) Experimental results of center position error
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Fig. 10. Comparison analysis curve of overlap rate and center position. 
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Fig. 11. Success rate and accuracy on the VOT dataset. 
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Fig. 12. Success rate and accuracy graph on the TrackingNet dataset.

Fig. 12 is a comparison chart of the accuracy and success 
rates of four algorithms on the tracking network dataset. The 
horizontal axis represents the position error threshold and 
overlap threshold, and the vertical axis represents the accuracy 
and success rate. The blue dashed line represents TTAAE, the 
red solid line represents TTFM, the green dashed line represents 
SiamRPN++, and the purple dashed line represents SiamFC. 
From Fig. 12 (a), it can be observed that as the position error 
threshold gradually increases, the four curves gradually 
decrease. Within a smaller range of position error thresholds, 
the TTAAF algorithm has the highest accuracy, followed by 
TTFM, then SiamRPN++, and finally SiamFC; When the 
position error threshold is greater than 0.3, the accuracy of 

SiamFC exceeds SiamRPN++. Fig. 12(b) shows the trend of 
success rate with respect to the overlap rate threshold. It can be 
seen that as the overlap rate threshold increases, the four curves 
show an upward and then downward trend. Within a larger 
range of overlap rate thresholds, the TTAAF algorithm has the 
highest success rate, followed by TTFM, then SiamRPN++, and 
finally SiamFC; when the overlap rate threshold is less than 0.3, 
the success rate of SiamFC exceeds that of SiamRPN++. 
Combining the two graphs, it can be concluded that the TTAAF 
algorithm has the best overall performance on the tracking 
network dataset, with an accuracy and success rate of 0.932 and 
0.962, respectively, which are 0.3% and 0.5% higher than other 
algorithms. Especially when dealing with occlusion attribute 
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data, the performance of TTAAF algorithm is particularly 
outstanding, with accuracy and success rates of 0.642 and 0.753, 
respectively, which are 0.2% and 0.4% higher than other 
algorithms. This indicates that the TTAAF algorithm has good 
robustness in handling occlusion attribute data. Finally, it was 
applied to the actual target tracking process, and the 
experimental results are shown in Fig. 13. 

From the experimental results in Fig. 13, it can be seen that 
there are differences in the performance of the target tracking 
algorithm in different scenarios. In scenes marked as' Normal ', 
the algorithm can successfully track targets, even in situations 
where there is occlusion or complex background between 
targets, as shown in the images in the upper and lower left 
corners, the algorithm can still accurately identify and track 

targets. However, in the scenario marked as' Tracking failed ', 
the tracking ability of the algorithm is challenged. The image in 
the upper right corner shows that when the target is partially 
obscured by the sofa, the algorithm cannot continue tracking 
the target, which may be due to confusion between the target 
features and background features, resulting in tracking loss. In 
the image in the lower right corner, the target also failed to track 
after entering the room due to changes in lighting and increased 
background complexity. This indicates that the algorithm may 
have limitations when dealing with lighting changes and 
complex backgrounds. In addition, the image on the right side 
of the middle shows that the algorithm can maintain tracking 
even when the target is moving rapidly, indicating that the 
algorithm has a certain robustness to dynamic scenes. 

Tracking failedNormal

NormalNormal

Normal

Tracking failed

 

Fig. 13. Algorithm application effect interface diagram.

C. Analysis of Twin Network Visual Tracking Algorithm 

Integrating Adaptive Anchor Box Generation 

A dual network visual tracking algorithm based on attention 
mechanism has been proposed to solve the problems in 
traditional fatigue driving detection, such as poor comfort, 
sensitivity to external factors, low detection accuracy, and poor 
real-time performance. By introducing attention mechanisms, 
algorithms can more effectively extract key features and 
improve target tracking performance in complex environments. 

In the research of fatigue driving detection technology, this 
study proposes a visual tracking algorithm based on dual 
networks, which combines attention mechanism and adaptive 
anchor box generation. Compared with other methods in 
literature, it shows significant performance improvement. For 
example, the twin adaptive learning network proposed by Xin 
et al. performed well in GOT-10k and LaSOT benchmark tests, 
but the method proposed in this study can significantly reduce 
center position errors and improve tracking accuracy and 

robustness when dealing with complex background interference 
such as lighting changes, occlusion, and size changes [2]. The 
effective feature recognizer proposed by Jun W et al. optimized 
the representation ability, but there is still room for 
improvement in real-time performance [4]. In contrast, the 
overall success rate and accuracy of the algorithm in this study 
on the VOT dataset reached 0.831 and 0.862, respectively, 
which were 0.3% and 0.5% higher than other algorithms on 
average. Especially when processing occlusion attribute data, 
the success rate and accuracy were 0.2% and 0.4% higher than 
other algorithms on average, demonstrating better tracking 
performance and generalization ability. 

The reasons and mechanisms for these results are as follows: 
the algorithm introduces attention mechanism, which can 
effectively filter out feature information that is not conducive 
to target tracking, retain key information, and improve feature 
extraction efficiency. Meanwhile, multi-layer linear fusion 
integrates feature information from different levels, enhancing 
feature richness and algorithm robustness. In addition, adaptive 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

931 | P a g e  

www.ijacsa.thesai.org 

anchor box generation reduces manual intervention and 
improves target tracking performance. 

In summary, the dual network visual tracking algorithm 
based on attention mechanism proposed in this study has made 
significant progress in improving the accuracy and robustness 
of fatigue driving detection, providing an effective technical 
means for fatigue driving recognition in practical applications. 
Future research can further optimize algorithms to improve 
their adaptability and real-time performance in different driving 
scenarios, in order to better serve road safety and public health. 

IV. CONCLUSION 

Aiming at the challenges in fatigue driving detection, a 
visual tracking algorithm based on twin networks was proposed. 
Firstly, the TTFM algorithm was proposed. Then the TTAAF 
algorithm was optimized on the basis of the TTFM. The two 
algorithms proposed in the study performed well on multiple 
benchmark datasets, effectively improving the accuracy and 
robustness of target tracking. Specifically, the TTFM optimized 
the feature extraction process by introducing channel and 
spatial attention mechanisms, significantly enhancing the 
algorithm's ability to extract useful features. On the VOT 
dataset, the overall success rate and accuracy of the TTFM 
reached 0.504 and 0.642, with an average improvement of 0.6% 
and 0.9% compared with other algorithms. On the TrackingNet 
dataset, the success rate and accuracy of the TTFM algorithm 
were 0.542 and 0.763, especially for data containing occlusion 
attributes, which were on average 0.4% and 3.3% higher than 
other algorithms. Compared with TTFM, the TTAAF algorithm 
reduced manual intervention by adaptively generating anchor 
boxes, allowing the model to automatically learn and generate 
candidate boxes based on the semantic information of the image 
itself. On the VOT dataset, the overall success rate and accuracy 
of the TTAAF algorithm were 0.831 and 0.862, which were on 
average 0.3% and 0.5% higher than other algorithms. On the 
TrackingNet dataset, the TTAAF algorithm performed equally 
well, with an overall success rate and accuracy of 0.932 and 
0.962, respectively, which were on average 0.3% and 0.5% 
higher than other algorithms. In summary, both algorithms 
proposed in the study have effectively improved the 
performance of target tracking, especially robustness in 
complex environments. This provides strong technical support 
for practical applications such as fatigue driving detection. 
Although significant progress has been made in this study, there 
are still some shortcomings. For example, the algorithms had 
high computational complexity and requires further 
optimization to improve real-time performance. Meanwhile, the 
robustness of the algorithm still needs to be improved for target 
tracking under extreme lighting conditions. 
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