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Abstract—Traffic light and road sign violations significantly 

contribute to traffic accidents, particularly at intersections in 

high-density urban areas. To address these challenges, this 

research focuses on enhancing the accuracy, robustness, and 

reliability of Autonomous Vehicle (AV) perception systems using 

advanced deep learning techniques. The novelty of this study lies 

in the comprehensive development and evaluation of real-time 

traffic light and road sign detection systems, comparing state-of-

the-art models including YOLOv3, YOLOv5, and YOLOv7. The 

models were rigorously tested in a controlled offline environment 

using the Nvidia Titan RTX, followed by extensive field testing on 

an AV test vehicle equipped with sensor suite and Nvidia RTX 

GPU. The testing was conducted across complex urban driving 

scenarios at the CETRAN proving test track, JTC Cleantech Park, 

and NTU Singapore campus. The traffic light detection and 

recognition (TLR) results demonstrate that YOLOv7 outperforms 

YOLOv5 and YOLOv3, achieving a mean Average Precision 

(mAP@0.5) of 93%, even under challenging conditions like poor 

lighting and occlusions. While the traffic road sign detection (TSD) 

mAP@0.5 of 96%. This superior performance highlights the 

potential of YOLOv7 in enhancing AV safety and reliability. The 

conclusions underscore the effectiveness of YOLOv7 for real-time 

detection in AV perception systems, offering crucial insights for 

future research. Potential implications include the development of 

more robust and accurate AV systems, capable of safely 

navigating complex urban environments. 

Keywords—Artificial intelligence; autonomous vehicle; traffic 

light recognition; road sign detection; YOLO; real-time object 
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I. INTRODUCTION 

Traffic light and road sign violations are a significant 
concern in Singapore, contributing to the rising number of traffic 
accidents, particularly at intersections. In 2023, over 31,815 red-
light running violations were recorded, leading to numerous 
collisions and injuries at intersections [1]. Reports from the 
Singapore Police Force and Channel NewsAsia highlight the 
growing trend of drivers running red lights, resulting in 
dangerous collisions and fatalities [2]. The WHO Global Status 
Report on Road Safety 2023 also emphasizes that traffic signal 
violations are a major cause of road traffic injuries and fatalities 
globally [3]. These violations are especially problematic in 
high-density areas like the Central Business District (CBD) and 
busy residential and school campus zones, where the volume of 
both vehicular and pedestrian traffic is high. The failure to obey 

traffic signals in these areas can lead to hazardous situations, 
such as collisions with pedestrians at crossings or crashes 
involving multiple vehicles at junctions. 

To address these challenges, recent research in AV 
development has focused on the integration of advanced 
perception systems that can accurately detect and classify traffic 
lights [4] and road signs in real-time [5]. These systems, 
leveraging deep learning algorithms and high-precision sensors, 
are designed to operate effectively even under challenging 
conditions such as poor lighting or heavy rain. By ensuring that 
AVs can reliably recognize and respond to traffic lights and 
signs, these technologies hold the potential to significantly 
reduce traffic violations, prevent accidents, and enhance overall 
road safety. Refer to Fig. 1 for the demonstration of the detection 
capability of the proposed TLR and TSD system. 

 
(a)   (b) 

Fig. 1. Traffic light and road sign detection results. (a) The system 

accurately identifies a green light (95% confidence) and a red right arrow 

(94% confidence) at night. (b) The system detects a zebra crossing sign with 
85% confidence in daylight. These results demonstrate the system's ability to 

detect and classify signals and signs across varying lighting conditions, 

essential for AV safety. 

Previous studies have explored various approaches to traffic 
light and road sign detection, including traditional image 
processing techniques, machine learning models, and more 
recently, deep learning methods. While traditional methods 
offered limited success due to their inability to generalize across 
different environments and lighting conditions, deep learning 
has emerged as a powerful tool to improve the accuracy and 
robustness of real-time object detection and classification [4][5]. 
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Notable advancements include the use of convolutional neural 
networks (CNNs) in models such as Fast R-CNN [6], SSD [7], 
and YOLO (You Only Look Once) [8], which have 
demonstrated superior performance in detecting a wide range of 
objects in images. 

However, despite these advancements, challenges remain in 
achieving high recognition accuracy and stability under diverse 
and dynamic environmental conditions. Environmental 
variability, including changing lighting and weather conditions, 
as well as occlusions by other objects, can hinder accurate 
detection [9]. Real-time processing constraints, such as the need 
for high computational efficiency and low latency, further 
complicate the deployment of these systems [10]. Additionally, 
generalizing detection models across diverse geographical 
regions, handling data annotation and training challenges, and 
ensuring robustness against adversarial attacks and physical 
manipulation are ongoing issues [11]. 

Considering these challenges, this research focuses on 
advancing real-time detection and recognition of traffic lights 
and road signs using state-of-the-art deep learning techniques. 
By exploring the performance of different YOLO variants - 
YOLOv3 [12], YOLOv5 [13], and YOLOv7 [14], this study 
aims to improve the recognition accuracy and stability of AV 
perception systems. The research is particularly focused on 
high-risk areas such as junctions and pedestrian crossings, where 
the need for precise and reliable detection is paramount. 

The novelty of this work lies in its comprehensive approach 
to evaluating and improving AV perception systems under real-
world conditions. By conducting extensive testing in complex 
urban environments, this research contributes to filling critical 
gaps in current AV technologies. The study’s objectives include 
the development and deployment of an optimal model for traffic 
light detection and recognition (TLR) and traffic road sign 
detection (TSD), evaluating system performance to enhance 
accuracy and reliability, and reporting the results of real-world 
testing. Our threefold contribution to the research: 

 Performance Evaluation and Enhancement: The study 
conducted comprehensive evaluations of the perception 
system, leading to improvements in detection accuracy, 
robustness, and reliability, particularly under challenging 
environmental conditions. 

 Comparative Analysis of YOLO Variants: The research 
compared the performance of multiple YOLO variants - 
YOLOv3, YOLOv5, YOLOv7 in real-time detection 
tasks, providing insights into their strengths and 
weaknesses in the context of AV perception systems. 

 Real-World Testing and Validation: The research 
involved testing, verification, validation, and self-
assessment of the deployed model in real-world test 
environments, including diverse urban scenarios in 
Singapore. 

o Ultimately, this research aims to contribute to the 
advancement of AV technologies, ensuring their 
safe and effective integration into public roadways. 

o The paper is divided into six sections. Section II 
describes the related works to TLR and TSD 

recognition research. In Section III we present in 
details of the TLR and TSD perception development 
in the AV research platform. Section IV is the 
Methodology describing our design, development, 
and evaluation of TLR and TSD systems in the AV 
research platform sensor and perception systems 
using custom-trained YOLO variant models. The 
results and discussion of the evaluation and 
assessment is presented in Section V. Finally, in 
conclusion, lesson learnt, and future research 
direction to further enhance the features and 
capabilities of the perception system is presented in 
Section VI. 

II. RELATED WORKS 

The integration of sensors and perception algorithms is 
crucial in AV systems for accurately identifying and 
categorizing objects like traffic lights, traffic signs, and road 
markings on public roads. These elements are essential for road 
safety and traffic management. However, real-time detection of 
these elements is challenging due to varying environmental 
conditions, such as changes in lighting, occlusions, image 
quality issues, motion blur, and glare. These challenges 
highlight the need for selecting appropriate sensor modalities 
(e.g., cameras, LiDAR, RADAR) and optimizing perception 
algorithms to enhance the reliability of AV systems. Several 
studies have focused on overcoming these difficulties, 
emphasizing the importance of real-time automation in AVs, 
particularly at traffic junctions, pedestrian crossings, and 
roundabouts, where accurate detection and recognition are 
crucial for preventing collisions and ensuring pedestrian safety. 

Early research in TLR relied on rule-based and classical 
machine learning detectors, which were eventually 
outperformed by deep learning-based methods. These learning-
based detectors significantly improved precision and recall, 
demonstrating the potential of deep learning for enhancing 
detection accuracy [15]. The use of stereo cameras has also been 
proposed to enhance tracking capabilities, particularly for object 
localization and motion estimation [16]. Addressing data 
imbalance issues in training datasets is crucial, as seen with the 
LARA and LISA traffic light databases, where uneven data 
distribution across traffic light states requires data-centric 
approaches to improve model performance [17]. 

Deep learning methods, especially Convolutional Neural 
Networks (CNNs) and YOLO detectors, have shown promise in 
TLR. For example, YOLOv3 achieved an AUC of 90.49% and 
a precision of 50.32% on the LISA dataset [18]. Suggestions for 
improvement include testing models under nighttime conditions 
and using ensemble methods like SSD and R-FCN [19]. 
Advanced methods have been explored, such as using CNNs for 
traffic light color recognition and integrating Faster R-CNN 
with k-means clustering, achieving an average precision (AP) of 
83%, which increased to 90% for objects larger than 8 pixels 
[20]. However, challenges remain, including high false positive 
rates and ensuring consistent classification [21]. The 
development of large-scale, high-variance datasets like the 
DriveU Traffic Light (DTLD) dataset, recorded across 11 cities, 
has been a significant contribution, providing valuable resources 
for training and evaluating CNN-based models [22]. 
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Traffic road signs provide crucial information that is 
essential for the decision-making process and safety of 
autonomous vehicles (AVs). These signs, including speed 
limits, danger warnings, and directional guidance, are vital for 
ensuring safe navigation. For instance, when an AV detects a 
"School ahead" or "Hospital ahead" sign, it can adjust its speed 
and exercise increased caution. However, detecting traffic signs 
is challenging due to factors like lighting variations, changes in 
scale, weather conditions, occlusions, and rotations. Various 
approaches, including traditional object detectors like Support 
Vector Machines (SVMs) and pattern matching techniques, 
have been explored to address these challenges [23]. Despite 
their application, these methods often struggle with detecting 
small-scale traffic signs or performing well under difficult 
conditions [24]. 

Recent advancements in traffic sign detection have 
leveraged CNNs and YOLO detectors. While region-based 
networks and one-stage detectors face limitations in detecting 
small-scale signs, Region-Proposal Networks (RPNs) have 
shown superior performance [25]. The integration of Inception 
V2 for feature extraction has led to competitive results in 
benchmarks like the German Traffic Sign Detection Benchmark 
(GTSDB) [26]. A notable method involved generating traffic 
sign proposals using a color probability model and the 
Maximally Stable Extremal Region (MSER) detector, followed 
by an SVM classifier to filter out false positives and categorize 
signs [27]. Another approach introduced "Capsule Networks," 
which capture complex spatial relationships, enhancing 
detection accuracy [28]. Additionally, a model using a single 
CNN to estimate the location and boundary of traffic signs has 
improved performance in detecting small and occluded signs 
[29]. 

III. TRAFFIC LIGHT AND TRAFFIC ROAD SIGN DETECTION 

DEVELOPMENT FOR AV RESEARCH PLATFORM 

The TLR and TSD systems are integral components of the 
perception system in the AV test vehicle. TLR processes camera 
or sensor data to detect and interpret traffic light signals, 
coordinating with the vehicle's path planning and decision-
making systems to ensure appropriate actions like stopping or 
proceeding. TSD captures and processes images to identify and 
interpret road signs, influencing the vehicle's driving behavior. 
These systems were tested and validated in the AV research 
platform's test vehicle at the CETRAN [30] proving test track 
and along public roads in Cleantech Park and NTU Singapore 
campus. 

A. AV Research Platform, Test Vehicle & Test Region 

The AV research platform uses a Honda CR-V Hybrid 
Electric Vehicle (HEV) as a medium-size SUV test vehicle to 
develop and test the AV prototype's sensor and perception 
systems. The platform integrates high-performance, reliable 
hardware components with reference autonomous driving 
software (ADS), ensuring compatibility and robustness. Refer to 
Fig. 2 for the AV prototype research platform test vehicle. 

1) Hardware: The selection process prioritizes commercial 

off-the-shelf (COTS) items from OEM manufacturers, certified 

for AV development. It emphasizes CPU and GPU capabilities 

for efficient parallel processing of sensor data and decision-

making tasks. The custom-built industrial PC with an Intel Core 

i9, 64GB DDR4 RAM with NVIDIA GPU RTX 3080 and AGX 

Orin is recommended for handling deep learning-based 

perception algorithms and real-time image processing. The 

GPU’s energy-efficient design and small form factor are well-

suited for complex algorithms, while its compatibility with 

ROS ensures seamless integration into the vehicle. 

2) Sensors suite: The sensor perception system integrates 

various key sensors, including LiDAR, cameras, GNSS+RTK, 

IMU, and ultrasonic sensors, to enable comprehensive 

environmental awareness. The LiDAR provides 360º 3D 

images with high accuracy and long-range sensing, while the 

GNSS system combined with the local RTK network SiReNT, 

ensures precise positioning. The IMU offers reliable 

measurements of angle, angular velocity, and acceleration. 

Visual perception is achieved through a FLIR Blackfly camera 

mounted on the front view of the vehicle, providing short- and 

long-range 2D images, and a Mynteye/ZED stereo camera for 

full-field 3D measurements. Ultrasonic sensors enhance 

distance detection, contributing to the AV’s robust perception 

capabilities, particularly in environments with complex traffic 

lights and road signs. Refer to Table I for the Vision Sensors 

Filed of View (FoV) device measurements. 

3) Software stack: The software stack, built on ROS and 

running on Ubuntu 18.04, includes sensing, perception, 

planning, and control software packages for ADS, enabling 

SAE level 3 autonomy. It processes real-time data from front-

facing cameras, LiDAR, and GNSS+IMU+RTK for 

environmental awareness, employing deep learning algorithms 

like YOLOv3 for object and traffic light signal recognition. 

Object tracking uses 2D and 3D data fusion from vision and 

LiDAR detectors to prevent collisions. The perception system 

predictions guide the ADS in making decisions regarding 

objects, obstacles, and traffic signals. 

  
(a)   (b) 

Fig. 2. (a) The AV research test vehicle equipped with (b) roof-mounted 

sensor suite for detecting obstacles, pedestrians, traffic lights, road signs, and 

vulnerable road users. This sensor data supports decision-making, navigation, 

and control in complex environments. 

TABLE I.  FIELD OF VIEW (FOV) OF VISION SENSORS 

Sensor FoV Vertical FoV Horizontal 

LIDAR - HDL 32 +10 to -30 Degrees 360 Degrees 

LIDAR - VLP16 +15 to -15 Degrees 360 Degrees 

CAMERA - FLIR Blackfly 45 Degrees 60 Degrees 

CAMERA - ZED 2 120 Degrees 120 Degrees 
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(a)      (b) 

Fig. 3. The image shows designated AV test regions at NTU's campus and CETRAN proving ground. (a) The map highlights key testing locations such as zebra 

crossings, bus stops, and intersections along the NTU route. (b) The CETRAN facility showcases urban driving scenarios like S-curves, carpark gantries, and 

smart mobility networks, critical for evaluating AV performance. 

4) Testing region. The CETRAN test track facility, 

managed by NTU at the NTU Smart Campus Cleantech Park in 

Jurong Innovation District replicates urban road conditions in 

Singapore. This facility includes the traffic lights and road 

signs, bus stops, pedestrian crossings, and tropical weather 

scenarios like heavy rain. This facility allows for controlled, 

realistic testing of AVs, providing the flexibility to experiment 

with various AV features without on-road traffic risks. It has a 

proving ground for assessing AV performance and safety, 

validating designs for transport, and guiding AV development 

and certification. The site supports the NTU AV project team's 

progress toward Level 3 autonomy, with additional trials 

conducted on selected NTU campus roads approved by the 

transportation regulator. These trials are part of a milestone 

testing regime required before public road trials, focusing on 

mixed bi-directional traffic routes at NTU Clean Tech Park 

(CTP) and NTU The Wave Sports Centre. The trials routes 

shown in Fig. 3 covered areas (a) NTU - CTP - NTU The Wave 

Sports Centre, (b) CETRAN. 

B. Traffic Lights Detection and Recognition 

The TLR system is vital for the safe navigation of AVs 
especially in urban environments. It primarily uses camera 
detection, with sensor data fusion to enhance reliability and 
reduce false positives. The system applies pre-processing steps 
like color segmentation and edge detection to images before 
isolating regions of interest (ROI) to focus on likely by LiDAR 
and radar for obstacle traffic light locations, reducing 
computational load inputs, supplemented computational load 
inputs, supplemented. Initially, YOLOv3 was used for real-time 
detection and classification of traffic lights, balancing speed, and 
accuracy. YOLOv3 predicts bounding boxes and classifies 
traffic light states with confidence scores to minimize false 
positives, with temporal smoothing algorithms ensuring 
consistent recognition across frames. The detection process 
integrates with the path planning module to send a stop or go 
commands based on traffic light status. 

To further enhance detection accuracy and performance, 
newer versions of YOLOv5 and YOLOv7 were introduced. 

YOLOv5 improved feature extraction and accuracy for small 
objects, while YOLOv7 offered enhanced detection capabilities 
with advanced backbone architectures and layer aggregation, 
improving performance in complex environments. Both 
versions provided improved computational efficiency, crucial 
for real-time operations, and better generalization across diverse 
conditions, ensuring high reliability. Their modular design also 
allows for future enhancements, making the system adaptable to 
evolving AV technology needs. 

C. Traffic Road Sign Detection 

The TSD system is vital for autonomous driving, enabling 
vehicles to accurately interpret and respond to road signs, 
ensuring safe and compliant navigation. The process starts with 
integrating camera sensors that capture real-time video feeds for 
detecting road signs. These images undergo pre-processing, 
such as text and color normalization and edge enhancement, to 
emphasize features relevant to road signs. The system isolates 
regions of interest (ROI) to optimize the detection process by 
focusing computational resources on areas likely to contain road 
signs. 

We run an experiment for YOLOv5 and was chosen for its 
efficiency in real time object detection, offering a good balance 
between speed and accuracy. YOLOv5 predicts bounding boxes 
and classifies road signs into categories like stop signs and speed 
limits. The recognition module interprets these signs and passes 
the information to the decision-making module, which adjusts 
the vehicle's actions accordingly, such as modifying speed based 
on detected speed limit signs. To further improve detection 
accuracy and reliability, YOLOv7 was considered, offering 
enhanced performance and better generalization across different 
environmental conditions, making the detection system more 
robust in diverse scenarios. The detection and decision-making 
process involves sensor integration, pre-processing, detection 
architecture (starting with YOLOv5 and progressing to 
YOLOv7), and recognition, with each stage contributing to the 
system's overall efficiency and performance in AV) 
applications. 
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IV. METHODOLOGY 

This section outlines the methodology employed for the 
development and evaluation of TLR and TSD and recognition 
systems in the AV research platform sensor and perception 
systems using custom-trained YOLO variant models. The 
methodology is divided into five key components: Dataset 
Selection, Preparation, and Preprocessing; Model 
Implementation; Training and Optimization; Performance 
Evaluation; and Comparative Analysis; and Experiment. 

A. Dataset Selection, Preparation, and Preprocessing 

The dataset selection, preparation, and preprocessing 
involved utilizing the nuances images with 2D annotations [32] 
and the Singapore Traffic Road Sign Dataset [33]. These 
datasets provide a comprehensive set of images capturing 
various Singapore public roads, featuring traffic lights and road 
signs under different environmental conditions, including 
daytime, night time, and light rain [34]. This diversity in the 
dataset is crucial for ensuring the model can generalize across 
various scenarios, enhancing the robustness of the AV 
perception system. 

The custom and curated datasets used include: 

 Traffic Light Dataset: Consists of approximately 700,000 
image frames annotated with 17 object labels, including 
traffic lights with signal color status. 

 Traffic Road Sign Dataset: Contains 100,000 image frames 
with 2,549 labels in 1,778 images across 22 class labels. 

1) Data preparation is essential for ensuring effective 

learning and reliable real-world performance. Annotation 

Format was converted to YOLO-compatible formats, including 

class, and bounding box coordinates. Data Splitting involved 

dividing the datasets into training (75%), validation (15%), and 

testing (10%) sets, which allowed for the assessment of the 

model's generalization capabilities on unseen data. Class 

Balance was analyzed, and techniques like oversampling and 

class weighting were employed to address imbalances. 

Strategies included combining similar road sign classes and 

augmenting underrepresented nighttime images through 

targeted data augmentation and synthetic data generation. This 

approach aimed to balance the dataset and enhance the model's 

generalization ability, resulting in 1,321 training images, 279 

validation images, and 178 testing images, which helped reduce 

the risk of overfitting. 

2) Preprocessing steps involved normalization, resizing, 

and augmentation to further improve the model's generalization 

capabilities. Normalization scaled pixel values to a common 

range [0, 1] by dividing them by 255, ensuring consistent input 

feature scaling, which is crucial for the convergence of 

gradient-based optimization algorithms. Image Augmentation 

included transformations such as rotation, scaling, flipping, and 

color adjustments (brightness, contrast, hue, and saturation) to 

increase dataset diversity and simulate real-world conditions, 

including varying lighting and weather scenarios, to improve 

performance under challenging conditions like low light. A 

significant challenge during augmentation was the introduction 

of unrealistic distortions, leading to overfitting, which was 

mitigated by carefully tuning augmentation parameters and 

conducting a pilot run to evaluate the effects of each technique 

on model performance. 

B. Model Implementation 

The model implementation phase involved transforming the 
theoretical framework into a functional system by selecting 
appropriate model architectures, configuring them to meet task-
specific requirements, and setting up the training environment. 

1) Model architecture customization: The YOLO 

models—YOLOv3, YOLOv5, and YOLOv7—were selected 

for their optimal balance between speed and accuracy, making 

them well-suited for real-time applications. To enhance 

detection accuracy, predefined anchor boxes were recalculated 

using k-means clustering to better match the aspect ratios of 

objects like traffic lights and road signs, resolving issues with 

mismatched default settings. Adjustments to the number of 

convolutional layers and filters were made to balance accuracy 

and inference speed, with overfitting being mitigated by 

introducing dropout layers and L2 regularization, particularly 

in YOLOv7. Additionally, modifications to the head and neck 

structure, including the feature pyramid network (FPN) layers, 

improved detection performance for objects of varying sizes, 

such as distant traffic lights. Hyperparameters such as learning 

rate, batch size, and momentum were fine-tuned, with initial 

training instability due to a high learning rate being resolved 

through the use of a cosine annealing learning rate schedule. 

2) Pre-training, environmental setup, and model 

initialization: The models were initialized with pre-trained 

weights from YOLO models trained on the COCO dataset, 

which were then fine-tuned on the specific traffic light and road 

sign dataset. The training environment was set up with GPUs, 

such as the Nvidia Titan RTX, and included essential software 

dependencies like PyTorch and CUDA to ensure efficient 

training. Challenges with GPU memory limitations during large 

batch size training were addressed using mixed-precision 

training, which reduced memory usage while maintaining 

computational efficiency. Proper initialization and 

checkpointing were also crucial for ensuring stable training 

throughout the process. 

C. Training and Optimization 

The goal of the training and optimization process was to 
maximize model performance, ensuring high accuracy and 
robustness in detecting and classifying traffic lights and road 
signs under various conditions. The process involved several 
key steps: 

1) Training process: The training process began with the 

initialization of pre-trained weights, such as yolov5l.pt, which 

provided a foundation for fine-tuning the model according to 

the specific dataset requirements. Data augmentation 

techniques, including random cropping, scaling, and flipping, 

were employed to improve the model's generalization across 

various scenarios. Hyperparameters, such as learning rate, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 10, 2024 

947 | P a g e  

www.ijacsa.thesai.org 

momentum, batch size, and the number of epochs, were 

meticulously tuned to strike a balance between training speed 

and model accuracy. The Stochastic Gradient Descent (SGD) 

optimizer with momentum was used to update model weights, 

aiding in faster convergence. The loss function was carefully 

designed with components for object classification, bounding 

box regression, and objectness score, with balanced weighting 

to ensure the model-maintained focus on both localization and 

classification accuracy. A key challenge in this process was 

preventing the model from disproportionately prioritizing one 

aspect over the other, which was effectively managed by 

adjusting the loss function weights through experimentation. 

2) Optimization techniques: The optimization techniques 

employed focused on enhancing convergence speed, stability, 

and generalization. A cosine annealing scheduler was used for 

dynamic learning rate adjustments, incorporating a warm-up 

phase at the start to stabilize early training and prevent gradient 

explosions. Regularization methods, such as weight decay and 

dropout, were implemented to mitigate overfitting, especially 

during later epochs on smaller datasets. Early stopping and the 

use of strong dropout layers were particularly effective in 

preserving model performance. Data augmentation through 

Mosaic was crucial in increasing dataset diversity, addressing 

the challenge of limited data for rare road signs. Early stopping 

and checkpointing strategies helped avoid overfitting and 

preserved optimal model weights when further training risked 

degrading validation performance. Mixed precision training on 

Nvidia GPUs efficiently managed memory resources, reduced 

training time, and maintained high model performance. 

Additionally, a grid-based hyperparameter search combined 

with cross-validation was used to identify the best combination 

of learning rates, batch sizes, and momentum values, resulting 

in improved model convergence. 

D. Performance Evaluation 

The performance evaluation phase focused on assessing the 
effectiveness and reliability of the trained models using a 
comprehensive set of evaluation metrics and scenario-based 
testing. 

1) Evaluation metrics such as mAP, IoU, and F1 score 

were used to evaluate the models. mAP provided an overall 

measure of detection performance across different object 

classes by averaging the precision-recall curve. IoU quantified 

the overlap between predicted bounding boxes and ground 

truth, giving insight into localization accuracy. The F1 score, 

which balances precision and recall, was critical for assessing 

the model’s ability to accurately classify and detect objects 

without missing or falsely detecting them. 

2) Scenario-based testing trained models were deployed in 

various real-world conditions to evaluate their robustness and 

generalization capabilities. Testing was conducted in diverse 

environments, including urban settings with varying lighting, 

weather conditions, and traffic dynamics. The models were 

tested on the CETRAN proving test track and in multiple 

regions of the NTU campus, each presenting challenges like 

mixed bi-directional traffic, complex road layouts, and variable 

lighting conditions. This approach ensured the models 

performed reliably across a range of scenarios, reflecting the 

diverse conditions an AV might encounter in real-world 

operations. 

E. Comparative Analysis 

1) Quantitative analysis: The quantitative analysis 

compared the performance of YOLOv3, YOLOv5, and 

YOLOv7 using metrics such as mAP, IoU, F1 score, and 

inference speed (FPS). YOLOv5 and YOLOv7 demonstrated 

superior mAP scores compared to YOLOv3, particularly 

excelling in detecting smaller objects and distinguishing 

between different traffic signal colors and road signs, which are 

crucial for AV perception systems. YOLOv7 outperformed 

both YOLOv3 and YOLOv5 in terms of inference speed, 

making it ideal for real-time applications that require quick 

decision-making. Additionally, YOLOv5 offered a good 

balance between speed and accuracy, making it suitable for 

scenarios where both factors are important. YOLOv7 also 

exhibited a more optimized trade-off between accuracy and 

model size, enabling it to run efficiently on AV hardware 

platforms like the Nvidia Titan RTX and Nuvo-6108GC. 

2) Qualitative analysis: The qualitative analysis focused 

on the models' real-world performance and their ability to 

generalize to diverse and challenging environments. YOLOv5 

and YOLOv7 exhibited better robustness across various 

environmental conditions, including different lighting and 

weather scenarios, compared to YOLOv3. YOLOv7 produced 

fewer false positives and negatives, particularly in cluttered 

scenes with multiple objects, while YOLOv5 performed well 

but showed slightly more false negatives in low-light 

conditions. In scenario-specific performance, YOLOv7 was 

preferred for scenarios requiring high accuracy, such as 

detecting smaller, less visible road signs, whereas YOLOv5 

provided balanced performance across different test regions 

like the NTU campus and CETRAN proving test track. 

F. Experiment 

1) Environmental setup: The environment setup involved 

both hardware and software configurations to optimize the 

training and deployment of the models. The models were 

trained offline using an Nvidia Titan RTX GPU, selected for its 

ability to manage large datasets and complex models like 

YOLOv3, YOLOv5, and YOLOv7. For real-time inference and 

performance evaluation during field testing, the models were 

deployed on the AV test vehicle's perception system, which is 

equipped with an Nvidia RTX GPU within the Nuvo-6108GC. 

The training was conducted using the PyTorch framework, 

supported by key libraries such as OpenCV, TensorBoard, and 

YOLO-specific tools for data augmentation and anchor 

generation. A Linux-based OS, optimized for CUDA 

operations, was used for both offline and onboard systems. Data 

management involved storing datasets on high-speed SSDs to 

reduce loading times during training, and for field testing, 
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model weights and necessary datasets were preloaded onto the 

AV’s onboard system. 

2) Model implementation and training: The model 

implementation and training process began with the utilization 

of pre-trained YOLOv3, YOLOv5, and YOLOv7 models, 

originally trained on the COCO dataset. These models served 

as a foundation and were fine-tuned for specific tasks related to 

TLR and TSD. Custom training involved loading datasets 

consisting of 700,000 image frames for traffic lights and 

100,000 for road signs into the training environment. The fine-

tuning process focused on optimizing hyperparameters and 

applying data augmentation techniques like mosaic and mixup 

to enhance model robustness. Continuous validation 

monitoring was crucial in detecting overfitting and adjusting 

training strategies as needed. Optimization techniques included 

the use of a cosine annealing scheduler for dynamic learning 

rate adjustments, and regularization techniques like weight 

decay and dropout to prevent overfitting. Early stopping was 

employed to avoid unnecessary computation, and mixed 

precision training was utilized to efficiently manage memory 

resources, allowing for larger batch sizes without 

compromising training speed or accuracy. 

3) Deployment and field testing: The deployment and field-

testing phase involved transferring the optimized model 

weights to the AV perception system, enabling the AV test 

vehicle to process and respond to visual inputs in real-time 

during field tests. Field testing was conducted in key regions 

within NTU’s campus, including the CETRAN proving test 

track and NTU-Clean Tech Park, where the environments 

presented complex traffic scenarios to evaluate the models' 

traffic light and road sign recognition capabilities. During these 

tests, real-time logging and analysis of model predictions were 

carried out, focusing on critical metrics such as detection 

accuracy, false positive/negative rates, and inference speed, to 

assess the performance of the deployed models. 

4) Analysis and iteration: The analysis and iteration phase 

involved post-field-testing analysis, where performance data 

from each test was reviewed and verified to identify 

weaknesses and areas for improvement, especially in cases 

where the model struggled to correctly identify traffic lights or 

road signs under varying environmental conditions. Based on 

these analyses, the models were refined further through fine-

tuning, retraining with augmented datasets, or architectural 

adjustments to better align with AV system requirements. Once 

optimized and validated, the models were deployed for long-

term testing and evaluation in the AV test vehicle, with 

continuous monitoring and updates as new data and scenarios 

emerged. 

V. RESULTS AND DISCUSSION 

A. Detection Model for Traffic Lights 

The training process for the TLR model demonstrated a 
progressive improvement across multiple metrics as training 
epochs progressed. The loss curves, including box loss, object 
loss, and classification loss, reveal the training dynamics and 

model convergence behavior. The box loss started at a relatively, 
higher value and gradually decreased over the training epochs, 
indicating that the model was improving in accurately predicting 
the bounding boxes for detected objects. The object loss also 
followed a declining trend, suggesting that the model was 
becoming better at identifying whether an object exists in each 
bounding box. Similarly, the classification loss reduced as 
training continued, which shows that the model's ability to 
correctly classify the detected objects improved over time. 

1) Epochs of significant improvements at epoch 30-50: 

Notable improvements were observed in this range, where the 

precision and recall metrics showed significant jumps. The loss 

curves also depicted steeper declines during these epochs, 

indicating faster convergence. Epoch 90-110: Another period 

of significant improvement occurred, particularly in the mAP 

metrics. The model's ability to detect objects with higher 

accuracy at varying IoU thresholds improved markedly. 

2) Challenges encountered toward the later stages of 

training, particularly after epoch 120, signs of overfitting began 

to emerge. This was indicated by a plateau in validation metrics 

such as mAP@0.5 and mAP@0.5:0.95, while the training 

metrics continued to improve. Overfitting was also suggested 

by the increase in validation losses despite the continual 

decrease in training losses. In the early epochs (0-20), the model 

showed some signs of underfitting, where the precision and 

recall metrics were relatively low, and the loss values were 

high. This phase was marked by a slower reduction in losses 

and a gradual improvement in detection metrics. 

The initial training results for the TLR model reveal a 
detailed analysis of the model's performance in recognizing 
various traffic light states, including "RedLeft," "Red," 
"GreenLeft," and "Yellow." The model showed moderate 
accuracy, with a precision of approximately 86% and a recall of 
about 80%. The mAP at an IoU threshold of 0.5 (mAP@0.5) 
reached around 86%, while the more stringent mAP@0.5:0.95 
was approximately 65%. These results indicate that while the 
model performs adequately in many cases, there is room for 
improvement, particularly in distinguishing between similar 
traffic light states, which is crucial for making safe and accurate 
driving decisions in real-world AV applications. Refer to Table 
II for the summary of the training model results. The confusion 
matrix shows that the model was relatively accurate in 
distinguishing between different traffic light states, but there 
were instances of misclassification, particularly between 
visually similar states. For example, the model sometimes 
confused "RedLeft" with "Red" or "GreenRight" with 
"GreenLeft." The F1-Confidence curve further illustrates the 
model's precision and recall balance across different confidence 
thresholds, showing an optimal F1 score of 0.83 a confidence 
threshold of 0.65, which suggests the model can be further 
optimized to improve overall performance. Another observation 
in the initial model tested offline using recorded image bag files, 
where several issues were identified. This likely due to instance 
distribution imbalance. Specifically, there was an imbalance in 
the number of samples for objects and traffic lights, as well as 
between daytime and night time samples. Although the model 
was able to detect some of the traffic light status, it failed to 
identify the green right signal due to its proximity to another 
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green traffic light signal. Another observation on the system fails 
to identify a traffic light status that is present in the scene. This 
can be problematic because it means that the detector missed an 
object it was supposed to detect. This can add to the false 
negative detection. Refer to Fig. 4 and Fig. 5 for the observation. 

TABLE II.  SUMMARY OF THE INITITAL TRAINING RESULTS TRAFFIC 

LIGHT DETECTION MODEL – YOLOV3 

Metric Results 

Dataset TLR Dataset 

Precision 86% 

Recall 80% 

F1 score 0.83 at 0.65 

mAP @0.5 86% 

mAP @0.95 65% 

Inference Speed (ms/image) 12 ms/frame 

Model Size (Parameters) 44M 

 
(a)   (b) 

Fig. 4. The image compares traffic light detection with ground truth 

validation. (a) The original scene without detected objects. (b) The system 

successfully detects and labels two red traffic lights with confidence scores of 

0.63 and 0.53. Ground truth annotations are used to validate the system's 
accuracy in real-world conditions. 

 
(a)   (b) 

Fig. 5. The image demonstrates the system's detection and recognition 

capabilities under challenging conditions. (a) Left: the system detects multiple 

red traffic lights and a 'mandatory left' sign during heavy rain. (b) Right: in 
low visibility, the system accurately identifies a construction site and split 

signs but misses a 'give way' sign and a red traffic light (false negatives 

highlighted in red). 

The model's inference speed is an essential factor, 
particularly for real-time applications like autonomous driving. 
The model demonstrated an inference speed of approximately 
12 milliseconds per image, which is fast enough for real-time 
detection tasks. Additionally, the model parameter size is around 
44 million (44M), striking a balance between complexity and 
computational efficiency. 

Evaluating the performance of a model for deployment in an 
AV it is important to consider the trade-offs between accuracy, 
inference speed, and model size. In this case, the model's 
inference speed of 12 milliseconds per image is sufficient for 
real-time applications, but the trade-off is a relatively moderate 
accuracy, particularly under more stringent evaluation 
conditions (mAP@0.5:0.95). For deployment in an AV test 
vehicle, a balance must be struck between accuracy and speed. 
If higher accuracy is required, more complex models or 
ensemble methods could be used, though this would likely 
reduce inference speed. Conversely, if speed is prioritized, a 
more streamlined model might be necessary, though this could 
compromise accuracy. 

The TLR model exhibits moderate accuracy and a fast 
inference speed, making it suitable for real-time applications in 
AV. However, the performance of the model could be improved 
by addressing class imbalances, enhancing data augmentation 
techniques to better handle variations in lighting and angles, and 
fine-tuning the model's hyperparameters. Additionally, 
considering more advanced architectures or employing 
ensemble learning methods could help improve accuracy and 
robustness, particularly in distinguishing between visually 
similar traffic light states. For deployment in an AV test vehicle, 
this model could serve as a baseline, but further refinements may 
be necessary depending on the specific requirements for 
accuracy and speed in the target application. Balancing the 
trade-offs between accuracy and inference speed will be critical 
to ensuring that the model meets the operational demands of 
real-time autonomous driving. Refer to Table III for the 
summary of the TLR performance results. 

B. Detection Model for Traffic Road Signs 

The initial training results for the three YOLOv5 models—
YOLOv5s, YOLOv5m, and YOLOv5l—demonstrate different 
strengths in detecting and recognizing traffic signs, varying in 
accuracy, speed, and computational demands. As training 
progresses, there is a consistent decrease in losses related to 
bounding box regression, object classification, and class 
prediction, indicating that the models are effectively learning. 
The reduction in metrics like train/box loss, which starts at 
0.11157 and decreases to around 0.0235, suggests improved 
accuracy in predicting object locations and class labels. 

Performance metrics such as precision, recall, and mean 
Average Precision (mAP) also improve throughout training. 
Precision stabilizes and exceeds 0.93, while recall shows a 
steady increase, indicating the model's ability to capture more 
relevant objects. The mAP metrics, including mAP_0.5, reach 
approximately 0.96 by the end of training, reflecting the model's 
effectiveness across various IoU thresholds. Refer to the 
summary Table IV training and Table V performance. 
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TABLE III.  TRAFFIC LIGHT DETECTION PERFORMANCE RESULTS 

Model Precision (%) Recall (%) F1 Score (%) mAP@0.5 mAP@0.95 Inference Speed (fps) Model Size 

YOLOv3 86 80 83 0.86 0.65 12 240 

YOLOv5 90 87 88.5 0.90 0.68 28 140 

YOLOv7 93 90 91 0.93 0.70 22 120 

TABLE IV.  SUMMARY OF TRAINING RESULTS TRAFFIC ROAD SIGN – YOLOV5 

Model Batch Size Precision Recall mAP @0.5 mAP @0.95 Inference Speed (ms/image) Model Size (Parameters) 

YOLOv5s 16 90% 85% 90% 58% 7 ms 7M 

YOLOv5m 32 92% 88% 93% 61% 10 ms 21M 

YOLOv5l 64 93% 87% 94% 60% 14 ms 47M 

TABLE V.  TRAFFIC ROAD SIGN DETECTION PERFORMANCE RESULTS 

Model Precision (%) Recall (%) F1 Score (%) mAP@0.5 mAP@0.95 Inference Speed (fps) Model Size 

YOLOv3 92 90 91 0.92 0.70 25 240 

YOLOv5 94 92 93 0.94 0.72 28 140 

YOLOv7 96 94 95 0.96 0.74 22 120 
 

Validation losses, which decrease consistently alongside 
training losses, indicate strong generalization to unseen data and 
a low risk of overfitting. The learning rates, initially set high and 
gradually reduced, facilitate faster convergence early on and 
fine-tuning later in the training process. 

Despite the strong performance, further improvements could 
be achieved through advanced augmentation techniques, fine-
tuning hyperparameters, or applying model pruning and 
quantization to reduce model size and inference time. These 
adjustments would enhance the model's suitability for 
deployment in resource-constrained environments like an AV 
test vehicle, where the trade-off between accuracy and inference 
speed is crucial. 

C. Field Testing in Real-World Scenarios 

Field testing of TLR and road TSD models was conducted 
on the AV test vehicle using the Nuvo-6108GC PC environment 
equipped with an NVIDIA RTX GPU. The goal was to evaluate 
the model's performance in real-world scenarios reflective of 
Singapore's urban conditions. Testing occurred across test 
regions: the CETRAN proving test track, JTC Cleantech Park, 
and NTU’s campus, each presenting distinct challenges. The 
CETRAN test track, designed for AV testing, replicates various 
Singaporean urban road elements, offering a controlled 
environment for rigorous testing without the risks of live traffic. 
This site allowed for comprehensive assessment of the AV’s 
manoeuvrability through city driving scenarios [31]. 

1) Test regions and specific challenges. CETRAN facility 

provided a geofenced, controlled environment showcasing 

urban scenarios like S-curves and carpark gantries, crucial for 

evaluating AV performance. Traffic lights and road signs were 

readily available for evaluation without traffic interference. 

NTU-Clean Tech Park (CTP) - The Wave Sports and 

Recreation Centre featured mixed bi-directional traffic, 

creating a complex environment to test the model’s ability to 

accurately detect and classify traffic lights and road signs 

amidst dynamic vehicle movements and varying traffic density. 

The Nuvo-6108GC, with its NVIDIA RTX GPU, supported the 

real-time processing needs of advanced deep learning models, 

achieving an average inference speed of 12ms per frame, 

suitable for urban traffic scenarios. The model demonstrated 

robust detection, maintaining high precision and recall metrics 

across various conditions, including challenging lighting and 

complex traffic scenarios. 

2) Challenges observed during field testing. The model 

performed well overall, but low-light scenarios occasionally 

reduced detection accuracy for certain road signs.  The model 

navigated intersections and recognized pedestrian crossings 

effectively, though closely spaced traffic lights sometimes 

caused minor detection delays. The model maintained detection 

capabilities in light rain, but heavy rain introduced reflections 

that occasionally confused the perception system. 

D. Lessons Learned 

The performance evaluation of the model development and 
deployment in the AV research platform focused on enhancing 
safety and robustness, particularly in image recognition, motion 
speed profiles, and obstacle detection at critical areas like 
junctions and pedestrian crossings. Several test scenarios, 
including encounters with pedestrians and other vehicles, 
provided insights that guided improvements in design and safety 
approaches. 

1) Model development and training revealed that the 

choice of model architecture significantly impacted the balance 

between detection accuracy and inference speed. YOLOv7 

excelled in complex urban environments but required higher 

computational resources. Data augmentation techniques like 

mosaic and mixup were essential in improving the model's 

robustness across diverse conditions, though issues with data 
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imbalance, particularly in night time scenarios, highlighted the 

need for a balanced training dataset. 

2) Deployment and real-time inference showed that fine-

tuning was necessary to optimize real-time performance. While 

YOLOv7 offered the highest accuracy, its computational 

demands resulted in slightly slower inference times, 

particularly in high-traffic environments where quick decision-

making was crucial. This trade-off emphasized the need for 

further optimization to handle scenarios with high visual 

complexity. 

3) Field testing observations across the CETRAN proving 

test track, NTU-Clean Tech Park, and NTU campus highlighted 

YOLOv7's superior detection accuracy, especially in 

identifying over 95% of traffic lights and road signs. However, 

the model's inference speed sometimes lagged in complex 

traffic scenarios, making YOLOv5 a more balanced choice in 

environments requiring rapid processing. False positives and 

negatives were noted, particularly in varying lighting 

conditions, underscoring the need for improved robustness 

against environmental noise and challenging conditions like 

heavy rain and glare. Our team also tested to other testing site 

to verify the performance of the object detection using other use 

case in the golf range [35] and integrated wildlife recreation 

area [36] how the model performs in a different field testing and 

observation. 

4) Post-field-testing analysis involved a detailed review of 

model failures, particularly under low-light and adverse 

weather conditions, which led to higher false-negative rates. 

The analysis stressed the importance of enhancing data 

augmentation and possibly integrating additional sensors like 

LiDAR. While YOLOv7 achieved impressive metrics under 

ideal conditions (precision of 95%, recall of 93%, F1 score of 

94%, and mAP@50 of 0.95), these dropped under challenging 

conditions, indicating a need for further refinement. Inference 

speed was 22 fps for YOLOv7, compared to 28 fps for 

YOLOv5, highlighting the trade-offs between speed and 

accuracy. 

VI. CONCLUSION 

This research made significant advancements in AV 
perception systems by evaluating performance, comparing 
YOLO variants, conducting real-world testing, and developing 
a comprehensive testing framework. YOLOv7 emerged as the 
best-performing model, achieving a mAP@0.5 of 93% for 
Traffic Light Recognition (TLR) and 96% for Traffic Sign 
Detection (TSD), even in challenging environments such as low-
light and occlusion scenarios. Its superior precision and recall, 
with F1 scores of 91% for TLR and 95% for TSD, demonstrated 
its suitability for real-time AV applications. YOLOv5, while 
slightly less accurate, provided a strong balance between speed 
and accuracy, making it adaptable for various conditions. 

Real-world testing in urban environments, including the 
CETRAN proving test track and NTU campus, validated 
YOLOv7's reliable performance and its readiness for 
deployment in AV systems. A significant contribution of the 
study was the development of a scenario-based testing 

framework that included continuous performance monitoring 
and model refinement. This framework helped identify and 
correct model weaknesses, enhancing performance and 
robustness. 

The research offers critical insights for AV developers and 
researchers, particularly on balancing speed, accuracy, and 
robustness in real-world applications. Future work could focus 
on exploring hybrid models that integrate YOLO with 
Transformer-based architectures, testing in diverse 
environments such as rural areas and highways, incorporating 
multi-modal data (LiDAR, RADAR), and exploring adversarial 
robustness testing. 
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