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Abstract—Image classification is a domain where Deep Neural
Networks (DNNs) have demonstrated remarkable achievements.
Recently, Vision Transformers (ViTs) have shown potential in
handling large-scale image classification challenges by efficiently
scaling to higher resolutions and accommodating larger input
sizes compared to traditional Convolutional Neural Networks
(CNNs). However, in the context of adversarial attacks, ViTs are
still considered vulnerable. Feature maps serve as the foundation
for representing and extracting meaningful information from
images. While CNNs excel at capturing local features and spatial
relationships, ViTs are better at understanding global context
and long-range dependencies. This paper proposes a feature map
ViT-specific adversarial example attack called Feature Map ViT-
specific Attack (FMViTA). The objective of the investigation is to
generate adversarial perturbations in the spatial and frequency
domains of the image representation that allow deeper distance
measurement between perturbed and targeted images. The ex-
periments focus on a ViT pre-trained model that is fine-tuned
on the ImageNet dataset. The proposed attack demonstrates the
vulnerability of ViTs to adversarial examples by showing that
even allowing only 0.02 maximum perturbation magnitude to be
added to the input samples gives 100% attack success rate.
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I. INTRODUCTION

Deep Neural Networks (DNNs) have emerged as highly
effective image classification tools. Convolutional Neural Net-
works (CNNs) recognize the input image data by the convolu-
tional layers to identify and capture local patterns and spatial
hierarchies of features [1]. On the other hand, Vision Trans-
formers (ViTs) represent the input image data as sequences of
patches and leverage the self-attention mechanisms to capture
long-range dependencies and global context in images [2].
Therefore, ViTs can be more effective than CNNs in long-
range interactions and achieve state-of-the-art performance on
various image classification benchmarks.

Feature maps are fundamental for representing and extract-
ing valuable information from images in DNN classification
models. ViTs are better at understanding global context and
long-range dependencies than CNNs [3]. ViTs divide the
input image into patches and then flatten and embed them
into tensors. These tensors are then fed into a transformer
encoder, which learns to attend to different patches and their
relationships.

From the security perspective, the adversarial robustness

of the ViT models is a significant challenge, specifically in
a domain such as image classification. Adversarial attacks
intentionally manipulate the models by inserting small pertur-
bations into the input image data to deceive them, resulting in
incorrect predictions of the input image while appearing nor-
mal to humans, called adversarial example attacks. Adversarial
perturbations are critical in understanding the vulnerabilities of
the ViT models to adversarial examples.

The existent studies of adversarial perturbations have fo-
cused on two main areas: the spatial domain and the fre-
quency domain [4]. In the spatial domain, the representation
of the input images is extracted directly from the pixel values
which is typically used in attacks such as gradient-based
adversarial attacks [5]–[10]. The frequency domain including
low-frequency and high-frequency is another perspective that
can be used to generate perturbations in selected frequency
regions [4]. The representation of the input images in the
frequency domain is transformed through methods like the
Discrete Cosine Transform (DCT) [11]. Prior research has
indicated that CNNs are vulnerable to high-frequency noise
and ViTs are vulnerable to low-frequency noise [12]. These
findings have contributed to the emergence of frequency-based
adversarial attacks, including [11], [13]–[17].

In this research paper, our objective is to investigate the po-
tential impact of introducing an adversarial example attack by
generating the adversarial perturbations in the spatial domain
but with some potential influence from the frequency domain.
We introduce the FMViTA attack that uses the ViT feature
maps of the perturbed and the target images to optimize the
adversarial perturbations. For deeper comparison, the cosine
similarity loss function is used to measure the similarity
between feature maps. The ViT model itself can learn to
capture frequency-related information through its self-attention
mechanism. This means that the feature maps used for cosine
similarity might contain some frequency-based representations,
especially since we take the mean feature maps from the
intermediate blocks. While the ViT feature maps are not
considered directly spatial domains, they are still influenced by
the spatial arrangement of the image patches. However, adding
adversarial perturbations to the input image is a direct pixel-
level operation happening in the spatial domain. Furthermore,
for imperceptibly added, we clamp adversarial perturbations.

We, however, do not intend to make a strength transferable
adversarial example attack; we pose a direction of generating
perturbation by using more deeper comparison methods to
optimize the perturbations generated. Our results demonstrate

www.ijacsa.thesai.org 962 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

that using FMViTA method can indeed manipulate a ViT
model to classify a set of five input images as other target
images with 100% attack success rate, while we only allowing
0.02 maximum perturbation magnitude to be changed. The
contributions of this paper are summarized as follows:

• We employ a cosine similarity loss function for deeply
measuring the similarity between the perturbated and
the target feature maps of the images to optimize the
perturbation patterns.

• We also propose a novel Feature Map ViT-specific
Attack method named FMViTA that takes one input
image and runs it against a target image to generate
a perturbated image that looks like the input one but
classifies as the target image.

• We demonstrate the results of using FMViTA against
a ViT for five input and target images.

The rest of the paper is organized as follows: Section II
briefly gives a background and reviews the related works. In
Section III, we provide our methodology, including the threat
model. Experiments setup and results are presented in Section
IV. Finally, the conclusion is made in Section V.

II. BACKGROUND AND RELATED WORK

A. Adversarial Attacks in DNNs

The adversarial attacks can be broadly classified by the
attack goals to evasion, poisoning, backdoor, and privacy
attacks. In evasion attacks, the goal is to cause misclassification
at test time, such as in the adversarial example attacks [18].
In the poisoning attacks, the goal is to inject poisonous data
that can manipulate the DNN model’s training. The goal of
the privacy attacks is to steal information from the DNN
models. Backdoor attacks can be considered both evasion and
poisoning attacks because adversaries inject poisonous data
called triggers into legitimate DNN models at training time
and misclassify the model once the trigger is activated at test
time [19].

From another point of view, adversarial attacks can be
classified based on the accessibility of the adversaries. In
this context, adversarial attacks can be either white-box or
black-box attacks. White-box attacks are powerful because
adversaries can access the architecture and parameters of a
DNN model. On the other hand, black-box attacks are more
challenging because the adversaries can only access the input
and output data from a DNN model. Gray-box attacks are
situated between white-box and black-box attacks. In these
attacks, the adversaries possess limited knowledge of the
model’s architecture and parameters.

In addition, depending on the goals of the attacks, ad-
versarial attacks can be classified as targeted and untargeted.
In untargeted attacks, the goal is to misclassify the DNN
classification model to output any other class. In the targeted
attacks, the goal is to misclassify the DNN classification model
to classify the input as a particular class. In this paper, our
attack method is considered a targeted gray-box adversarial
example attack. However, the method could be developed to
generate other types of attacks.

B. Adversarial Example Attack Methods

The earlier adversarial example attacking phenomena were
proposed by Szegedy et al. [18]. Since then, various meth-
ods for creating highly powerful perturbations have been
put forward in academic literature. Goodfellow et al. [5]
first introduced the concept of adversarial examples using a
gradient-based method called the Fast Gradient Sign Method
(FGSM). In this method, the gradient of the loss function
is used with respect to the input data to generate the small
perturbation that maximizes the loss function, which can be
conceded as a white-box attack. On the other hand, Kurakin
et al. [6] improve the FGSM by running multiple iterations
of the attack. However, the method showed that there would
still be a gap in accuracy between the perturbed results and the
being ones. Later researchers use momentum [7] approaches to
further enhance the adversarial example attacks. Dong et al. [8]
proposed the Momentum Iterative Fast Gradient Sign Method
(MI-FGSM) to increase the success rate of the black-box
attacks, which improves the transferability of the adversarial
example attacks. Other enhancements were proposed as well,
such as the Ensemble Momentum Iterative FGSM (EMI-
FGSM) [9] and VMI-FGSM and VNI-FGSM [10].

Frequency-based adversarial example attacks have been
developed in the literature to generate adversarial perturba-
tions. Recently, Duan et al. [11] proposed another way of
crafting adversarial examples named AdvDrop. Instead of
adding perturbations, they drop existing details from clean im-
ages from frequency components. The results demonstrate that
AdvDrop can achieve high attack success rates on ImageNet
dataset. Guo et al. [15] focus on the low frequency adversarial
perturbation for black-box attacks. The authors demonstrate
the effectiveness of this technique by successfully fooling the
Google Cloud Vision platform with an unprecedented low
number of only 1000 model queries . Jin et al. [17] introduced
a novel white-box attack known as the Frequency and Spatial
Consistency Based Adversarial Attack (FSA). The results show
that the FSA method can enhance the success attack rates, with
a maximum improvement of 28.98% observed across various
attack methods and models.

C. Adversarial Robustness of Vision Transformer

ViT is state-of-the-art for image classification that uses a
transformer architecture to process image patches and generate
predictions [20]. As ViTs continue to gain popularity and are
being deployed in various domains, the robustness of ViTs to
adversarial attacks becomes essential.

According to Aldahdooh et al. [21] Vanilla ViTs or hy-
brid ViTs are more robust to adversarial attacks than CNNs,
particularly under Lp-norm or adaptive attacks. The findings
demonstrate that increasing the number of attention blocks
may increase the robustness to transfer attacks but not white-
box attacks. Shao et al. [22] claim that ViTs are less sensitive
to high-frequency perturbations than CNNs and MLP-Mixers.
That is because ViTs contain less high-frequency features,
which have a high correlation with their robustness against
different frequency-based perturbations. In addition, in ViTs,
introducing convolutional or token-to-token blocks for learning
high-frequency features can improve classification accuracy,
but at the cost of adversarial robustness. Furthermore, modern
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CNNs may borrow some of ViTs techniques to bridge the
performance gap as well as the adversarial robustness gap.

Paul and Chen [23] have compared the robustness of ViTs
and CNNs models against frequent corruptions and pertur-
bations using six different ImageNet datasets. Their findings
suggest that ViTs have better robustness performance than
CNNs on some of the datasets, and that the robustness of
both models can be improved by fine-tuning on corrupted
data. Overall, the study highlights the potential of ViTs as
a promising alternative to CNNs in computer vision tasks,
especially when it comes to robustness. Joshi et al. [24]
analyzed the underlying distinctions between the ViT and CNN
models. Unlike convolutional networks, vision transformers
use a patch token-based self-attention mechanism. By creating
a block sparsity based adversarial token attack, their study
found that ViT models are more sensitive to token attacks
than CNN models. This highlights the need for robustness
evaluation of transformer-based models against adversarial
attacks. It also suggests that further research is required to
improve the security of vision transformers.

III. METHODOLOGY

A. Threat Model

We use the threat model to define our FMViTA attack sce-
nario. We focus on image classification; nevertheless, the tech-
nique can be easily extended to other domains. In this threat
model, we assume that the adversary has limited knowledge
of the model’s architecture and parameters. In addition, the
adversary does not have access to the training data. The attack
is considered a gray-box adversarial attack. The adversary’s
objective in this threat model is to embed perturbations into
the input images to make them perturbed in order to fool the
ViT classification model to classify them as target images’
classes.

B. Attack Method

We formulate FMViTA as an optimization problem to
generate perturbed images. The optimization is based on
minimizing the distance between feature representations of the
perturbed and target images. To do so, we take the mean of the
intermediate features for both input and target images. Then
we calculate the cosine similarity between the mean features
of the perturbed and target images to measure the distance
between them, which is the loss function to be used in the
gradient iterations.

The loss function encourages the features of the perturbed
image to be similar to those of the target image. Our attack
utilizes the intermediate feature maps instead of focusing on
the model’s output probabilities. Thus, we chose the cosine
similarity as a function due to its suitability for comparing
high-dimensional feature vectors. Furthermore, the cosine sim-
ilarity concentrates on the angular relationship between the
two feature maps. Compared to other similarity calculations,
such as Euclidean and Manhattan distances, cosine similarity
is less sensitive to magnitude differences because it focuses
on the angle between vectors. This property allows for a more
in-depth comparison between the two feature maps. Since the
cosine similarity is used to measure this similarity, a higher
similarity results in a lower loss as shown in Eq. (1).

L(Ft, Fp) = 1− Ft · Fp

∥Ft∥∥Fp∥
(1)

L(Ft, Fp): The loss function measuring the difference
between the feature representations of the target image Ft and
the perturbed image Fp.

Ft ·Fp: The dot product of the feature vectors, representing
their similarity.

∥Ft∥and∥Fp∥: The magnitudes (norms) of the feature vec-
tors, normalizing the cosine similarity.

Let M be the target ViT model and It and Is be the input
and target images. The optimizing perturbed patterns P is
added to the input image as to generate perturbed images Ip as
shown in Eq. (2). In addition, we clamp the perturbed pattern
values to prevent them from becoming too large as shown in
Eq. (3).

The gradient optimization can be mathematically described
as:

∇tiLi = ∇ti (1− L (mean (Fp (Ip))) ,mean(Ft(It)))) (2)

Ip = clamp(Is + P,−0.02, 0.02) (3)

Algorithm 1: Feature Map ViT-specific Attack
(FMViTA)

Input: Target model M , target image It, input images
Is, perturbed pattern P . Output: Perturbed images
Ip.

Initialize P zeros.
for each epoch e do

for each input image Is in Is do
Ip ← Clamp(Is + P ) Generate perturbed

image
Ft ←M(It) Get features of target image
Fp ←M(Ip) Get features of perturbed image
L← Loss(Ft, Fp) Calculate loss
Update P using gradient descent:
P ← P − α∇L

Return: Perturbed images Ip

IV. EXPERIMENTS AND RESULTS

In this section, we first explain our experimental setup and
then show the experimental results.

A. Experimental Setup

Our experiments mainly focus on pre-trained ViT
(google/vit-base-patch16-224) [25], [26] that was pre-trained
on ImageNet-21k [27] and fine-tuned on ImageNet [26] with
a resolution of 224x224 and 1000 classes. Instead of using
Adam, we use AdamW optimizer with a learning rate of 0.06
and weight decay of 0.002. The experiments were conducted
on a dataset consisting of various AI-generated images for the
input and target images that are classified as the ImageNet
labels. We use AdamW optimizer to add the regularization
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Fig. 1. The overall view of FMViTA attack ruining for Attack 1.

benefits of L2 regularization. We use AI-generated images as
a dataset samples to be the target, and for the input images, we
use five classes from the ImageNet dataset, which are {junco,
mountain bike, terrapin, soccer ball, and goldfinch}.

Adam is an algorithm for first-order gradient-based opti-
mization that computes adaptive learning rates for different
parameters by maintaining estimates of the first and second
moments of the gradients [28]. Adam combines the advantages
of AdaGrad and RMSProp, with key differences in how it
updates parameters and handles bias correction. However, L2
regularization and weight decay are equivalent for standard
stochastic gradient descent (SGD) [29], but not for adaptive
gradient algorithms like Adam. AdamW [30] modifies the
popular Adam optimizer to improve its generalization perfor-
mance, allowing it to compete with SGD with momentum on
image classification tasks. To take advantage of AdamW we
use it for the gradient-based optimization of FMViTA attack.

B. Experimental Results

We run the experiments to test the effectiveness of our
attack algorithm using the same adjusted hyperparameters,
such as the learning rate of 0.06, weight decay of 0.002,
and 700 epochs for all five attacks. These hyperparameters
were determined through an iterative process of empirical
evaluation. The choice of a 0.06 learning rate suggests a
balance between speed and stability for all five attacks to
be run as a one-time attack; however, each individual attack
can be run using a different learning rate based on the
images being used. The weight decay parameter incorporated
in the AdamW optimizer offers L2 regularization to address
overfitting, consequently improving the generalization of the
generated adversarial examples. It was set at 0.002 to provide
the best balance between preventing overfitting and maintain-
ing sufficient subtle adversarial perturbations. We decided to
use 700 epochs after monitoring the convergence behaviors of
the attack’s loss functions.

In order to assess the effectiveness of the proposed
FMViTA attack, we conducted an evaluation of the attack’s
capability to manipulate the source of five different input
images and five corresponding target images. This paired
selection allowed a more robust evaluation, and to determine
how well the attack generalizes to unseen data. In Attack 1, we

use a mountain bike as an input image, then after extracting
the feature maps from the 12 blocks of the ViT model, we take
the mean of all the maps to be in one tensor, and we do the
same for the target image, which is a junco. Then we run the
attack algorithm using cosine similarity as the loss function
between the mean feature map of the perturbed image (the
input image + perturbed pattern) and the mean feature map
of the target image. We optimize the perturbed pattern using
the AdamW optimizer to add the regularization benefits of L2.
The goal is to make the mean feature map of the perturbed
image as close as the mean feature map of the target image.
The overall illustration of Attack 1 can be seen in the Fig. 1.

In Attack 2, we do it the opposite way, using a “junco”
as an input image and a “mountain bike” as the target image.
Then, we do the same as in Attack 1. In Attack 3 the input
image was “soccer ball” and the target image was a “terrapin”.
In Attacks 4 and 5 “goldfinch” and “terrapin” were the input
images, and “soccer ball” and “goldfinch” were the target
images. All attacks’ results are shown in Fig. 3.

To evaluate the attack performance, we use the attack
success rate (ASR) to measure the success of the FMViTA
attack. The ASR refers to the percentage of FMViTA that
effectively induces a misclassification in the ViT model, and
it can be represented as shown in Eq. (4).

ASRFMViTA =
Nmis

Nt
∗ 100 (4)

where: Nmis is the number of perturbed images from
FMViTA that are misclassified by the ViT model. Nt is the
total number of experiments.

In order to enhance the existing evaluation method, we have
fixed the parameters for a group of five input images against
the other five target images. Our results show that the attack
achieved a success rate of 100%. However, in terms of the
invisibility of the noise in perturbed images, the attack result
can be better when using only one input image against one
target image and adjusting parameters based on that.

Fig. 2. The loss function results of the 5 attacks with 700 iterations.

That can be seen in Fig. 2 were losses behaved differently
in each single attack iteration. Also, we found that extending
the epochs did not improve the accuracy of in terms of the
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invisibility of the noise in perturbed images, as if we changed
the other parameters. The FMViTA attack tool will be available
online with the flexibility to change the attack parameters.

Fig. 3. The results of FMViTA for a group of 5 input images against the
other 5 target images.

Adversarial patterns often used in adversarial attacks, are
specific inputs designed to elicit certain responses from a
model. These patterns can expose the internal workings of
neural networks and provide insights into their behavior un-
der various conditions. Our patterns are typically generated
through the FMViTA method to manipulate the input images
intentionally.That can be seen in Fig. 4.

FMViTA method relies on feature maps, but the process of
extracting features is computationally intensive, especially for
long epochs and iterations in such an attack. Our optimization
strategies are crucial for making the attack feasible within a
reasonable timeframe. In FMViTA we extract the mean feature

Fig. 4. The attack patterns for Attacks 1-5.

maps of the input and target images only once. However, it is
necessary to extract the mean feature map of the perturbed
images in each iteration. Fig. 5 shows the differences in mean
feature maps of the input, target, and perturbed images.

The vulnerability of ViTs to FMViTA stems from the
exploitation of the intermediate feature representations within
the DNN. The attack’s efficacy derives from targeted ma-
nipulation of the intermediate features of the input image,
leveraging gradient-based optimization, to generate perturba-
tions that maximize the similarity between these intermediate
features and the corresponding intermediate features of the
target image. Thus, the success of FMViTA highlights the
susceptibility of ViTs to gradient-based attacks targeting in-
termediate representations. Therefore, robust architectures and
defenses against such sophisticated manipulation techniques
are needed.

Mitigating the effectiveness of this attack approach sug-
gests focusing on feature-space defenses. That involves ana-
lyzing the intermediate feature representations within ViTs to
detect or mitigate the adversarial perturbations. One possible
strategy is to apply denoising techniques to the intermediate
feature maps. Recently, Yang et al. [31] have proposed the
Denoising Vision Transformers (DVT) to suppress the grid-
like artifacts observed in the feature maps by separating
the clean features from those contaminated and then train a
lightweight transformer block to predict clean features from
raw ViT outputs. Another approach to mitigate such an attack
is modifying the attention mechanism itself to enhance the
robustness of attention weights to adversarial influence. That
involves incorporating regularization terms during training or
employing attention-aware denoising.
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Fig. 5. The mean feature maps of the input, target, and perturbed images for
Attacks 1-5.

V. CONCLUSION

The study found that vision transformers are vulnerable
to FMViTA, which can significantly degrade their output
accuracy. Therefore, developing more robust ViTs is crucial
for ensuring the accuracy and reliability of ViT models.
This highlights the importance of developing robust defense
mechanisms to mitigate the impact of such attacks on vision
transformers. However, investigating ViTs’ robustness by gen-
erating adversarial attacks is a key to crafting robust defense
mechanisms.

For future work, we will develop this direction of gener-
ating adversarial perturbations to be more robust to defense
mechanisms. Furthermore, we will continue improving the
FMViTA’s performance in comparison with other state-of-the-
art attacks. In addition, transferable improvements in the attack
to be run in other ViT models are essential. Further, we can
extend the FMViTA method to create other types of adversarial
attacks, such as backdoor and poisoning attacks.
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