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Abstract—Optimal Transport (OT) is a powerful tool widely
used in healthcare applications, but its high computational
cost and sensitivity to data changes make it less practical for
resource-constrained settings. These limitations also contribute to
increased environmental impact due to higher CO2 emissions from
computing. To address these challenges, we explore Unbalanced
Optimal Transport (UOT), a variation of OT that is both
computationally efficient and more robust to data variability.
We apply UOT to two healthcare scenarios: independence testing
on breast cancer data and modeling heart rate variability (HRV).
Our experiments show that UOT not only reduces computational
costs but also delivers reliable results, making it a practical
alternative to OT for socially impactful applications.

Keywords—Optimal transport; unbalanced optimal transport;
healthcare

I. INTRODUCTION

Optimal Transport (OT), first formulated by Gaspard Monge
[23] and further developed by Kantorovic [15], addresses the
fundamental question of finding the most efficient way to
minimize the cost of transporting mass from one distribution
to another. OT has evolved into many practical applications in
fields such as healthcare [42], [39], [41], machine learning [12]
and domain adaptation [7]. For healthcare applications such
as breast cancer detection [39] or heart rate variability (HRV)
modeling [42], which may be needed widely by also resource-
constrained medical institutes and have a direct impact on
human wellness, the computational efficiency and the robustness
of the deployed models are paramount. Nevertheless, OT has
been known to suffer from computational bottleneck [21] and
sensitivity to problem structure or data perturbation [17]. Such
limitations of vanilla OT can make solution models to these
healthcare applications not accessible to medical institutes
with limited budget [36], raise the CO2 output of computing
resources thereby negatively impacting the environment [16],
and become a less reliable tool in the realm of healthcare [8].

To alleviate the above limitations, Unbalanced Optimal
Transport (UOT) is recently proposed variant of the classical
OT formulation that penalizes the marginal constraints based
on some given divergence. Among the various divergences used
in the literature such as Kullback-Leiber (KL) divergence [6],
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squared ℓ2 norm [3], ℓ1 norm [4], and ℓp norm [18], UOT with
KL divergence is the most prominent for its wide applicability,
flexibility and efficient computation [30]. UOT has shown its
prominence in various applications in statistics and machine
learning [11]. Recent works [35], [17], [30] have facilitated
the fast computation of UOT and provided guarantees on its
statistical and approximation properties.

Recent advancements in UOT have significantly reduced its
computational complexity and improved its scalability, enabling
its application in large-scale machine learning tasks. Notable
among these advancements are efficient gradient-based methods
[30], which not only accelerate UOT computations but also
provide theoretical guarantees for convergence and statistical
properties. These methods are especially important in scenarios
requiring real-time processing, such as medical diagnostics or
dynamic resource allocation in healthcare. Furthermore, UOT
has been shown to be more robust than traditional OT in
handling outliers and noisy data, making it a valuable tool in
applications where data quality is variable [17].

As computational efficiency and environmental concerns
become more critical in the age of large-scale AI, UOT stands
out as a method that balances performance with resource
utilization. By relaxing the mass conservation constraint,
UOT reduces the computational burden while maintaining the
accuracy required in sensitive applications such as healthcare.
This reduced computational cost also has positive implications
for sustainability, as it lowers the energy consumption and CO2
emissions associated with large-scale computations [16]. As
a result, UOT not only provides a more flexible and scalable
approach to OT problems but also addresses key limitations
that have historically hindered the adoption of OT in resource-
constrained settings.

A. Contributions

In this paper, we benchmark and empirically validate the
effectiveness of UOT on various healthcare applications, which
are the statistical independence test on the breast cancer dataset
following the setting in [39] and HRV modeling in [42]. The
code is given in https://github.com/quipp12/UOT Healthcare.git.
Our contributions can be summarized as follows:

• For both healthcare applications, statistical indepen-
dence test [39] and HRV modeling [42], the OT
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distance is used as a component in these pipelines,
where the celebrated Sinkhorn algorithm with the costly
computational cost of Õ

(
n2ε−2

)
[19] is used. To

alleviate the computational bottleneck, we propose
the adoption of UOT as well as the Sinkhorn variant
specifically designed for UOT distance with improved
complexity of Õ

(
n2ε−1

)
[35]. This facilitates not only

seamless integration of UOT (in place of OT) in these
applications but also an acceleration in computation,
which is consistently demonstrated in Section III and
Section IV

• For HRV modeling [42], in addition to the realization of
UOT’s computational benefit, our experimental investi-
gation reviews the high training cost from the original
model using Gradient Descent (GD). Consequently, we
implement the GD with Momentum (GDM) into the
model to significantly expedite the training process,
while maintaining comparable or even better Mean
Squared Error (MSE)- the main performance metric
(Section IV).

• Our primary theoretical contribution focuses on estab-
lishing a bound that quantifies the difference between
the costs of Unbalanced Optimal Transport (UOT) and
regular Optimal Transport (OT). We provide a rigorous
guarantee that as the parameter controlling the mass
relaxation in UOT increases, the difference between
the UOT cost and the OT cost becomes smaller. This
result ensures that the approximation made by UOT
closely mirrors the exact cost computed by OT when
enough relaxation is allowed.

II. APPROXIMATING OPTIMAL TRANSPORT VIA
UNBALANCED OPTIMAL TRANSPORT

A. Notations

Denote by Rn
+ the set of all vectors in Rn with nonnegative

entries. Bold capital letters and lowercase letters respectively
stand for matrices and vectors. For p ∈ [1,∞), ∥.∥p denotes
the lp norm. The Frobenius inner product of two matrices of
the same size is defined as ⟨A,B⟩ =

∑n
i,j=1 AijBij .

B. Optimal Transport

Consider two discrete distributions a,b ∈ Rn
+, specifically

a := (a1, . . . , an) ,b := (b1, . . . , bn) with equal masses, i.e.,
∥a∥1 = ∥b∥1. Denote amin = min1≤i≤n{ai} and bmin =
min1≤i≤n{bi} as the minimum masses. The OT problem seeks
to find a matrix X ∈ Rn×n

+ represented a transport plan which
maps a to b at a minimum cost, i.e.

OT(a,b) := min
X∈Π(a,b)

⟨C,X⟩, (1)

where C ∈ Rn×n
+ is a cost matrix whose entries are distances

between measures of these distributions and Π(a,b) :={
X ∈ Rn×n

+ : X1n = a,X⊤1n = b
}

. Denote by XOT =
argminX∈Π(a,b)⟨C,X⟩ be the optimal solution to the OT
problem (1).

C. Unbalanced Optimal Transport

First, we define the KL divergence function between two
vectors x,y ∈ Rn

+ as

KL(x∥y) :=
n∑

i=1

(
xi log

(xi

yi

)
− xi + yi

)
Assume two finite measures a,b ∈ Rn

+, specifically a :=
(a1, . . . , an) ,b := (b1, . . . , bn) with possibly different total
mass. The UOT problem seeks to find a matrix X ∈ Rn×n

+
represented a transport plan, i.e.

UOTKL(a,b) = min
X∈Rn×n

+

{
f(X) :=⟨C,X⟩+ τKL (X1n∥a)

+ τKL
(
X⊤1n∥b

) }
(2)

where C ∈ Rn×n
+ is a given cost matrix and τ > 0

is a given regularization parameter. Denote by XUOT =
argminX∈Rn×n

+
f(X) be the optimal solution to the UOT

problem (2).

The parameter τ effectively acts as a regularization term. A
larger τ means a stronger penalty on the mass divergence,
making the solution more balanced (closer to the original
distributions a and b). A smaller τ reduces the effect of the
regularization term, allowing for more flexibility in the transport
plan. With a very small τ , the solution may deviate significantly
from the target distributions in favor of minimizing the transport
cost.

D. Approximation Error of UOT

When a⊤1n = b⊤1n and τ → ∞,UOTKL(a,b) turns
to the regular OT(a,b).

Formally, taking the limit as τ →∞ in the UOT objective
function:

lim
τ→∞

(
⟨C,X⟩+ τKL(X1n ||a) + τKL(X⊤1n ||b)

)
enforces X1n = a and X⊤1n = b at the optimal solution,
which recovers the OT problem (1). Moreover, [30, Theorem
26] provided the tight non-asymptotic characterization on the
distance gap between UOTKL(a,b) and OT(a,b) to be
O
(
1
τ

)
, where the big-O notation here neglects the terms other

than τ . Nevertheless, such results as above do not fully capture
how well the UOT solution XUOT can approximate the OT
solution XOT in the pure sense of transportation cost ⟨C,X⟩,
which may better represents the raw performance within the
application of interest. To this end, we establish in the next
theorem such approximation error in transportation cost of
using the UOT solution instead of the OT solution.

Theorem 1. Under the balanced setting of ∥a∥1 = ∥b∥1 = 1,
i.e. a and b are distributions, we have the following bound
on the difference between the transportation costs incurred by
UOT and OT solutions:

0 ≤ ⟨C,XOT⟩ − ⟨C,XUOT⟩ ≤ O

(
1

τ

)
. (3)

www.ijacsa.thesai.org 99 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Proof: Let κ = min{amin, bmin}−1. From [10, Theorem
1] that provides an upper bound for KL divergence, we have:

0 ≤ KL(XUOT1n∥a) ≤
n∑

i=1

[
(XUOT1n)i − ai

]2
ai

(i)

≤ κ

n∑
i=1

[
(XUOT1n)i − ai

]2
= κ∥XUOT1n − a∥22
(ii)

≤ κ∥XUOT1n − a∥21, (4)

where for (i), we use ai ≥ min{amin, bmin} = κ−1, and for
(ii), we use ∥x∥2 ≤ ∥x∥1. Similarly, we obtain that:

0 ≤ KL
(
(XUOT)⊤1n∥b

)
≤ κ∥(XUOT)⊤1n − b∥21. (5)

Summing up (4) and (5), we have:

0 ≤ KL(XUOT1n∥a) +KL
(
(XUOT)⊤1n∥b

)
≤ κ

[
∥XUOT1n − a∥21 + ∥(XUOT)⊤1n − b∥21

]
≤ κ

[
∥XUOT1n − a∥1 + ∥(XUOT)⊤1n − b∥1

]2
≤ κ

(2n∥C∥∞
τ

)2

=
4κn2∥C∥2∞

τ2
, (6)

where the last inequality follows directly from [30, Theorem 23].
Now, from [30, Theorem 26] and given M = log(2)∥C∥2∞

(
n+

3κ
)2

+ 2n∥C∥2∞, we have:

0 ≤ OT(a,b)−UOT(a,b) ≤ M

τ
∴0 ≤ ⟨C,XOT⟩ − ⟨C,XUOT⟩ − τKL(XUOT1n∥a)

− τKL
(
(XUOT)⊤1n∥b

)
≤ M

τ
, (7)

where the last line is by definitions of OT(a,b) and
UOT(a,b). Finally, combining (6) and (7), we can conclude
the statement of the theorem:

0 ≤ ⟨C,XOT⟩ − ⟨C,XUOT⟩ ≤ M + 4κn2∥C∥2∞
τ

= O

(
1

τ

)
.

1) Remark: Thereom 1 provides a bound on the difference
between the transportation costs of OT solution and UOT
solution under a balanced setting. Specifically, when the
marginal distributions a and b are probability distributions
both summing up to 1, the theorem establishes that the cost
difference between the OT and UOT solutions grows inversely
with τ , and thus can be made arbitrarily negligible by tuning the
hyper-parameter τ > 0 to be sufficiently large. This motivates
our usage of UOT in place of OT for computational acceleration
while maintaining the original performance of OT via the proper
choice of τ in the next sections.

III. EXPERIMENTAL RESULTS OF UOT IN BREAST
CANCER DATA

Breast cancer is one of the most prevalent cancers world-
wide, and accurately distinguishing between benign and malig-
nant cases is crucial for early diagnosis and treatment. Machine
learning methods have advanced breast cancer data analysis,

but traditional approaches often struggle with computational
efficiency and imbalanced data sets.

Optimal transport (OT) is a powerful tool for comparing
probability distributions, yet assumes balanced datasets, which
is rarely the case in real-world scenarios like breast cancer data.
Unbalanced Optimal Transport (UOT) addresses this issue by
allowing for differences in data mass, making it well-suited for
medical datasets with uneven class distributions.

In [39], the authors proposed the Hungarian algorithm to
solve a special type of optimal transport. It showed that Hun-
garian outperforms Sinkhorn algorithm and network simplex
algorithm in all cases.

In this study, we apply UOT to breast cancer data to
test for statistical independence between features of benign
and malignant cases. By leveraging the efficiency of UOT
combined with the Sinkhorn algorithm, we aim to provide a
scalable method that outperforms traditional OT in runtime
while maintaining accuracy, offering valuable insights for large-
scale healthcare data analysis.

A. Problem Setting of UOT in Breast Cancer Data

1) Wasserstein-distance-based independence test and UOT:
One crucial application of OT distances such as Wasserstein-
1 [34], [20] is the independence test [39]. To assess the
independence between the variables Y ∼ ν1 and Z ∼ ν2,
the Wasserstein-1 distance with ℓp-norm cost function, which
belongs to the class of OT problem [39], [20], between the
joint distribution π of Y,Z and the product distribution of
Y, Z is used. Specifically, this process requires the evaluation
of OT (π, ν1 ⊗ ν2) , where ν1 ⊗ ν2 represents the product
distribution of Y, Z. It is proven in [39] that Y and Z
are independent if and only if OT (π, ν1 ⊗ ν2) = 0. In
practice, given n i.i.d. samples {(y1, z1), ..., (yn, zn)} generated
from (Y,Z), one can construct the statistic OT(π̂, ν̂1 ⊗ ν̂2),
where π̂ and ν̂ represent the empirical distributions, to test
for independence. UOT distance has been known to well
approximate OT distance with vanishing approximation error
[30, Theorem 26], while enjoying more favorable computational
complexity through various solvers vastly used in the ML/AI
literature [35], [30], [5]. In this study, we aim to use UOT as an
alternative to OT for Wasserstein-distance-based independence
testing, and utilizes the celebrated Sinkhorn algorithm [35] to
solve for the UOT problem.

2) Breast cancer data: The dataset consists of 569 instances,
each characterized by 30 features. The instances are classified
into two categories: benign and malignant. Let X ∈ R30

represent the distribution generated uniformly from the benign
class, and Y ∈ R30 represent the distribution generated
uniformly from the malignant class. We compute the empirical
OT/UOT distance in two scenarios: 1. Independent case:
Between X1 and Y2, where X1 comprises the first 5 coordinates
of X , and Y2 comprises the last 25 coordinates of Y . 2.
Dependent case: Between X and Z, where Z = X1 ∗ Y1,
with X1 being the first 5 coordinates of X,Y1 being the first
5 coordinates of Y , and ∗ representing the coordinatewise
product.
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Fig. 1. Runtime evaluation with UOT sinkhorn, OT sinkhorn and modified hungarian algorithm on breast cancer data.

B. Application of UOT in Breast Cancer Data

1) Data preprocessing: In order to separate classes, the
second column of the dataset contains the labels that classify
each instance as either benign (B) or malignant (M). We use
this column to separate the data into two subsets such that
rows labeled ‘B’ and ‘M’ are extracted to form the X and Y
dataset respectively.

From both X and Y , we focus on the feature values found
in columns 2 to 32 (the 30 numerical features of each instance).
These features are selected because they represent the main
characteristics of the data relevant for classification.

The selected feature values are normalized by dividing each
value by the maximum value in its respective column. This
step rescales all feature components to the range [0, 1].

Normalization ensures that features with different scales do
not disproportionately influence the analysis and that the data
is suitable for OT/UOT computations.

2) Experimental setup: We follow the experimental setup
outlined in [39], where the independence test based on Wasser-
stein distance is applied. In our experiments, we calculate
the cost matrix C using the ℓp-norm as the cost function.
Specifically, we evaluate the performance under two different
norms: p = 1 and p = 2. These norms are chosen to assess the
behavior of OT and UOT algorithms under different geometries
of the data.

For both the dependent and independent cases, we vary the
sample sizes of the breast cancer data to examine the effect of
sample size ranging from small to large on the computational
performance. In each experimental run, we generate data
for both cases (dependent and independent) using uniformly
distributed samples from the benign and malignant classes. The
independence tests are then performed using UOT-based and
OT-based methods.

Each experiment is repeated 10 times to account for random
variations in the data and solvers. For each sample size and test,
we report the following runtime statistics: the average, best,
and worst runtimes over the 10 trials. This ensures a robust
evaluation of the algorithm’s performance and allows us to
observe both the typical performance and the variability across
runs.

Additionally, to evaluate the statistical significance of the
results, we analyze the empirical distribution of the runtimes
for each method and apply appropriate tests (e.g., t-tests) to
confirm that the differences in runtimes between UOT Sinkhorn
and the baseline methods are statistically significant.

3) Baselines: In our comparison, we include several state-
of-the-art methods for solving OT problems as baselines. The
first baseline is the exact OT solver based on the modified
Hungarian algorithm [39]. The second baseline is the OT
Sinkhorn algorithm [19], which approximates the OT distance
by adding an entropic regularization term to the original OT
problem.

Our proposed method uses the UOT Sinkhorn algorithm to
approximate the OT distance under the UOT framework. UOT
is particularly suitable for handling the unbalanced nature of
distributions that may arise in real-world datasets like breast
cancer data, where the number of benign and malignant cases
might not be perfectly matched. The Sinkhorn solver adds
entropic regularization, making it highly efficient for large-
scale problems.

To ensure a fair comparison, we set the desired error
tolerance for the approximate algorithms (UOT Sinkhorn and
OT Sinkhorn) to 0.01. This tolerance provides a good balance
between computational efficiency and approximation accuracy.

4) Experimental results: The results of our experiments,
shown in Fig. 1, illustrate the runtime performance of the tested
algorithms as a function of sample size. The x-axis represents
the logarithm of the sample size, while the y-axis represents
the logarithm of the total runtime in seconds. These log-log
plots provide a clear visualization of the scalability of each
algorithm.

For each tested sample size, UOT Sinkhorn consistently
outperforms both OT-based baselines in terms of runtime.
Specifically, UOT Sinkhorn achieves lower average, best,
and worst runtimes across all sample sizes, with significant
improvements as the sample size increases. The performance
advantage of UOT Sinkhorn becomes especially pronounced
for large sample sizes, where the modified Hungarian algorithm
exhibits much slower runtimes due to its higher computational
complexity.

In terms of robustness, UOT Sinkhorn demonstrates consis-
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tent performance, where even its worst runtime remains faster
than the average runtime of the second-best baseline, OT solved
using the modified Hungarian algorithm. This robustness is a
crucial factor for practical applications where runtime variability
can impact the reliability of the method. Additionally, OT
Sinkhorn performs better than the exact solver for moderate
sample sizes but is still outperformed by UOT Sinkhorn in
most cases.

Finally, we also observe that the choice of ℓp-norm (p = 1
or p = 2) has a relatively minor effect on the runtime but does
influence the accuracy of the independence test, as the distance
metrics capture different aspects of the data geometry.

IV. UOT IN HRV ESTIMATION FOR PHYSIOLOGICAL
RESEARCH

In physiological research, Heart Rate Variability (HRV) is
often used as a measure for its reliability and noninvasiveness
[1]. However, assessing cardiovascular functioning using HRV
in practice is challenging due to noise and irregularly sampled
data.

Previously, [42] proposed a multitask-learning approach to
address this issue. However, clinical and healthcare data in
practice often have a high degree of heterogeneity (such as in
demographics, treatments, devices, etc), which means domain
generalization is an essential task. Thus, [42] proposes to use
OT to estimate a mapping that is generalizable for unseen
out-of-domain task distributions. The multitask model using
Optimal Transport as a regularizer showed the lowest RMSE
amongst other transport maps such as Group Lasso [40], Multi-
level Lasso [22], Dirty models [13], Multitask Wasserstein and
Reweighted Multi-task Wasserstein [14].

However, the stringent nature of OT maps may cause strict
mapping, which would be problematic under noisy data regimes
[2], [17]. Thus, we propose using UOT instead of OT for the
domain generalization task.

A. OT/UOT Map Estimation for Physio Multitask-learning

Consider the task-wise feature vectors St and their under-
lying predictive functions WT

t , each following the measures
µS and νW respectively. Our goal is to find a push forward
mapping T#µS = νW . Here, one can estimate µS , νW from the
empirical distributions, and use them as the two input marginal
vectors of the OT/UOT problem. The optimal mapping allows
us to measure the similarity of model parameters to obtain
a predictive transformation, which will eventually be used to
perform domain generalization.

B. Multitask-learning (MTL)

We follow the MTL formulation in [42] and use the follow-
ing optimization objective, where the first term represents the
prediction loss and the second term represents the regularization
that induces task similarities:

1) Dataset: We are given a set of T tasks, each represented
by:

• Xt ∈ Rdx×Nt : The feature matrix for task t, where Nt

is the number of samples for task t, and each sample
has dx features.

• Yt ∈ R1×Nt : The labels for the samples in task t.

• st ∈ Rds×1: A task-specific feature vector, which may
contain information unique to that task.

2) Objective: We are learning the parameters, represented
by the matrix Wt, for each task t, where each Wt is part of a
larger matrix W ∈ RT×dw that contains the weight vectors for
all T tasks. The goal is to minimize the loss across all tasks,
represented as:

min
W,F

1

2

T∑
t=1

∥WT
t Xt − yt∥22︸ ︷︷ ︸

Prediction loss

+α

T∑
i,j=1

π∗
i,j∥F (si)−Wj∥22︸ ︷︷ ︸

Regularization term

. (1)

Here, W = [W1,W2, . . . ,WT ] are the task-specific weights,
and F is the transformation that models the similarities between
different tasks, π∗ is the OT/UOT coupling obtained from the
Sinkhorn-OT/Sinkhorn-UOT algorithm and α is a weighting
parameter. The loss (1) will learn W and F using Algorithm 1
in [42] where W and F are jointly updated using GD.

C. Linear and Non-linear Transformation for F

First, we consider F being a linear transformation, where
the set F is characterized by a matrix F ∈ Rds×dθ , which
captures all affine transformations. Mathematically, the set F
is expressed as:

F =
{
F : F ∈ Rdθ×ds , st ∈ ΩS , F (st) = Fst

}
.

However, linear transformations may not sufficiently ap-
proximate the transport map, particularly for modeling complex
systems such as the human Autonomic Nervous System (ANS).
To address this, non-linear transformations is considered.

Let ϕ be a non-linear function associated with a kernel
function k : ΩS × ΩS → R, where k(si, sj) = ⟨ϕ(si), ϕ(sj)⟩.
For a given set of samples S, we define the set F as:

F =
{
F : F ∈ Rdθ×T , st ∈ ΩS , F (st) = Fkst(st)

}
,

where kst(·) denotes the vector k(s1, ·), . . . , k(sT , ·).

The non-linear transformation allows the model to capture
more intricate relationships between tasks, making it particularly
useful when task dependencies are complex and cannot be
adequately captured by a linear mapping. The challenge in this
formulation lies in the increased complexity of learning F, as
the optimization problem becomes non-convex and may require
advanced techniques such as back-propagation for training.

Despite the increased computational cost, non-linear trans-
formations can significantly improve performance in multitask
learning scenarios where tasks exhibit non-linear similarities,
enabling the model to generalize better accros tasks.

D. Gradient Descent for MTL

To apply Gradient Descent (GD) to solve the MTL objective,
we first differentiate the loss function with respect to the MTL
parameters W and F is a non-linear transformation. Given the
optimization objective from Eq. (1), the gradients with respect
to the MTL parameters W and F are:
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Gradient with respect to W:

∇WL = (WT
j Xj − yj)X

T
j − 2α

∑
i

π∗
i,j(Fksi −Wj).

The first term corresponds to the gradient of the prediction loss,
while the second term reflects the gradient of the regularization
term, weighted by α and the optimal coupling matrix π∗

obtained from OT/UOT.

Gradient with respect to F:

∇FL = 2α
∑
i,j

π∗
i,j(Fksi −Wj)kT

si .

Here, the gradient is driven solely by the regularization term,
as F does not appear in the prediction loss.

PhysioMTL using gradient descent has a disadvantage when
processing complex data such as HRV where it confronts
multiple local minimums which will affect learning rate. To
address the problem, we introduce the gradient descent with
momentum, a more robust version of gradient descent which
can potentially handle local minimums and saddle points.

Using the gradients proposed above, we iteratively update
the parameters W and F using the standard GD update rule:

W(k+1) = W(k) − η∇WL, F(k+1) = F(k) − η∇FL

where η is the learning rate and k denotes the iteration index.

So, the update rules using gradient descent for Wj and F
are:

For Wj:

Wj ←Wj−η

[
(WT

j Xj − yj)X
T
j − 2α

∑
i

π∗
i,j(Fksi −Wj)

]
.

For F:

F← F− η

2α∑
i,j

π∗
i,j(Fksi −Wj)kT

si

 .

Algorithm 1 Solving MTL: Gradient Descent

1: Input: η, α, {π∗
i,j}, {Xt, yt}Tt=1, {ksi}, Wj , F

2: for n = 1 to N do
3: for j = 1 to T do
4: Wj ←Wj − η∇Wj

5: end for
6: ∇F = 2α

∑
i,j π

∗
i,j(Fksi −Wj)k

T
si

7: F← F− η∇F

8: end for
9: Output: Wj , F

In practice, choosing an appropriate learning rate η is
critical for convergence. A small learning rate can slow down
the convergence, while a large one might cause the updates
to overshoot the optimal solution. The iterative GD process
continues until convergence, which is typically defined by a
threshold on the change in the loss function or the norm of the
gradient.

E. Gradient Descent with Momentum for MTL

In gradient descent with momentum, we introduce a velocity
term to accelerate the optimization process. The update rules
are modified to include momentum, where the gradient is
accumulated over time.

Let vW and vF be the velocity terms for Wj and F,
respectively. The momentum update is controlled by a parameter
β ∈ [0, 1). The update rules for the velocities and parameters
are as follows:

Velocity update:

v
(k+1)
W = βv

(k)
W +(1−β)∇WL, v

(k+1)
F = βv

(k)
F +(1−β)∇FL

Parameter update:

W(k+1) = W(k) − ηv
(k+1)
W , F(k+1) = F(k) − ηv

(k+1)
F

Algorithm 2 Solving MTL: Gradient Descent with Momentum

1: Input: η, β, α, {π∗
i,j}, {Xt, yt}Tt=1, {ksi}, Wj , F

2: vWj = 0, vF = 0
3: for n = 1 to N do
4: for j = 1 to T do
5: vWj

← βvWj
+ (1− β)∇Wj

6: Wj ←Wj − ηvWj

7: end for
8: ∇F = 2α

∑
i,j π

∗
i,j(Fksi −Wj)kT

si
9: vF ← βvF + (1− β)∇F

10: F← F− ηvF

11: end for
12: Output: Wj , F

F. Literature and Motivation for Gradient Descent with Mo-
mentum for MTL

Momentum helps to speed up convergence in scenar-
ios where the optimization landscape has long, narrow val-
leys—common in deep learning and multitask-learning. The
velocity terms accumulate the gradients in such valleys, allow-
ing the optimization to move faster along the flat directions and
more slowly in directions where the gradients change rapidly.

1) Escaping saddle points: One of the key advantages of
GDM is its ability to help the optimization process escape
saddle points. Saddle points are regions in the loss surface
where the gradient is close to zero but the point is not a local
minimum. By incorporating past gradients, GDM can provide
sufficient momentum to push the optimization out of these
regions, avoiding the problem of getting stuck at suboptimal
points. This is particularly important for multitask-learning,
where the complex interaction between tasks may introduce
non-convexities in the loss surface.

2) Convergence considerations: While GDM generally
converges faster than standard GD, careful tuning of both the
learning rate η and the momentum parameter β is essential for
achieving optimal performance. A typical heuristic is to start
with β = 0.9 and adjust η based on empirical results, ensuring
that the updates do not become too aggressive or oscillatory.

In the MTL context, GDM is particularly useful when
dealing with heterogeneous tasks, as the added momentum helps
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TABLE I. SUMMARY OF MODEL PERFORMANCES WITH α = 0.1.UOT-GD AND UOT-GDM SHOW LOWER RMSE AND
FASTER RUNTIMES COMPARED TO OT-BASED METHODS, WITH MOMENTUM FURTHER REDUCING RUNTIME

Method 20% 40% 60% 80%

RMSE Runtime RMSE Runtime RMSE Runtime RMSE Runtime

OT-GD 29.992 ± 0.809 0.514 29.890 ± 1.198 1.219 29.504 ± 0.963 3.347 28.800 ± 2.432 6.765

UOT-GD 29.978 ± 0.843 0.287 29.911 ± 1.222 0.534 29.500 ± 0.942 1.032 28.749 ± 2.455 2.072

OT-GDM 30.070 ± 0.749 0.291 29.940 ± 1.206 0.641 29.584 ± 0.990 1.154 28.897 ± 2.394 3.190

UOT-GDM 30.013 ± 0.794 0.244 29.891 ± 1.203 0.372 29.521 ± 0.965 0.874 28.845 ± 2.420 1.603

TABLE II. SUMMARY OF MODEL PERFORMANCES WITH α = 0.5. UOT MAINTAINS CONSISTENT RMSE AND FASTER
RUNTIMES ACROSS SAMPLE SIZES, WHILE OT METHODS SHOW SLIGHTLY HIGHER RMSE AND SLOWER PERFORMANCE

Method 20% 40% 60% 80%

RMSE Runtime RMSE Runtime RMSE Runtime RMSE Runtime

OT-GD 30.753 ± 1.536 0.290 29.841 ± 0.924 1.480 29.364 ± 1.692 4.448 30.282 ± 2.218 7.974

UOT-GD 30.779 ± 1.549 0.163 29.748 ± 0.967 0.684 29.298 ± 1.703 1.383 30.151 ± 2.259 2.550

OT-GDM 30.769 ± 1.574 0.286 29.934 ± 0.942 1.012 29.461 ± 1.671 2.197 30.459 ± 2.207 3.584

UOT-GDM 30.759 ± 1.529 0.154 29.883 ± 0.926 0.459 29.388 ± 1.696 0.888 30.336 ± 2.218 1.786

TABLE III. SUMMARY OF MODEL PERFORMANCES WITH α = 0.9. UOT STILL PERFORMS BETTER THAN OT METHODS IN
TERMS OF RMSE AND RUNTIME, WITH MOMENTUM (UOT-GDM) ENSURING THE FASTEST CONVERGENCE, EVEN WITH A

LARGER α

Method 20% 40% 60% 80%

RMSE Runtime RMSE Runtime RMSE Runtime RMSE Runtime

OT-GD 30.366 ± 0.812 0.338 30.025 ± 1.370 1.833 30.352 ± 1.240 4.106 30.783 ± 2.393 6.660

UOT-GD 30.291 ± 0.821 0.197 29.996 ± 1.377 0.657 30.232 ± 1.265 1.289 30.718 ± 2.394 2.314

OT-GDM 30.491 ± 0.830 0.274 30.144 ± 1.417 0.896 30.491 ± 1.236 2.049 30.881 ± 2.436 3.584

UOT-GDM 30.395 ± 0.812 0.156 30.046 ± 1.388 0.450 30.399 ± 1.237 0.831 30.823 ± 2.409 1.362

balance the convergence rates across tasks with varying levels
of difficulty. The accumulated gradients guide the optimization
process toward a more stable solution, reducing the likelihood
of overfitting to specific tasks.

By applying GDM, we can achieve a more efficient and
reliable solution to the MTL problem, especially in the context
of large-scale data or noisy, heterogeneous domains such as
HRV estimation.

G. Application of UOT in HRV

1) Data preprocessing: The MMASH dataset [37] contains
24-hour continuous data from 22 healthy male participants,
including inter-beat intervals (IBI), wrist accelerometry, sleep
duration and quality, physical activity levels, and psychological
factors like stress, anxiety, and emotions. HRV is calculated
using RMSSD, the root mean square of successive differences
between normal heartbeats, over 5-minute intervals, which is
the standard duration for short-term HRV analysis. We use
key features - activity, sleep, stress, and anthropometric data
(age, height, weight). Sleep is expressed as total hours in bed,
while physical activity is represented by hours of moderate
(e.g. walking, cycling) and intense (e.g., running, gym) exercise.
Stress levels are measured via the Daily Stress Inventory (DSI)
score.

We following the data preprocessing procedure in [42]:
(1) removing RMSSD outliers (z-score greater than 2.5), (2)
excluding subjects with abnormal data (e.g. subject 4 with
an RMSSD average of 318), and (3) imputing missing values
for sleep and age for subjects 11 and 18 using dataset-wide
averages. After preprocessing, the final dataset includes 21
subjects.

2) Experimental setup: We applied our model to predict
Heart Rate Variability (HRV) across various tasks from the
MMASH dataset, which is publicly available through the
PhysioNet repository [37]. The tasks used for testing were
completely unseen during training to ensure a rigorous evalua-
tion. The performance of the model was measured using Root
Mean Square Error (RMSE) to quantify the prediction accuracy.
To assess the model’s performance under different data avail-
ability scenarios, we randomly selected varying proportions of
tasks—specifically, 20%, 40%, 60%, and 80%—for training.
The model was then evaluated on the remaining unseen tasks.

Additionally, we experimented with different values of
α = 0.1, 0.5, 0.9 to investigate the robustness of the Sinkhorn-
Unbalanced Optimal Transport (Sinkhorn-UOT) model under
different mass relaxation parameters. Varying α allows us to
explore how the model behaves when placing more or less
emphasis on balancing the transport plan, offering insights into
the flexibility and adaptability of the method.
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3) Baselines: To further improve computational efficiency,
we implemented Gradient Descent with Momentum (GDM),
which is known to help iterates quickly escape saddle points and
accelerate convergence to a stationary point, as suggested by
[38]. This technique is particularly valuable for large-scale
datasets where faster convergence can significantly reduce
runtime. We compared four experimental settings to evaluate
both OT and UOT under different optimization strategies: OT
with Gradient Descent (OT-GD), OT with Gradient Descent
and Momentum (OT-GDM), UOT with Gradient Descent (UOT-
GD), and UOT with Gradient Descent and Momentum (UOT-
GDM). These baselines allowed us to assess both the impact
of mass relaxation in UOT and the computational benefits of
incorporating momentum into the optimization process.

4) Experimental results: The results of our experiments
are summarized in Tables I, II, and III, corresponding to
α = 0.1, α = 0.5, and α = 0.9 respectively. Across all α
values, our UOT-based approaches consistently demonstrated
significantly lower runtime compared to the OT-based methods,
while maintaining similar levels of accuracy as measured by
RMSE. This highlights the computational advantage of UOT,
particularly for large datasets with imbalanced distributions.
Additionally, the inclusion of momentum in the optimization
process (GDM) resulted in faster convergence and further
reduced runtime compared to standard Gradient Descent (GD),
confirming the effectiveness of GDM in accelerating training.
These findings underline the practicality of using UOT with
momentum for tasks requiring fast and accurate predictions in
complex datasets.

5) Results and Discussion: The experimental results sum-
marized in Tables I, II, and III demonstrate the consistent
advantages of UOT over OT across all tested values of α (0.1,
0.5, 0.9). While runtime differences were significant—UOT
required up to 40% less time than OT—the benefits of UOT
extend beyond computational efficiency.

Additionally, the inclusion of momentum in UOT further
accelerated convergence while maintaining similar accuracy.
This enhancement is particularly valuable in iterative medical
research tasks, where faster training enables rapid model
updates based on new data.

H. Summary of UOT Algorithms as Compared to OT and
Related Practical Healthcare Applications

By relaxing OT’s strict constraints, UOT enables faster and
more adaptable multitask learning algorithms. Its computational
advantages Õ

(
n2ε−1

)
and smoother optimization dynamics

make it a competitive alternative to OT, especially in healthcare
applications requiring efficient and reliable predictions. Coupled
with techniques like GDM, UOT further enhances its utility for
large-scale, real-world datasets, demonstrating its practicality
in domains where computational resources are limited but
accuracy remains paramount.

The advantages of UOT algorithms, particularly their
computational efficiency and adaptability, make them highly
suitable for resource-constrained healthcare applications:

1) Real-Time HRV Monitoring: Faster convergence of UOT
allows real-time heart rate variability predictions in wearable
devices, enabling timely interventions in critical scenarios.

Fig. 2. Cost gap on breast cancer data.

2) Large-Scale Population Studies: UOT’s scalability sup-
ports applications involving population-level diagnostics, such
as analyzing longitudinal health data or predicting patient
outcomes across diverse demographics.

3) Personalized Medicine: The flexibility of UOT in han-
dling imbalanced distributions is crucial for personalized
medicine, where data from some patient subgroups may be
underrepresented. For example, drug response predictions
can benefit from UOT’s ability to align heterogeneous task
distributions effectively. asks, as reflected in the lower Root
Mean Square Error (RMSE) observed for UOT.

V. APRROXIMATION ERROR

In the context of the breast cancer data experiment, we
aim to empirically validate the theorem 1. Specifically, we
are interested in investigating how closely the UOT cost
approximates the OT cost in real-world datasets, which will
be done in the following set up:

1) Computing OT and UOT cost: Using the Sinkhorn
algorithm, we compute the OT transport plan XOT and its
corresponding transport cost. Similarly, we compute the UOT
transport plan XUOT for varying values of τ (the regularization
parameter) and calculate the associated UOT cost.

2) Comparison and Validation of Approximation Error:
We empirically measure this difference to see how well UOT
approximates OT in our breast cancer dataset. Specifically, we
calculate ⟨C,XOT ⟩ − ⟨C,XUOT ⟩ for different values of τ to
observe whether the theoretical bound holds in practice.

3) Experimental result: The results shown in Fig. 2 as τ
increases, the cost gap steadily decreases. This demonstrates
that with higher regularization, the difference between the
UOT and OT solutions becomes negligible. At this point, UOT
provides a good approximation to the OT cost while retaining
computational advantages. The graph exhibits a smooth, non-
linear decrease in the cost gap, implying that increasing τ
provides diminishing returns in terms of cost difference.

VI. CONCLUSION AND FUTURE WORKS

In this work, we investigate the computational benefits
of the Sinkhorn-UOT algorithm across different healthcare
applications such as the independence test on breast cancer

www.ijacsa.thesai.org 105 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

data and HRV estimation in physiological research. We find
that Sinkhorn-UOT consistently outperforms other popular
computational OT methods such as Sinkhorn-OT and the
modified Hungarian algorithm, which partially makes various
healthcare applications more accessible to budget-constraint
medical institutes by alleviating the prohibitive computational
cost, and mitigates the CO2 emission from computing resources
toward better environment.

Building on these results, future work should focus on
further optimizing the Sinkhorn-UOT algorithm by reducing
the computational complexity and enhancing scalability for even
larger datasets. Another interesting direction is to investigate
the effectiveness of Partial Optimal Transport (POT) [24] as an
alternative to OT, besides the UOT metric considered in this
paper. Furthermore, Stochastic or Constrained Decentralized
Optimization techniques [25], [26] can be leveraged to create
sample-efficient computational approaches for noisy, dynamic,
and multi-agent scenarios [9], [28], [32], [31], [33] that
commonly emerge in modern distributed systems [27], [29].
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