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Abstract—Addressing issues such as the tendency for small-
scale objects to be lost, incomplete segmentation of large-
scale objects, and overall low segmentation accuracy in existing
semantic segmentation models, an improved HRNet network
model is proposed. Firstly, by introducing multi-branch deep
stripe convolutions, features of multi-scale objects are adaptively
extracted using convolutional kernels of different sizes, which not
only enhances the model’s ability to capture multi-scale objects
but also strengthens its perception of the contextual environ-
ment.Secondly, to optimize the feature aggregation effect, the
axial attention mechanism is adopted to aggregate image features
along the x-axis and y-axis directions respectively, effectively
capturing long-range dependencies within the global scope, and
thus achieving precise positioning of objects of interest in the
feature map.Finally, by implementing the progressive fusion-
based upsampling strategy, it facilitates the complementary fu-
sion of semantic information and detailed information between
adjacent feature maps, thereby enhancing the model’s capability
to restore fine-grained details in images. Experimental results
demonstrate that on the PASCAL VOC2012+SBD dataset, the
mean Intersection over Union (mIoU) of the improved HRNet S
model in segmenting lower-resolution images is increased by
1.54% compared to the baseline method. Meanwhile, the im-
proved HRNet L model achieved a 3.05% increase in mIoU
compared to the original model when handling higher-resolution
image segmentation tasks on the Cityscapes dataset, and attained
the highest segmentation accuracy in 15 out of the 19 different
scale classification categories on this dataset.These results indicate
that the proposed method not only exhibits high segmentation
accuracy but also possesses strong adaptability to multi-scale
objects.
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I. INTRODUCTION

Semantic segmentation aims to assign each pixel in an
image to a specific semantic category, thereby enabling pixel-
level understanding and segmentation of the image. In re-
cent years, with the rapid development of fields such as
autonomous driving and medical image processing, semantic
segmentation technology has received widespread attention.
Semantic segmentation models based on neural networks
have become a research hotspot due to their high-precision
segmentation capabilities. Although semantic segmentation
technology has achieved remarkable application effects in
multiple fields, current semantic segmentation methods still
face many challenges due to the complex and variable nature
of segmentation scenarios and the limitations of the segmen-
tation models themselves. Firstly, the types of objects to be
segmented are numerous, and there are significant differences
in object scales. Existing semantic segmentation models have

difficulties in accurately segmenting object edges and often
encounter situations where small-scale objects are ignored
or large-scale objects are segmented incompletely. Secondly,
most existing models adopt an encoder-decoder architecture.
To reduce computational complexity, multiple downsampling
operations are performed during the encoder stage, which leads
to the loss of a large amount of detailed information that is
difficult for the decoder network to effectively recover through
learning. Furthermore, existing models have not fully utilized
the effective information in feature maps at various levels,
making it difficult to strike a balance between shallow detailed
information and deep semantic information. In response to the
above issues, this paper proposes several improvements based
on the HRNet [1] network framework. The main contributions
are as follows:

• A Backbone Feature Enhancement Module (BFEM) is
designed, which utilizes depth-wise strip convolutions
of different scales to adaptively extract features from
the backbone network’s output. This generates appro-
priate weights for objects at each scale, addressing
the issue of a single convolution kernel’s difficulty in
adapting to variations in object scales.

• A Flexible Upsampling Mechanism (FUSM) is pro-
posed, which enhances the model’s ability to restore
image details by facilitating continuous information
exchange between adjacent feature maps.

• To overcome the limitations of traditional spatial at-
tention mechanisms in modeling long-distance depen-
dencies, a novel Axial Attention Mechanism (AAM)
is proposed. It independently generates attention maps
along the length and width dimensions in the spatial
dimension and sequentially applies these attention
maps to the weighted processing of the input fea-
ture maps. While maintaining a lightweight design,
it endows the output feature maps with remarkable
directional sensitivity, effectively preserving the key
positional information in the input features.

• For segmentation tasks involving input images with
low resolution, the HRNet backbone network is com-
bined with the Backbone Feature Enhancement Mod-
ule, the Flexible Upsampling Module, and the Effi-
cient Channel Attention Mechanism to construct the
HRNet S model.Furthermore, to address the challenge
of segmenting high-resolution images, the Flexible
Upsampling Module is further integrated with the
AAM to optimize the decoder network of the HRNet
model, resulting in the development of the HRNet L
model.
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II. RELATED WORKS

To further elevate network performance, current research
primarily focuses on three pivotal technological directions: ag-
gregating multi-scale contextual information, enhancing global
perception capabilities, and improving detail capture abilities.

In terms of aggregating multi-scale contextual information,
multi-scale contextual aggregation networks based on dilated
convolutions are widely employed. DeepLabv2 [2] achieves
robust segmentation of objects across different scales by
introducing atrous spatial pyramid pooling. DeepLabv3 [3]
further designs a cascaded module utilizing dilated convolu-
tions, bolstering the network’s ability to detect convolutional
features across multiple scales. PSPNet [4] harnesses the power
of pyramid pooling modules to capture global contextual
information for scene parsing tasks. DenseASPP [5] leverages
an atrous spatial pyramid structure to extract a broader range of
scale feature information. APCNet [6] introduces the Adaptive
Pyramid Context Network, constructing multi-scale contextual
representations through its meticulously designed Adaptive
Context Module (ACM). SCTNet [7] enhances the efficiency
of capturing multi-scale contextual information by learning
semantic information alignment from Transformer to CNN.R-
FPN [8] introduces learnable weights, enabling the network
to adaptively utilize effective information from different scale
feature maps, thereby improving the effectiveness of small
object detection. The improved RCN model proposed by Zhu
et al. utilizes the RFN module for multi-scale feature fusion,
significantly enhancing the network’s ability to recognize mi-
croscopic images [9].

To strengthen global perception and capture long-range
dependencies, CCNet [10] incorporates a criss-cross attention
module, collecting contextual information along criss-cross
paths. OCNet [11] proposes an efficient interlaced sparse
attention scheme, modeling pixel relationships through sparse
relation matrices. DANet [12] adaptively integrates local and
global feature dependencies, modeling semantic dependencies
in both spatial and channel dimensions. Vision Transformer
[13] utilizes a self-attention mechanism, dividing images into
patches to construct pixel relationships and accurately capture
long-distance dependencies. Building upon this, Swin Trans-
former [14] and Segformer [15] introduce multi-scale feature
extraction and integration methods, enabling models to better
understand the dependencies between elements. PIDNet [16]
ingeniously utilizes ratio branches to analyze and preserve
rich details in high-resolution feature maps, while leveraging
integral branches to synthesize local and global contextual
information, thereby capturing and processing complex long-
range dependencies.

Regarding improving detail capture abilities, DeepLabv3+
[17] introduces early high-resolution feature maps during the
decoding stage, enhancing segmentation accuracy at object
boundaries. The UNet [18] network enhances high-resolution
representations of feature maps by concatenating shallow fea-
ture maps with upsampled deep feature maps through skip
connections. TransUNet [19] integrates a Transformer architec-
ture into the UNet model, leveraging Transformers to encode
image patches into sequences to capture global contextual
information.

However, the improvements of most models in the past

have often been confined to a specific area, which has some-
what restricted the potential for enhancing their performance
[20], [21], [22]. After deeply analyzing the common charac-
teristics of these successful cases, we successfully extracted
three core elements for improving model performance. Based
on this, we are committed to skillfully integrating these three
aspects of improvement in order to achieve a significant leap in
model performance. Therefore, we adopted a cascaded HRNet
network as the basic building block, aiming to efficiently
aggregate multi-scale contextual information. Subsequently,
we introduced the Backbone Feature Enhancement Module
and a finely designed attention mechanism to further strengthen
the model’s feature aggregation and representation capabilities.
Finally, by introducing the Flexible Upsampling Mechanism,
we significantly improved the model’s ability to capture details.
Compared to improvements in a single aspect, we conducted
experiments to deeply explore the interaction mechanisms
among different core elements and accordingly achieved an or-
ganic integration of various key improvements, thereby making
the performance enhancement of the model more significant
and comprehensive.

III. PROPOSED METHOD

A. Overall Model Architecture

The proposed improved semantic segmentation model
based on HRNet is shown in Fig. 1. The network using
the upper half of the figure as the model decoder is named
HRNet S, while the network using the lower half of the figure
as the model decoder is named HRNet L.

Firstly, the image is fed into the HRNet feature extraction
network to initially obtain the deep semantic information
and shallow detail information required by the model. The
HRNet feature extraction network is primarily composed of
four transition modules and four stage modules. The Transition
module is primarily responsible for transforming the number
of channels and performing downsampling operations. After
processing by this module, the number of feature map channels
between adjacent branches differs by a factor of two, and the
length and width of the lower-resolution feature maps are half
of those of the higher-resolution feature maps. Consequently,
the feature maps in each connected Stage exhibit a cascaded
pyramid structure. The Stage module is primarily composed of
Basic Block modules, whose internal structure is identical to
the residual connection modules in the ResNet network, aiming
to further extract deeper-level features from the image. Within
these modules, continuous skip connections occur between the
branches of the cascaded pyramid feature maps to achieve the
fusion of low-level and high-level features.

The HRNet S network enriches the multi-scale character-
istics of the lowest and second-lowest resolution feature map
branches by introducing the Backbone Feature Enhancement
Module (BFEM), which utilizes depth-wise strip convolutions
with different kernel sizes. This process extends the semantic
information depth of these two branches. Subsequently, the
Flexible UpSampling Mechanism (FUSM) upsamples the four
feature map branches in ascending order from low to high
resolution. During the upsampling process, continuous infor-
mation exchange occurs between different branches, achieving
precise complementarity between semantic information and
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Fig. 1. Improved HRNet network architecture diagram.

detail information. Finally, the feature maps after cross-channel
semantic fusion are fed into the Efficient Channel Attention
(ECA) module for channel-wise weighting, enabling the net-
work to focus on important features in a targeted manner.

In the HRNet L network model, the feature maps output
by the backbone network undergo feature aggregation along
different spatial directions for each channel branch through the
Axial Attention Mechanism (AAM), enhancing the model’s
position sensitivity to objects of interest. Immediately af-
terward, the feature maps of these four branches undergo
upsampling in the same manner as in HRNet S. Finally,
the AAM module is utilized again to further aggregate and
enhance the information in the feature maps along the spatial
dimension.The HRNet M model builds upon the HRNet L
model by adding a Cross-Channel Semantic Fusion (CCSF)
module after the FUSM, while the remaining parts of the
model remain consistent with the HRNet L model.

B. Backbone Feature Enhancement Module

The structure of the Backbone Feature Enhancement Mod-
ule (BFEM) is depicted in the BFEM section of Fig. 1.
This module utilizes the Multi-Scale Convolutional Attention
Network (MSCAN) [23] as the basic unit and strengthens
the input features through step-by-step parallel connection.
The final output of the sub-low-resolution feature map branch
consists of two parts: one is the original feature map of the
input branch, and the other is the multi-scale feature map
enhanced by the original feature map after passing through
five MSCAN modules. For the lowest resolution feature map
branch, in addition to performing the same operations as the

second-lowest resolution branch, it also concatenates with an
output feature map that has undergone a 2× downsampling
operation and processing through three MSCAN modules.
Since the concatenated branch comes from a deeper layer of
the network, it contains richer and more in-depth semantic
information, which is crucial for improving the accuracy of
the network’s category predictions. Meanwhile, the output
feature maps from deeper layers have a larger receptive field,
enhancing the network’s ability to maintain the integrity of
object segmentations and recognize large-scale objects. Finally,
the semantic information from the two branches is fused
through the Cross-Channel Semantic Fusion (CCSF) module.
The CCSF module is composed of 1×1 convolution oper-
ations, batch normalization operations, and ReLU activation
functions, enabling efficient information exchange between
channels with a very low number of parameters. This operation
can be represented by formula (1).

Out = ReLU
(
BN

(
Conv1×1

(
F
)))

(1)

Where, F represents the input feature map; Out represents
the output feature map after being processed by the CCSF
module.

Fig. 2(a) demonstrates the structure of the Multi-Scale
Convolutional Attention (MSCA) module. Firstly, a depthwise
convolution with a 5×5 kernel is employed to aggregate local
information. Then, depthwise strided convolutions with sizes
of 7, 11, and 21 are utilized to capture multi-scale contextual
information, aiding the model in understanding contexts across
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Fig. 2. (a) MSCA module and (b) MSCAN module.

different ranges [23]. Lastly, a 1×1 convolution is applied
to model the relationships between different channels in the
feature map, and its output is directly used to adjust the
weights of the convolutional attention, achieving a weighted
reconstruction of the output feature map. Compared to ordinary
convolutions, the depthwise strided convolutions utilized in
MSCA significantly reduce the number of model parameters.
For example, a pair of 1×21 and 21×1 strided convolutions
can replace a conventional 21×21 convolution, with the former
requiring only 21+21=42 parameters while the latter requires
21×21=441 parameters.Mathematically, MSCA can be con-
cisely described as a combination operation as shown in Eq.
(2).

Att = Conv1×1

{
3∑

i=0

Scalei

[
DW-Conv

(
F
)]}

Out = Att⊗ F

(2)

Where: F represents the input feature map; Att denotes
the attention map; DW-Conv stands for depthwise convolution;
Out represents the output weighted attention feature map; ⊕
indicates element-wise multiplication operation in matrices;
and Scalei is the i-th branch in the MSCA diagram, where
i ∈ {0, 1, 2, 3}.

The internal structure of MSCAN, as depicted in Fig. 2(b),
primarily comprises three components: Batch Normalization
(BN), Feed-Forward Neural Network (FFN), and Multi-Scale
Convolutional Attention (MSCA). Among them, the FFN
adopts a ResNet-like bottleneck design, aimed at reducing and
expanding feature dimensions, thereby minimizing the model’s
parameter count and computational cost. The attention module
shares a similar structure with the FFN module, with the
notable difference being the replacement of the original 3×3
depthwise convolution block with the MSCA module to cap-
ture richer multi-scale contextual information. The multi-scale
features and attention-weighted features output by the attention
module are fused through the FFN module, generating the final
feature representation.

C. Flexible Upsampling Mechanism

Upsampling operations are crucial steps indispensable for
decoder networks to restore image dimensions. Traditional
upsampling methods typically involve directly upsampling the
deep feature maps or concatenating the upsampled deep feature

maps with shallow feature maps. However, this approach has
notable limitations: deep feature maps tend to lack detailed
information compared to shallow feature maps, and after up-
sampling, there are significant differences in the distribution of
semantic information between the two. This disparity and lack
of information often lead to a decrease in final segmentation
accuracy. To more effectively utilize the semantic and detailed
information from feature maps at different scales and enhance
the decoder network’s ability to restore detailed information,
this paper proposes a bottom-up adjacent feature map priority
fusion upsampling strategy. As shown in the FUSM part of Fig.
1, this mechanism can be described by the following steps:

1) For the feature map output from the lowest resolution
branch of the HRNet backbone network, a bicubic
interpolation algorithm is employed for upsampling.
This algorithm considers the grayscale values and
their rates of change for the 16 surrounding pix-
els around the sampling point, generating an en-
larged effect that is closer to high-resolution images,
effectively preserving image details and mitigating
blurring. Subsequently, the upsampled feature map
is concatenated with the feature map from the next
lower resolution branch along the channel dimension.
Since the resolutions of the two are similar, the
differences in the spatial distribution of information
are relatively small. This facilitates precise alignment
of key features between the feature maps, thereby
promoting the retention of detailed information and
reducing the introduction of noise. Following this, the
concatenated feature map is processed by the CCSF
module, which models the feature maps from differ-
ent branches along the channel dimension, enhancing
the expressive ability of important features.

2) The fused feature map is then upsampled using
bicubic interpolation to match the size of the next
higher resolution branch’s feature map, and channel
concatenation is performed with it. This process is
repeated until all feature maps are upsampled to
the size of the highest resolution feature map. This
not only supplements the details that might be lost
during the upsampling process but also enhances the
semantic information in the high-resolution feature
maps. Through gradual upsampling and fusion, the
network can continuously interact and integrate se-
mantic information with detailed information, thereby
improving both detail recovery and category predic-
tion accuracy. Finally, the feature map upsampled
to the highest resolution will be concatenated with
the feature map from the highest resolution branch,
completing the entire flexible upsampling process.

Assuming F1,F2,F3 and F4 are the feature maps output
by the backbone feature extraction network from the lowest to
the highest resolution branches, respectively, the entire process
can be expressed as Eq. (3).

Out = CCSF
(
Up

(
CCSF

(
Up(F1)⊕ F2

))
⊕ F3

)
⊕ F4

(3)

Where, ⊕ denotes concatenation along the channel dimen-
sion; Up represents a 2× bicubic interpolation upsampling
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operation.

D. Axial Attention Mechanism

In deep learning, attention mechanisms have become a
vital component, primarily comprising spatial attention and
channel attention. Spatial attention mechanisms enhance fo-
cus on important regions by modeling correlations among
positions on the feature map and redistributing weights to
form spatial masks. In contrast, channel attention focuses on
capturing the internal relationships among different channels
and intelligently adjusts the importance weights of each chan-
nel’s features. However, many current attention mechanisms,
while fulfilling their functions, also increase the computational
complexity of the model. For instance, although the Squeeze-
and-Excitation (SE) [24] network can efficiently adjust weights
among channels, it overlooks the significance of positional
information, which is particularly crucial in tasks requiring
precise spatial localization, such as semantic segmentation.
The Convolutional Block Attention Module (CBAM) [25]
attempts to introduce positional information in the channel
dimension through global pooling, but its approach primarily
relies on the multi-channel maximum and average values at
each position as weight bases.This approach often captures
only local information and struggles to model long-range
dependencies.

To overcome this limitation, this section proposes an Axial
Attention Mechanism (AAM). As shown in Fig. 3, to avoid the
potential loss of positional information caused by traditional
2D global pooling, AAM decomposes the computation of
spatial attention into two separate 1D feature encoding steps,
performed along the length and width directions, respectively.
The spatial feature vectors aggregated from these two dimen-
sions not only contain information in their respective directions
but also implicitly encode spatial position cues, which can
be jointly used to efficiently integrate contextual information
of spatial coordinates. The 1D pooling calculation processes
along the two directions are shown in Eq. (4).

H AvgPool
(
F
)
=

1

H

[ ∑
0≤j≤H

x
(
j, 1

)
, · · · ,

∑
0≤j≤H

x
(
j,W

)]

W AvgPool
(
F
)
=

1

W

[ ∑
0≤i≤W

x
(
1, i

)
, · · · ,

∑
0≤i≤W

x
(
H, i

)]
(4)

Where, H AvgPool represents the average pooling oper-
ation along the height direction, and W AvgPool represents
the average pooling operation along the width direction; H
represents the height of the input image, W represents the
width of the input image; F represents the input feature map,
and x(i, j) represents the pixel value at coordinate (i, j) in F .

Secondly, the two feature vectors rich in specific directional
information are further processed to generate two attention
maps. Each attention map focuses on its corresponding spatial
direction and can effectively capture the long-range dependen-
cies in that direction within the input feature map. In this way,
positional information is cleverly encoded and preserved in the
generated attention maps. Finally, AAM applies these two at-
tention maps to the original input feature map through element-
wise multiplication at corresponding positions, achieving the

Fig. 3. Axial attention mechanism.

Fig. 4. Traditional spatial attention mechanism.

reweighting of the feature map. This operation process can be
described by Eq. (5).

A = [H AvgPool(F );W AvgPool(F )]

[AH;AW]=Split
(

ReLU
(

BN
(
f1×1

(
A
))))

[A1;A2]=Extend
[
σ
(
f1×1
1

(
AH

))
;σ

(
f1×1
2

(
AW

))′
]

Fout = F ⊗A1 ⊗A2

(5)

Where, A represents the feature vector formed by concate-
nating the features from both the height and width dimensions
of the input image;AH and AW represent the intermediate
vectors obtained after performing channel dimension reduc-
tion on the features from the height and width dimensions,
respectively.A1 and A2 represent the length and width direc-
tional attention matrices obtained by expanding the channel
dimension and spatially expanding (replicating the single-
dimensional vectors along a certain direction to match the
matrix size of F ) from AH and AW, respectively.⊗ denotes
element-wise multiplication of corresponding positions in the
matrices.

AAM not only enhances the directional sensitivity of the
feature map but also retains crucial positional information,
ensuring that the output results more accurately map the target
regions in the image. Consequently, when performing dense
prediction tasks such as semantic segmentation, AAM can
significantly improve the localization accuracy of the model.

Assuming the input feature map has C channels, a height
of H, and a width of W, and all convolution operations
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employ 1×1 convolutional kernels. In the channel compres-
sion stage, AAM uses a compression factor r. Then, the
computational complexity of the AAM attention mechanism
and the traditional attention mechanism can be estimated
using Eq. (6) and (7), respectively, both of which remain at
the order of O(C · H · W ). Compared to traditional spatial
attention mechanisms, AAM effectively captures long-range
dependencies while hardly increasing computational complex-
ity. This significant advantage makes AAM more competitive
in scenarios involving high-resolution images or high real-time
requirements.

O(AAM) = O(4 · C ·H ·W ) +O
(
2 · C

r
· (H +W )

)
+O

(
C · (H +W )

)
= O(C ·H ·W )

(6)

The computational complexity of pooling operations in
both the height and width directions is O (2 · C ·H ·W );
the computational complexity of channel compression and
recovery operations is O

(
2 · C

r · (H +W )
)
; the complexity of

the Sigmoid function can be considered as O (C · (H +W ));
and the complexity of the two element-wise multiplications can
be considered as O (2 · C ·H ·W ). In practical applications,
C
r can be regarded as a constant, therefore, the above results

can be simplified to O (C ·H ·W ).

The schematic diagram of the traditional spatial attention
mechanism is shown in Fig. 4, and its computational complex-
ity can be expressed as Eq. (7).

O (·) = O (6 · C ·H ·W ) = O (C ·H ·W ) (7)

The computational complexity of max pooling and average
pooling is O (2 · C ·H ·W ); the computational complexity of
convolution operations is O (2 · C ·H ·W ); the computational
complexity of the Sigmoid operation is O (C ·H ·W ); The
computational complexity of element-wise multiplication op-
eration can be considered as O (C ·H ·W ).

IV. EXPERIMENT

A. Experimental Dataset

The Cityscapes dataset, jointly provided by three German
institutions including Daimler AG, comprises stereo vision
data from over 50 cities, featuring a total of 5000 finely
annotated and 20000 coarsely annotated images of urban street
scenes. In the experiments, only the 5000 finely annotated
images are utilized, with 2975 for training, 500 for validation,
and 1525 for testing. Each image has a resolution of 1024
pixels × 2048 pixels and is densely annotated with 19 object
categories. Since the labels for the test set in the Cityscapes
dataset are not publicly available, this paper evaluates the
models on the validation set.

The PASCAL VOC2012+SBD dataset is an extension of
the PASCAL VOC2012 dataset, obtained by merging PASCAL
VOC2012 with the SBD dataset. After removing duplicate
images from both datasets, this augmented dataset comprises
a total of 12031 annotated images covering 20 different object
categories. The images are randomly split into training and

TABLE I. EXPERIMENTAL HARDWARE AND SOFTWARE ENVIRONMENT

Project Detail Specification

CPU
16 vCPU Intel(R) Xeon(R)

Platinum 8350C CPU @ 2.60GHz

GPU NVIDIA GeForce RTX 3090 GPU(24GB) × 1

RAM 42GB

CUDA 12.2

Python type 3.8.10

Operating system Ubuntu 18.04.5 LTS

Development framework Torch 2.2.1

validation sets at a 9:1 ratio, with 10827 images for training
and 1204 images for validation. Similarly, the models are
evaluated on the validation set.

B. Experimental Environment and Parameter Settings

All networks in the experiment were implemented based
on the PyTorch framework, and the hardware and software
environments used during the training process are detailed
in Table I. The hyperparameter settings during the training
process are shown in Table II. The experiments used stochastic
gradient descent with momentum for gradient updates. The
learning rate decay adopted a cosine annealing schedule, with
the specific calculation process described in Eq. (8).

lr = min lr + 0.5 · (initial lr −min lr)

·
(
1 + cos

(
π · iter

total iter

))
(8)

Where, initial lr represents the initial learning rate;
min lr is the minimum learning rate, which is set to 1/100 of
initial lr; lr represents the current learning rate; iter is the
current iteration number; and total iter represents the total
number of iterations.

For models trained on the Cityscapes dataset, a combi-
nation of Focal Loss and Dice Loss was adopted as the
loss function. Focal Loss can effectively address the class
imbalance issue present in the Cityscapes dataset, while Dice
Loss enhances the accuracy of edge prediction. Combining
these two losses optimizes the training effect of the model.
On the PASCAL VOC2012+SBD dataset, where the class
distribution is relatively balanced, a simple CE Loss (Cross-
Entropy Loss) was chosen as the loss function.To optimize the
training process, bilinear interpolation was used to uniformly
resize the image resolution in the Cityscapes dataset to 512
pixels × 1024 pixels, while the image resolution in the PAS-
CAL VOC2012+SBD dataset was adjusted to 512 pixels ×
512 pixels. For training all models, a transfer learning strategy
was employed, where pre-trained weights on the ImageNet
dataset were loaded into the backbone network, and a frozen
training phase of 50 epochs was first conducted. For models
trained on the PASCAL VOC2012+SBD dataset, the number
of training epochs was set to 200, while for models trained on
the Cityscapes dataset, the number of training epochs was set
to 300.
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TABLE II. HYPERPARAMETER SETTINGS

Hyperparameter PASCAL VOC2012+SBD Cityscapes

input pixel 512×512 512×1024
optimizer SGD SGD
initial lr 0.004 0.004

lr decay strategy cos cos
momentum 0.9 0.9
freeze iters 50 50

unfreeze iters 250 150
total iters 300 200

loss function CE Loss Focal Loss + Dice Loss

Fig. 5. Schematic diagram of attention mechanism embedding positions.

C. Experimental Results and Analysis

1) Attention selection experiment: To investigate the im-
pact of different attention mechanisms on the segmentation
performance of the model, a series of attention mechanisms
were sequentially embedded into the “Attention” positions in
Fig. 5 for training. These mechanisms include Strip Pooling
(SP) [26], CBAM, AAM, SE, and ECA. Analyzing the ex-
perimental data in Fig. 6, it can be seen that when the test
image resolution is 512 pixels×1024 pixels, the combination of
the HRNet network with ECA achieves the best segmentation
accuracy, with a 1.12% improvement in mean Intersection
over Union (mIoU) compared to the original HRNet model.
When the test image resolution is 1024 pixels×2048 pixels,
the combination of HRNet with the AAM attention mechanism
performs particularly well, with a 2.34% increase in mIoU
compared to the original model.

ECA, AAM and CBAM, all have a positive impact on
improving the segmentation accuracy of HRNet. Preliminary
analysis indicates that when processing lower-resolution test
images, channel attention mechanisms can significantly en-
hance the segmentation accuracy of the model. However, as
the resolution of the test images increases, spatial attention
mechanisms gradually demonstrate their unique advantage in
improving model accuracy. The reason may be that when
processing high-resolution images, channel attention mecha-
nisms require deeper spatial information compression, leading
to significant loss of spatial pixel information in the feature
maps. Due to this information loss, channel attention weights
cannot effectively measure the importance of information in
the feature maps, resulting in suboptimal weighting effects on
the feature maps. However, such issues do not exist when using
spatial attention mechanisms.

Fig. 6. Comparison of mIoU using HRNet with different attention
mechanisms.

TABLE III. ABLATION EXPERIMENT RESULTS ON CITYSCAPES DATASET

BFEM FUSM CCSF ECA AAM mIoU
*(%)

mIoU
ˆ(%)

Params
/M

FLOPs
*/G

FLOPs
ˆ/T

72.34 71.79 65.860 376.184 1.505
✓ 72.46 72.67 84.342 402.918 1.612

✓ 73.28 73.35 65.860 376.232 1.505
✓ 73.11 74.62 66.128 376.291 1.505

✓ 73.25 72.23 66.646 384.996 1.540
✓ ✓ 73.47 73.29 67.166 419.158 1.677
✓ ✓ ✓ 73.70 74.37 67.166 419.205 1.677

✓ ✓ ✓ ✓ 73.75 73.93 85.647 445.939 1.784
✓ ✓ 73.37 74.84 66.914 385.102 1.540
✓ ✓ ✓ 73.75 74.49 67.434 419.265 1.677

1 “*” indicates that the image resolution used during testing is 512
pixels×1024 pixels, ”ˆ” indicates that the image resolution used
during testing is 1024 pixels×2048 pixels.

2 FLOPs stands for Floating-Point Operations, referring to the total
number of basic arithmetic operations (addition, subtraction, mul-
tiplication, division, etc.) required by the model during execution,
which directly reflects the computational complexity of the model.

3 G represents billion (109) level of operations, and T represents
trillion (1012) level of operations.

2) Ablation study: To validate the effectiveness of the
added modules, this section sequentially adds different (combi-
nations of) modules to the HRNet and conducts experimental
verifications. The experimental results are detailed in Table
III. To more intuitively demonstrate the improvement effects
of each module (and their combinations) on segmentation
accuracy (mIoU), the incremental data is plotted into a bar
chart as shown in Fig. 7.

When the resolution of the test images is 512 pixels×1024
pixels, the impact of each module on model performance:

FUSM: After introducing this module, the model’s mIoU
metric improves by 0.91%, while only introducing a small
increase in parameters (0.786M) and computations (8.812G).
This indicates that FUSM enhances segmentation accuracy
while maintaining model efficiency, particularly excelling in
detail recovery.

CCSF: Adding this module on top of FUSM further boosts
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Fig. 7. The improvement in mIoU after integrating various (combinations of)
modules into HRNet.

the mIoU metric by 0.22%. However, it significantly increases
the computational cost by 34.162G. This suggests that while
CCSF can improve accuracy, it comes with a relatively high
computational overhead.

ECA: Incorporating this module enhances the mIoU metric
by 0.27% with virtually no additional parameters or compu-
tations, demonstrating ECA’s efficiency in capturing crucial
information.

BFEM: Upon introduction, the mIoU metric surges to a
peak of 73.75%, showcasing the module’s remarkable ability to
enrich multi-scale contextual information and deepen semantic
understanding. However, this substantial improvement is ac-
companied by a notable increase in both spatial and temporal
complexity of the model (an increase of 18.481M parameters
and 26.734G total floating-point operations), indicating that
higher computational costs are necessary to achieve this level
of performance enhancement.

When the resolution of the test images is 1024 pixels×2048
pixels, the impact of each module on model performance:

AAM: After introducing AAM, the mIoU significantly
improves by 2.83% with only a small increase in parameters
(0.268M) and almost no increase in computational complexity,
demonstrating its efficient capability in processing spatial
information.

FUSM: Further incorporating FUSM on top of AAM
elevates the mIoU to 78.48%, achieving the optimal value. The
increases in parameters and computations are relatively small,
at 0.786M and 0.035T respectively, indicating that FUSM
can still effectively enhance accuracy while maintaining its
lightweight advantage at high resolutions.

CCSF: Adding the CCSF module to the AAM+FUSM
combination unexpectedly decreases the mIoU to 74.49%,
underperforming expectations, especially in high-resolution
scenarios.Possible reasons for this phenomenon include: in-
creased information redundancy or conflicts between feature
maps, a high computational burden due to elevated model
complexity, and complex interactions between modules that
affect the model optimization process.

Fig. 8. Heatmap outputs before the fully connected classification layer when
combining HRNet with various modules.

Fig. 8 shows heatmaps output by HRNet and its combi-
nations with different modules, revealing the impact of each
module on changes in target attention. The original HRNet
heatmap primarily focuses on small targets such as bicy-
cles and pedestrians, indicating its advantage in recognizing
small-scale objects. After introducing the BFEM module, the
heatmap not only continues to pay attention to small-scale
targets but also starts to focus on large targets like cars and
roads, suggesting that BFEM enhances the model’s recognition
capabilities for multi-scale targets. The addition of the FUSM
module makes the temperature distribution of the heatmap
more uniform and emphasizes object edges more strongly,
indicating that FUSM improves the model’s scene and contour
perception abilities. The ECA module enables the model to
more precisely focus on critical targets, contributing to en-
hanced feature extraction capabilities. Lastly, the AAM module
clarifies the location information of objects of interest by
enhancing the contrast between hot and cold regions, thereby
improving the model’s segmentation accuracy.

In summary, each module exhibits unique characteristics
in image segmentation tasks, and their effects are significantly
influenced by resolution and application scenarios. FUSM
and ECA demonstrate a good balance between precision
improvement and complexity control across different reso-
lutions. While CCSF and BFEM can enhance performance,
the associated increase in computational complexity cannot be
overlooked. AAM is particularly efficient at high resolutions,
highlighting its advantage in spatial information processing.
In practical applications, the optimal combination of modules
should be flexibly selected and configured based on specific
requirements and environmental conditions to achieve the best
balance between performance and computational efficiency.

3) Comparison with State-of-the-Art methods: To validate
the performance of the proposed method in semantic seg-
mentation, this section compares it with various state-of-
the-art approaches on two standard datasets: Cityscapes and
PASCAL VOC2012+SBD. The compared methods include
DeepLabv3 R (based on ResNet50), DeepLabv3 X (based
on Xception), PSPNet, SegFormer, SeaFormer-S, SeaFormer-
B, SCTNet-S, and HRNet. The segmentation results on
Cityscapes and PASCAL VOC2012+SBD datasets are pre-
sented in Tables IV and V, respectively.

Analyzing the data in Table IV, it can be observed that
at a resolution of 512 pixels×1024 pixels, both HRNet S and
HRNet M achieve an optimal segmentation accuracy (mIoU)
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TABLE IV. COMPARISON OF THE IMPROVED MODEL WITH
STATE-OF-THE-ART METHODS ON THE CITYSCAPES DATASET

Model
mIoU
*(%)

mIoU
ˆ(%)

Params
/M

FLOPs
*/G

FLOPs
ˆ/T

DeepLabv3+ R[17] 70.36 71.33 40.354 732.532 2.930
PSPNet[4] 68.57 69.22 48.957 749.149 2.996
SegFormer[15] 72.05 72.32 47.238 286.349 1.145
SeaFormer-S[27] - 70.70 - - 0.02
SeaFormer-B[27] - 72.70 - - 0.03
SCTNet-S[7] 72.80 - 4.6 - -
HRNet[1] 72.34 71.79 65.860 376.184 1.505
HRNet S(ours) 73.75 73.93 85.647 445.939 1.784
HRNet M(ours) 73.75 74.49 67.434 419.265 1.677
HRNet L(ours) 73.37 74.84 66.914 385.102 1.540

TABLE V. COMPARISON OF THE IMPROVED MODEL WITH
STATE-OF-THE-ART METHODS ON THE PASCAL VOC2012+SBD

DATASET

Model mIoU(%) Params/M FLOPs/G

DeepLabv3+ R[17] 75.68 40.354 366.275
DeepLabv3+ X[17] 77.82 54.714 486.773
PSPNet[4] 75.45 48.958 374.634
SegFormer[15] 80.30 47.239 143.199
HRNet[1] 77.42 65.861 188.116
HRNet S(ours) 78.93 85.648 222.993
HRNet M(ours) 77.62 67.435 209.674
HRNet L(ours) 76.49 66.915 192.529

of 73.75%, surpassing the novel SegFormer model by 1.70%.
Even when compared with the recent SCTNet-S model, it
remains 0.95% higher. When processing images with a higher
resolution of 1024 pixels×2048 pixels, the mIoU of the
HRNet L model climbs to 74.84%, outperforming SegFormer
by 2.52%. Even when compared with the recent SeaFormer-
B model, it remains 2.14% higher. However, in terms of
parameter count and computational complexity, HRNet shows
slight increases compared to SegFormer and does not have
an advantage over SegFormer-B in terms of computational
efficiency. Therefore, lightweight design of the model is a key
focus for future research.

TABLE VI. WHEN THE TEST IMAGE RESOLUTION IS 1024 PIXELS×2048
PIXELS, THE PER-CATEGORY MIOU OF DIFFERENT MODELS ON THE

CITYSCAPES DATASET (%)

Category PSPNet DeepLabv3+ R SegFormer HRNet HRNet L

road 91.31 92.74 92.89 93.02 93.23
sidewalk 72.19 71.46 73.25 72.76 75.30
building 86.71 87.80 87.88 88.80 88.89
fence 41.60 44.65 50.08 54.12 48.70
pole 51.69 52.68 51.79 56.63 56.26
traffic light 53.55 59.22 56.51 60.85 62.84
traffic sign 62.40 65.93 66.04 66.95 68.78
vegetation 66.43 70.09 70.39 71.63 72.79
terrain 89.55 90.01 90.38 90.52 90.67
sky 57.08 56.20 57.27 58.53 59.42
diningtable 89.00 90.17 90.32 90.59 90.41
person 75.28 77.64 77.53 79.15 79.80
rider 59.33 63.01 61.00 66.34 68.13
car 92.26 92.23 92.17 92.51 93.58
truck 55.60 60.73 70.14 63.52 78.18
bus 82.32 83.16 81.17 80.07 85.34
train 71.06 69.22 77.60 46.66 81.89
motorcycle 53.49 62.01 62.54 64.28 61.09
bicycle 71.90 73.47 72.00 73.39 74.37
background 61.71 64.06 65.27 65.53 67.12

Fig. 9. The segmentation effect images of different models on the Cityscapes
dataset when the test image resolution is 512 pixels×1024 pixels.

Fig. 10. The segmentation effect images of different models on the
Cityscapes dataset when the test image resolution is 1024 pixels×2048

pixels.

Fig. 11. Segmentation effect images of different models on the PASCAL
VOC2012+SBD dataset.

As shown in Table V, on the PASCAL VOC2012+SBD
dataset, for low-resolution images of 512 pixels×512 pixels,
the mIoU of the HRNet S model reaches 78.93%. Although
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slightly lower in segmentation accuracy compared to the
SegFormer model, HRNet S has significantly narrowed the
gap with SegFormer, demonstrating its competitiveness in
low-resolution image segmentation tasks. However, from the
perspective of algorithmic complexity, there is still room for
further optimization of the HRNet S model.

Combing the experimental data from Tables IV and V, from
the perspectives of segmentation accuracy and model complex-
ity, HRNet M can be considered as a balanced choice between
HRNet S and HRNet L. In terms of increasing computational
complexity, the order is: HRNet L, HRNet M, HRNet S.
Additionally, the segmentation accuracy of HRNet M also
falls between that of HRNet S and HRNet L across different
resolutions.

As shown in Table VI, which presents the category-wise
mIoU data of various models on the Cityscapes dataset when
tested on images with a resolution of 1024 pixels×2048 pixels,
it can be observed that HRNet L significantly improves the
segmentation accuracy for large-scale objects such as trucks,
buses, and trains at this high resolution of 1024 pixels×2048
pixels. Furthermore, HRNet L achieves the highest accuracy
in 15 out of the 19 different scale-varying categories.

To intuitively demonstrate the superiority of the proposed
method in semantic segmentation tasks, this section compre-
hensively evaluates its segmentation effects through visual
comparison experiments with the baseline method, HRNet.
Fig. 9 and 10 showcase the segmentation effects of the models
on Cityscapes dataset for test images with different resolutions.
From these two figures, it can be observed that HRNet exhibits
some shortcomings in image segmentation, particularly in road
contours, traffic sign recognition, and segmentation accuracy of
elongated objects such as streetlights. Additionally, it tends to
confuse vegetation with terrain. However, these deficiencies are
significantly improved in the proposed enhanced models, HR-
Net S and HRNet L. Fig. 11 further presents the segmentation
effects of the models on the PASCAL VOC2012+SBD dataset.
On this dataset, HRNet S notably enhances the segmentation
accuracy of TV and airplane wing boundaries compared to
the original HRNet. Simultaneously, it exhibits more refined
segmentation capabilities for complex structures such as ship
funnels and vegetation leaves. This indicates that the pro-
posed method comprehends contextual semantic information
more comprehensively than the original model, validating its
effectiveness in improving segmentation accuracy and detail
preservation.

Based on the HRNet network, this paper introduces spe-
cific modules and successfully develops a model suitable for
image segmentation across different resolutions. Specifically,
the HRNet S model demonstrates exceptional segmentation
performance when dealing with lower-resolution images. How-
ever, due to its relatively high number of parameters and com-
putational complexity, when handling higher-resolution image
segmentation tasks, the significant increase in computational
load becomes particularly evident, which may lead to inade-
quate model training and subsequently affect its final perfor-
mance. Additionally, the Efficient Channel Attention Mecha-
nism employed in HRNet S may overly compress the valuable
information in high-resolution images, adversely impacting the
model’s ultimate performance. In contrast, the HRNet L model
is more lightweight, thus having an advantage when dealing

with higher-resolution image segmentation tasks. Its use of
the AAM attention mechanism effectively aggregates valuable
information in high-resolution images, which is a key factor
contributing to its superior performance. However, compared
to the HRNet S model, the HRNet L model lacks depth in
semantic information, making its advantage less pronounced
when handling lower-resolution image segmentation tasks.

Therefore, in practical production and life, we should select
the appropriate variant of the HRNet model based on factors
such as the resolution of the dataset and the application
scenario, in order to achieve the best segmentation results
and ensure that the model can perform optimally in image
segmentation tasks across different resolutions.

V. CONCLUSION

Addressing the challenges faced by existing semantic seg-
mentation networks in handling multi-scale objects, such as
the tendency to lose small-scale objects, incomplete segmen-
tation of large-scale objects, and low overall segmentation
accuracy, this paper proposes an improved method based on
the HRNet network. Firstly, a backbone feature enhancement
module is introduced using deep stripe convolutions, which
enhances the network’s adaptability to multi-scale objects,
overcomes the limitations of a single convolutional kernel
in feature extraction, expands the model’s perception range
of contextual information, and enhances the network’s ability
to understand complex scenes. Secondly, an axial attention
mechanism is employed to model the global dependency
relationships within the feature maps output by the backbone
network, enabling precise localization of regions of interest.
Lastly, a flexible upsampling mechanism is adopted, leveraging
the complementary fusion of semantic and detail information
between adjacent feature maps, to effectively restore target
detail information in the decoder network. Experimental re-
sults show that the proposed algorithm achieves the highest
segmentation accuracy compared to other algorithms on the
Cityscapes dataset. Similarly, the segmentation accuracy of
the proposed algorithm on the PASCAL VOC 2012+SBD
dataset is also outstanding, verifying the effectiveness of the
proposed method. Further ablation studies also confirm the
contributions of each improved component to enhancing the
overall performance. The relevant implementation code for
this paper has been uploaded to the GitHub platform (link:
https://github.com/HanLeiFeng/HRNet Series.git) for learning
and exchange.
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