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Abstract—In order to improve the analysis effector 

percussion waveform, this paper studies the percussion big data 

mining and modeling method based on the deep neural network 

model. Aiming at the problem of the high sampling rate of 

Analog to Digital Converter (ADC) when the wideband 

frequency-hopping Linear Frequency Modulation (LFM) 

percussion waveform is sampled by Nyquist, this paper proposes 

a method of under sampling, and conducts a simple theoretical 

analysis. When the signal-to-noise ratio is 35dB, the frequency 

measurement error is close to 1MHz, which can meet the 

requirements of frequency measurement accuracy. When the 

signal-to-noise ratio is higher than 35dB, the frequency 

measurement error gradually decreases and eventually stabilizes, 

with a frequency measurement accuracy of around 30 kHz. Due 

to the low environmental interference in the sound wave 

recognition of percussion instruments and the close distance 

between the hardware equipment and the percussion instruments 

in this paper, the recognition results of the model in this paper 

have high accuracy Compared with existing methods, this article 

is more reliable in identifying percussion sound waves. From the 

data, it can be seen that the method proposed in this article has 

better performance in waveform recognition in impact big data 

mining models. 

Keywords—Deep neural network; percussion; big data; mining; 

modeling 

I. INTRODUCTION 

All musical instruments generate and propagate sound 
waves. Sound waves can be simulated and form echoes 
through frequency hopping signals. Therefore, to extract 
effective information from instrument performances, one can 
start with frequency hopping signals and propose signal 
processing methods that can be applied to instrument 
performance information data mining. This article takes big 
data mining of percussion as an example for research, first 
analyzing the relevant research on the performance 
characteristics of percussion instruments. 

In many percussion instruments, the same timbre can be 
played in different hitting positions, such as bell rings, bass 
drum bangs, and so on. When the player hits these sounds, he 
usually chooses a relatively convenient hitting position to 
complete the performance according to the preceding and 
following phrases among the many hitting positions. In some 
percussion works, by carefully arranging the striking position, 
the body shape can be changed to achieve the purpose of 
displaying the musical image [1]. 

There is relatively little research on extracting effective 
information from instrument performance, so this article 

proposes an effective music information data mining method 
based on practical needs. This paper studies and improves the 
percussion big data mining and modeling method based on the 
deep neural network model combined with the robot simulation 
technology, explores the research effect of percussion, and 
effectively improves the performance of percussion [2]. 

A method of undersampling is proposed to address the 
issue of high ADC sampling rate during Nyquist sampling of 
broadband frequency hopping LFM percussion waveforms, 
and a simple theoretical analysis is conducted. At the same 
time, for the frequency ambiguity caused by undersampling, 
two commonly used frequency deblurring methods, the 
Chinese remainder theorem and time-frequency analysis, were 
introduced, and the implementation complexity of these two 
methods was analyzed. A method based on multi-channel 
frequency partition decomposition blurring was proposed [3]. 

When performing percussion works, in certain sections 
with complex rhythmic changes or compound beats, the 
performer will subconsciously use their head, torso, and other 
limbs to strike the rhythm, prompting the audience to follow 
the logic of rhythm division. When fingers strike a paragraph 
in music, the shape of the fingers can guide the audience's 
understanding of the musical phrase. The performer will design 
the finger shape during or after striking while ensuring the 
timbre. While ensuring the beauty of the striking form, 
integrate it with the underlying emotions of the music. The 
innovation of this article lies in proposing a deblurring method 
based on multi-channel frequency division, which greatly 
reduces the implementation complexity. Finally, the fast 
frequency measurement is achieved through linear 
interpolation zero crossing frequency measurement method, 
improving the extraction effect of vocal waveform 

Section I of this article mainly introduces the background 
and current situation, leading to the research content of this 
article. The following is the relevant work section, which 
mainly summarizes the existing research work in Section II, 
raises the existing research problems, and proposes 
improvement strategies for this article. Section III is the 
algorithm model section, which proposes the improved 
algorithm and model of this article, conducts experimental 
research is presented in Section IV, and finally summarizes the 
research content of this article in Section V. 

II. RELATED WORK 

Non-deep learning algorithms consider audio 
characteristics and search for different feature representations 
of accompaniment and singing in songs, separating 
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accompaniment and singing. This type of method relies on 
long-term accumulated audio knowledge to identify differences 
between the two, but typically finds distinguishable features 
with long cycles, high difficulty, and may not be universally 
applicable to all types of songs. Non-deep learning separation 
techniques mainly include matrix factorization and acoustic 
features. Non-negative matrix factorization (NMF) and robust 
principal component analysis (RPCA) are two typical matrix 
factorization methods used for vocal separation. From the 
perspective of acoustic features, propose a method for 
calculating auditory scene analysis based on pitch inference 
and accompaniment repetition. Due to the involvement of 
multiple disciplines in the fields of audio and computer 
science, the accompaniment and vocal frequency spectra in 
songs are intertwined and intertwined. Currently, non-deep 
learning algorithms for vocal separation have made some 
progress, but there are still problems with mixed 
vocal/accompaniment and low separation quality [4]. Deep 
learning algorithms mainly use deep, high semantic, and highly 
distinguishable features automatically learned by neural 
networks to separate and predict the time-frequency spectrum 
of accompaniment/singing, and finally reconstruct the 
accompaniment and singing signals. This type of algorithm 
mainly relies on the selection of neural networks. Suitable 
neural networks can learn and capture features that distinguish 
between the two, thereby predicting time-frequency spectra 
that are closer to the original accompaniment/singing. Deep 
learning algorithms include two categories: modeling in the 
frequency domain and modeling in the time domain [5]. 
Reference [6] focuses on deep learning algorithms and 
therefore provides a detailed introduction to the frequency 
domain and time domain models of deep learning. Frequency 
domain model: Due to the significant performance of neural 
networks on images and the fact that the frequency domain has 
more exploitable information compared to the time domain, 
existing algorithms focus on modeling time-frequency spectra 
in the frequency domain, known as frequency domain models. 
The main idea is to transform the song from time domain to 
frequency domain through short-time Fourier transform, input 
the time-frequency spectrum of the song into a neural network, 
and the network predicts the time-frequency spectrum of the 
accompaniment and singing voice. Finally, the phase 
approximation of the original song is used instead of the 
accompaniment and singing phase, and the time-frequency 
spectra of the accompaniment and singing are combined with 
the original song phase spectrum to reconstruct the 
time-domain signals of the accompaniment and singing. The 
separation performance of frequency domain models depends 
on the selection of neural networks. A network structure with 
rich structure and the ability to capture and learn 
comprehensive features can predict high-precision 
accompaniment/singing time-frequency spectra. In the 
reconstruction phase, the frequency domain model 
approximates the separated signal phase using the original song 
phase, without modeling the phase, which is currently a factor 
that restricts the quality of separation [7]. 

Time domain model: Modeling in the time domain refers to 
using time-domain signals as input and directly putting them 
into a neural network for training. The network outputs 
separated time-domain signals of accompaniment and singing. 

Directly modeling in the time domain avoids the problem of 
phase distortion in the frequency domain model. The study in 
[8] attempted to model in the time domain and achieved good 
separation results. However, due to the high sampling rate of 
audio signals, the one-dimensional signal in the time domain is 
very large, resulting in excessive input to the neural network. 
Whether the network can adapt to the large input size and learn 
abstract features such as time and space reasonably is a 
challenge to the network separation performance. Therefore, 
there is still some research and exploration space for the time 
domain model. 

The main separation idea of the frequency domain model is 
to use the time-frequency spectrum after short-time Fourier 
transform as the network input, utilize the advantage of neural 
network automatic feature learning, capture high semantic 
features that can distinguish accompaniment and singing, and 
predict the mask matrix (composed of numbers between 0 and 
1) of accompaniment and singing signals. Then, based on the 
original song time-frequency spectrum and the predicted mask, 
the time-frequency spectrum of accompaniment/singing is 
obtained. Finally, by combining the phase reconstruction of the 
original song, the time-domain signals of the accompaniment 
and singing voice are obtained [9]. The quality of frequency 
domain model separation depends on the accuracy of the 
time-frequency spectrum predicted by the network, and the 
network structure and learned features determine the quality of 
separation [10]. 

At present, the neural networks used in frequency domain 
models have transitioned from basic neural networks (such as 
RNN, LSTM, CNN) to structurally rich and multi-level neural 
networks (such as U-Net, SH-4Stack). With the continuous 
enrichment and diversity of network structures, the learned 
features have also been continuously improved. However, the 
common feature of advanced neural networks used for 
monaural vocal separation today is that the network structure is 
serial, and after multiple downsampling, some information will 
be lost. Moreover, upsampling cannot restore the original 
information feature appearance, and the defects in the feature 
learning process result in low amplitude accuracy of the 
predicted time-frequency spectrum [11]. 

Music originates from rhythm, and rhythm is also the most 
basic element of music. When our ancestors in ancient times, 
based on the relationship between the heart and the pulse, 
rhythm instinctively evolved into a form of music. Rhythm is 
more important to music today than ever before. In the use of 
music, rhythm is more important than melody, harmony, and 
pitch. Rhythm without specific pitch can make the listener 
understand the content, but pitch without rhythm can only be 
called accent [12]. Rhythm is very important in musical 
elements, and accent is irreplaceable in the rhythm system. 
After the accent is played well, it will produce the 
corresponding rhythm. The accent is actually the power 
generated by the rhythm, and the rhythm is the vitality of the 
rhythm. Simply playing the rhythm without the change of 
accent, even if the music played is correct, it cannot make the 
listener dance with the music. The playing of the accent 
produces the rhythm, and the existence of the rhythm makes 
the rhythm have vitality. If the rhythm has life, the music will 
create a magical power for the listener to enjoy it [13]. 
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With the improvement of productivity and manufacturing 
level, the development of music goes hand in hand with it. 
Under the fierce market competition, many professional 
musical instrument craftsmen have created a guild system 
while working hard to produce excellent works. The 
appearance of guilds is to protect the interests of fellow 
handicraftsmen from being infringed by outsiders, in order to 
prevent the competition of foreign handicraftsmen and limit the 
competition between local handicraftsmen in the same 
industry, a civil organization established by urban 
handicraftsmen [14]. Guilds have both positive and negative 
effects. The various regulations issued by the guild have 
improved the production level of the musical instrument 
manufacturing industry to a certain extent, but also restricted 
free competition, the number of employees, the mass 
production of commodities, and the application of new 
production tools [15]. The various rules of the guild also make 
the shapes of musical instruments appear to be similar. The 
same type of musical instrument, although made by different 
craftsmen, has almost the same dimensions. In order to meet 
the market demand of the music industry, instrument 
manufacturers need more manpower for expanded 
reproduction [16]. Due to the high difficulty of processing 
musical instruments, many complex processing procedures still 
require manual operations and the skilled craftsmen of the 
processors. Therefore, the way for many musical instrument 
craftsmen to expand reproduction is not the training system, 
but the apprenticeship system [17]. Many apprentices need to 
practice in the workshop for several years, and then take over 
the mantle of the master and continue to make musical 
instruments. They don't have time to practice their musical 
instruments, and they have little experience in musical 
performances. They know the structure and workmanship of 
musical instruments well, but they don't understand music. 
Their duty is to produce instruments of the same level as the 
Master, pursuing more exquisite craftsmanship and production 
methods, rather than surpassing or innovating. It is precisely 
out of respect for the guild system, respect for traditions and a 
strong sense of responsibility for inheritance that many 
craftsmen have created the phenomenon of “inheritance” that is 
unique to musical instruments and is difficult to break [18]. 

Previous studies have shown that measuring the frequency 
of music signals in music data mining can cause spectrum 
aliasing, leading to frequency ambiguity. Therefore, it is 
necessary to deblur the sampled signals in order to obtain the 
true frequency of the signals. The core of frequency 
measurement methods under undersampling conditions is 
frequency deblurring, which involves undersampling 
broadband analog signals to obtain digital signals, and then 
using deblurring algorithms to recover the frequency of the 
digital signals to obtain the frequency of the original signal. 
The commonly used deblurring algorithms are the Chinese 
remainder theorem, time-frequency analysis, and compressive 
sensing. This article proposes a new deblurring algorithm 
based on multi-channel frequency band division. On this basis, 
the method of linear interpolation zero crossing frequency 
measurement is used to achieve fast frequency measurement of 
broadband frequency hopping signals. This method greatly 
reduces the system complexity while reducing the ADC 
sampling rate, and does not introduce additional deblurring 

errors. Finally, fast frequency measurement was achieved 
through linear interpolation zero crossing frequency 
measurement method. 

III. RESEARCH METHOD 

Percussion instruments have various forms of performance, 
and tapping with different parts can also emit audio signals 
with different characteristics. Feature mining can promote the 
development of smart music and is of great significance in 
helping performers discover deficiencies in performance in a 
timely manner. 

Due to the fact that the Nyquist sampling theorem cannot 
be satisfied when using time-domain undersampling 
technology to sample the measured acoustic signal, using 
classical frequency estimation methods at this time will result 
in spectral aliasing. For undersampled sample sequences, in 
order to obtain their frequency estimation without ambiguity, a 
feasible algorithm needs to be used to perform frequency 
deblurring on the undersampled sequence. Usually, methods 
such as the Chinese remainder theorem, time-frequency 
analysis, and compressive sensing can be used to de fuzzify the 
frequency of the test signal. These methods can indeed achieve 
good results in their respective application fields, but they have 
high computational complexity and cannot be used as a 
universal method for de fuzzifying broadband frequency 
hopping signals under undersampling conditions. Therefore, it 
is necessary to propose an undersampling frequency deblurring 
method with low computational complexity and suitable for 
broadband frequency hopping signals. 

The model in this article collects percussion signals, so in 
the actual collection process, the terminal hardware device will 
be connected to the collection device. The device that collects 
sound waves is very close to the percussion, and the volume 
and tone of the percussion sound are relatively high, which can 
be accurately collected by the terminal device. Therefore, the 
channel loss in the collection of sound channel signals can be 
ignored. 

According to the Nyquist sampling theorem, the sampling 
rate of the ADC should be at least twice or greater than the 
Nyquist sampling rate. 

A. The basic Theory of Under Sampling 

Under sampling is defined as digitizing percussion 
waveforms at a sampling frequency lower than the Nyquist 
sampling rate. The following under sampling analysis is carried 
out through the single carrier frequency percussion waveform. 

The input tone percussion waveform can be expressed as in 
[19]: 

 0x( t ) sin ω t φ 
   (1) 

Among them, 0ω  is the real frequency of the 

single-carrier percussion waveform, and 
φ

 is the initial phase 
of the single-carrier percussion waveform. According to the 
Fourier transform formula, it can be known that its spectrum is: 
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According to the relevant theory of digital percussion 
waveform processing, it can be known that the time domain 
sampling will cause the periodic extension of the spectrum, and 

the spectrum sX (ω)
 of the percussion waveform after 

sampling and the spectrum 
X(ω)

 of the percussion 
waveform before sampling satisfy: 

 s s

ns

1
X (ω ) X ω nω

T





 
   (3) 

Among them, sω  is the sampling frequency, sT
 is the 

sampling period. Therefore, when the percussion waveform 

x(t) is sampled at a fixed sampling rate sΩ , the spectrum of 
the digital percussion waveform after sampling is [20]: 

   jφ jφ

s 0 s 0 s

ns

1
X (ω ) πδ ω ω nΩ e πδ ω ω nΩ e

T


 



       
 (4) 

It can be seen from the above formula that under the 

condition of under sampling, the real angular frequency 0ω  
of the percussion waveform can be obtained by calculating 
according to the fuzzy angular frequency ω  measured by the 
spectrum of the percussion waveform, the sampling frequency 

sΩ  and the number of ambiguities n relative to the sampling 
frequency. Therefore, the real percussion waveform frequency 
under under-sampling condition is obtained. The expression is 
as follows: 

0 s 0 sω nΩ ω, f nf f   
  (5) 

Among them, f is the fuzzy frequency measured according 

to the percussion waveform spectrum, sf
 is the sampling 

frequency of the percussion waveform, and 0f  is the real 
percussion waveform frequency. The sampling rate of the ADC 
must not be less than the Nyquist sampling rate. 

B. Ambiguous Understanding of Chinese Remainder Theorem 

The Chinese remainder theorem, as an outstanding 
achievement in ancient Chinese mathematics, embodies the 
wisdom of our ancestors and has made significant 
contributions in many modern research fields. This section will 
introduce the algorithm principle of the Chinese remainder 
theorem and further expand it. Simultaneously utilizing the 
Chinese remainder theorem for frequency analysis to achieve 
the goal of resolving ambiguity 

The Chinese remainder theorem is an important theorem in 
number theory. Its content can be described as: 

1 2 Lm ,m , ,mL
 is assumed as a positive integer that is 

relatively prime, and is defined as:  

i iM m / m ,1 i L  
   (6) 

Among them, there is 1 2 Lm m m m L
, then for any 

integer 1 2 Lr ,r , ,rL
, the following first-order congruential 

equations must have a solution [21], 

1 1

2 2

L L

X r mod m

X r mod m

X r mod m







 

M

    (7) 

Furthermore, the solution to the system of equations is 

L

i i i

i 1

X M M r mod m



   (8) 

Among them, iM
 is the inverse of iM

 to modulo im
, 

and it satisfies the following relation: 

i i iM M 1mod m ,1 i L  
  (9) 

If a and b are assumed to be given arbitrary positive 
integers, they can be decomposed into the form of division 
with remainder, which is expressed as follows [22]: 

1 1 1

1 2 2 2 1

n 2 n 1 n n n n 1

n 1 n n 1 n 1 n 1

a bq r ,0 r b

b r q r ,0 r r

r r q r ,0 r r

r r q r ,r 0

  

   

   

   



   

  
  (10) 

Among them, 1 2 n n 1q ,q , q ,q L
 and 1 2 n n 1r ,r , r ,r L

 
are arbitrary integers obtained. Because every division with 
remainder will reduce the remainder by at least 1, and b is a 
finite positive integer, in order to obtain an equation with a 
remainder of 0, at most b divisions with remainder can be 

performed. At this time, there is n 1r 0 
. According to the 

Euclidean algorithm, the greatest common divisor of a and b is 

the last remainder that is not 0 in Eq. (10), that is nr . 
Therefore, the following expression can be obtained [23]: 

ngcd( a,b ) r
    (11) 

In Eq. (11), 
gcd( )

 represents the greatest common 
divisor. In the process of solving the greatest common divisor, 
the coefficients generated by the solution are collected by 
extending the Euclidean algorithm. Then, after backward 
operation, the integers x and y can be found to satisfy the 
following equation: 
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ax by gcd( a,b )     (12) 

According to Eq. (6), it is easy to know that iM
 and im

 

are relatively prime, that is 
 i igcd M ,m 1

. According to 

Bezuo's theorem, there must be integers ix
 and iy

 such 
that the following equation holds [24]: 

 i i i i i iM x m y gcd M ,m ,1 i L   
 (13) 

By extending the Euclidean algorithm, the parameters ix
 

and iy
 can be obtained, and the modular inverse i iM x

 
can be obtained. In the radar system, the percussion waveform 
can usually be expressed as a single-frequency complex 
exponential form, and the percussion waveform expression is: 

 0s( t ) Aexp j2πf t ω( t ) 
  (14) 

Among them, the amplitude and frequency of the 

percussion waveform are represented by A and 0f , 

respectively, and the additive noise is represented by 
ω(t )

. If 

the additive noise ω(t )  is assumed to be Gaussian white 

noise with zero mean and variance 
2σ , the signal-to-noise 

ratio (SNR) satisfies the following equation [24]: 

2 2ρ A / σ
     (15) 

Among them, 
ρ

 represents the signal-to-noise ratio of the 
single-frequency complex percussion waveform with additive 
noise. From a fixed time, the percussion waveform is sampled 

at the sampling rate of sf
. If the sampling time is assumed to 

be T, the length of the sample sequence after sampling is N, 
and the following relationship is satisfied: 

sN Tf
      (16) 

Eq. (14) and Eq. (16) are combined to further obtain the 
time domain expression of the sample sequence after sampling: 

   0 s ss( n ) Aexp j2πf n / f ω n / f ,0 n N    
 (17) 

If the sampling rate sf
 satisfies the Nyquist sampling 

theorem, there is s 0f 2 f
. At this point, the sample 

sequence is subjected to N-point DFT analysis, which can be 
obtained The Spectrum of sample sequence: 

S( k ) DFT( s( n )),0 k N  
  (18) 

The spectrum S(k) of the sample sequence is subjected to 

spectral peak search, and the index position pk
 

corresponding to the peak spectral line satisfies the following 
equation: 

p 0 k Nk arg max {| S( k )|} 
  (19) 

Then, the real frequency 0f  of the percussion waveform 
can be obtained according to the following formula. 

0 pf k Δf 
      (20) 

Among them, sΔf f / N
 represents the spectral 

resolution of the DFT. 

However, in a practical environment, the percussion 

waveform frequency 0f  can be taken very large. In this case, 

if the sampling rate sf
 satisfies the Nyquist sampling 

theorem, the value of sf
 will be very large, which requires 

high requirements for ADC devices and high cost, which is 
difficult to achieve in some special occasions. At this time, the 
under-sampling scheme should be considered, and the 

sampling rate sf
 does not satisfy the Nyquist sampling 

theorem, that is,  

s 0f 2 f
      (21) 

In this case, the frequency estimation value of the original 
percussion waveform cannot be directly obtained by using the 
DFT frequency estimation method. At this time, according to 
the periodicity of the DFT spectrogram, the obtained frequency 
estimate is actually the frequency remainder (or aliasing 

frequency) rf
, which satisfies the following equation: 

r 0 sf f mod f
     (22) 

Considering that the Chinese remainder theorem uses the 
system of congruence equations to solve, the method of 
multi-channel under sampling can be used. According to the 

Eq. (21), the sampling frequency s1 sLf ~ f
 is selected to 

perform L-channel under sampling on the percussion 
waveform respectively. At the same time, the DFT analysis is 
performed on the sample sequence of each channel, and the 

index position p1 pLk ~ k
 corresponding to the spectral peak 

is obtained by using the Eq. (19), then the frequency remainder 
of each channel can be obtained to satisfy the following 
equation: 

ri pif k Δf ,1 i L   
   (23) 

According to Eq. (22), the system of congruence equations 
can be obtained, and the expression is as follows: 
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0 1 s1 r1

0 2 s2 r 2

0 L sL rL

f n f f

f n f f

f n f f

 


 


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M

    (24) 

Among them, 1 2 Ln ,n , ,nL
 is the fuzzy multiple. 

Obviously, the Chinese remainder theorem can be used to 
solve the equation system (24), so as to obtain the percussion 

waveform frequency 0f . When the signal-to-noise ratio is 

high enough, the index position p1 pLk ~ k
 corresponding to 

the spectral peak can be directly obtained by spectral peak 
search according to the DFT spectrogram. 

Through the above analysis, in order to complete the 
fuzzy-free estimation of the frequency of percussion 
waveforms, at least two percussion waveforms are required. 
Therefore, Fig. 1 presents a dual-rate defuzzification structure 
based on the remainder theorem. 

 

Fig. 1. Double-rate defuzzification structure based on remainder theorem. 

C. Defuzzification based on Time-Frequency Analysis 

The so-called time-frequency analysis is to use the joint 
representation of the time domain and the frequency domain to 
obtain an accurate description of its local characteristics. 

Usually, the time-frequency analysis is performed after the 
real percussion waveform is converted into an analytical 

percussion waveform. If st is assumed to be a non-stationary 
real percussion waveform, its corresponding analytical 

percussion waveform st is expressed as: 

z( t ) s( t ) jH( s( t )) 
  (25) 

Among them, H(s(t)) represents the Hilbert transform of the 
real percussion waveform s(t). For the real percussion 

waveform, its Fourier transform satisfies the characteristic of 
conjugate symmetry, and the positive and negative frequency 
components contain the same information. Moreover, the 
advantage of analyzing the percussion waveform is that the 
negative frequency components with residual information are 
removed, and only the positive frequency components are 
retained, which will not cause information loss. 

For the real percussion waveform s(t), its energy density is 
2| s( t )|

, then the total energy of the percussion waveform is 
expressed as: 

2E |s( t )| dt



 

    (26) 

If the energy of the percussion waveform is limited, 
without loss of generality, E=1 can be set. It can be known 
from formula (26) that the energy density at any time point can 
be accurately calculated according to the real percussion 
waveform s(t). Therefore, the time resolution is infinite, 
whereas the frequency resolution is zero. 

The first-order distance of the energy density is expressed 

as the time center t   of the energy distribution of the 
percussion waveform, which satisfies the following 
relationship: 

2t t | s( t )| dt



   

   (27) 

The second moment of the energy density is expressed as 

the duration 
2T  of the percussion waveform, and its 

expression is as follows: 

2 2 2T ( t t ) | s( t )| dt



   

  (28) 

Among them, the percussion waveform time width T is the 
square root of the duration. 

If the spectrum of the real percussion waveform s(t) is 

assumed to be 
S(ω)

, its energy density is 

2| S( ω )|
, and 

the expression of the total energy of the percussion waveform 
is as follows: 

21
E |S(ω )| dω

2π




 

  (29) 

According to Parseval's theorem, the total energy of the 
percussion waveform in the time domain is equal to the total 
energy of the percussion waveform in the frequency domain. 
Therefore, there is E=1. It can be known from formula (29) that 
the energy density of any frequency point can be accurately 

calculated according to 
S(ω)

. Therefore, the frequency 
resolution is infinite, whereas the time resolution is zero. It is 
similar to the definition of time center and time width, and the 
expressions of frequency center and bandwidth are: 

2ω ω| S(ω )| dω



   

  (30) 
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2 2B (ω ω ) | S(ω )| dω



   

 (31) 

Generally speaking, both the time center t   and the 

frequency center ω   of the energy distribution of the 
percussion waveform can be set to 0, so Eq. (28) and (31) can 
be further simplified into the following forms: 

2 2 2T t | s( t )| dt



     (32) 

2 2 2

2

2

2

B ω | S(ω )| dω

d
    j | s( t )| dt

dt

ds( t )
    dt

dt















 
  

 








   (33) 

When there is | t | , there is 
ts( t ) 0

, the 
product of Eq. (32) and Eq. (33) satisfies the following 
relation: 

2

2 2 2 2

2

*

2

2 2

2
2

ds( t )
T B dt t | s( t )| dt

dt

ds( t )
        ts ( t )dt

dt

1
        ts ( t ) |s( t )| dt

2

1 1
        dt

4
( )

4
s t

 

 







 





 

 

  
  

 

 






  (34) 

Therefore, the following relationship can be further 
obtained: 

1
TB

2


      (35) 

Eq. (35) is called the uncertainty principle. It shows that for 
any percussion waveform s(t) or window function h(t) with 
limited energy, the time resolution and frequency resolution are 
contradictory, and it is impossible to obtain ideal time 
resolution and frequency resolution at the same time. 

The algorithm model of STFT(short-time Fourier 
transform) can be obtained as shown in Fig. 2. Choose a 
time-frequency localized window function, assuming that the 
analysis window function g (t) is stationary (pseudo stationary) 
within a short time interval, move the window function so that 
f (t) g (t) is a stationary signal at different finite time widths, 
and calculate the power spectrum at different times. The 
short-time Fourier transform uses a fixed window function, and 
once the window function is determined, its shape no longer 
changes, and the resolution of the short-time Fourier transform 
is also determined. If you want to change the resolution, you 
need to reselect the window function. Short time Fourier 

transform can still be used to analyze segmented stationary 
signals or approximately stationary signals, but for 
non-stationary signals, when the signal changes dramatically, 
the window function is required to have a high time resolution; 
When the waveform changes relatively smoothly, mainly for 
low-frequency signals, a window function with high frequency 
resolution is required. Short time Fourier transform cannot 
meet the requirements of frequency and time resolution. The 
window width is set to N, and the number of FFT(Fourier 
Transform) points is also set to N. Then, a series of continuous 
digital knock waveforms are input from the outside. The 
percussion waveform is transformed into a digital sequence of 
length N after passing through the data sorting module. Then, 
through the windowing filtering processing module, the N 
components of the digital sequence are respectively weighted 
and sent to the FFT module in sections. After frequency 
domain analysis, the mathematical expression of STFT is 
obtained. The STFT algorithm can continuously analyze the 
spectrum of the sampled data and output real-time analysis 
results. 

 

Fig. 2. STFT algorithm model. 

By analyzing the algorithm model shown in Fig. 2, the 
mathematical expression of STFT can be obtained: 

2πN 1 j ki
N

i 0

F( n,k ) s( n i )ω( i )e
 



 
  (36) 

Among them, n is the time point, and satisfies 

n mL N;k   is the channel number, and satisfies 

k 0,1, ,N 1 L . L is the number of sliding points of the 

time window, 

N 1

i 0{ω( i )} 

  is the window function, and the 
window width is N, which is mainly used to reduce the side 
lobes of the filter, thereby reducing the occurrence of spectral 
leakage and inter-spectral interference. F(n,k) represents the 
frequency domain analysis result of the kth channel at time n, 
that is, the frequency distribution of the percussion waveform 
in the time window. 
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The STFT algorithm can be combined with the 
under-sampling algorithm, so that the under sampled RF 
broadband percussion waveform can be directly de-blurred, so 
as to realize the frequency estimation of the original RF 
broadband percussion waveform. The FFT of the sampling 
sequence in the function window is the output result of the 
STFT. Taking the remainder theorem under sampling method 
as an example, the block diagram of the STFT channelization 
structure under the condition of under sampling is given as 
shown in Fig. 3. 

 

Fig. 3. Block diagram of STFT channelization structure under sampling 

condition. 

Through the above analysis, it can be further obtained that 
the flow of STFT channelization under the condition of 
under-sampling is shown in Fig. 4. 

 

Fig. 4. Flow chart of STFT channelization under sampling condition. 

D. Multi-Channel Frequency Division Defuzzification 

If it is assumed that the frequency hopping range of the 
wideband frequency-hopping LFM percussion waveform is 
𝑓1~𝑓2, the bandwidth of the LFM percussion waveform is 

sB
, and the following relationship is satisfied: 

s 1

s 2 1

B f

B f f






=

=
    (37) 

The ADC sampling rate is selected as sf
, and it satisfies 

the following relationship: 

 s s 2 12B f 2 f f  
   (38) 

If the reference frequency is set to 0f  and the number of 
channels is set to M, the RF analog percussion waveforms of 
M channels can be down-converted to the same IF frequency 
hopping range through M different local oscillator percussion 
waveforms, and are divided into N intermediate frequency 
sub-bands, as shown in Fig. 5. 

 

Fig. 5. IF sub-band division. 
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It is easy to see from Fig. 5 that the range of each IF 
sub-band can be expressed as: 

s s
0 0

( k 1) f kf
f ~ f ,k 1,2, N

2 2


   

  (39) 

Therefore, the frequency hopping range of the IF sub-band 

can be expressed as: 

s
0 0

Nf
f ~ f

2


     (40) 

Thus, the expressions of the intermediate frequency 

hopping bandwidth 1B
 and the bandwidth 2B

 of each 
sub-band are as follows: 

s
1 0

s
2 0

Nf
B 2 f

2

f
B 2 f

2


 


  
      (41) 

It is easy to know that when there is N=2, it is the easiest to 
comprehensively analyze the subsequent over-threshold 

detection results and frequency measurement results. When N 
increases gradually, the complexity of frequency deblurring 

will increase, but the sampling rate sf
 of ADC can be 

reduced lower. Therefore, after the M channels are 
down-converted from the radio frequency band to the 
intermediate frequency band, each channel can be divided into 

N sub-bands with an interval of 02 f
. According to the 

Nyquist sampling theorem, if the IF percussion waveform of a 
certain channel is directly frequency measured, the types of 
frequency ambiguity that will appear include: First, the 
frequency ambiguity between N sub-bands, which is caused by 
spectrum folding. The second is the self-ambiguous frequency 
band of the channel itself, and its range can be expressed as: 

s s
0 0

kf kf
f ~ f ,k 1,2, N 1

2 2
    

 (42) 

The IF frequency hopping bandwidth 1B
 is the same as 

the frequency hopping bandwidth of each channel in the radio 
frequency band. The RF frequency bands of the M channels are 
divided, as shown in Fig. 6. 

 

Fig. 6. Division of RF frequency bands for each channel. 

As can be seen from Fig. 6, the starting point of the 

frequency band of the i-th channel is represented by s ,if
, and 

it satisfies the following expression: 

s,i s ,i 1 2f f B ,i 2,3, , j 1, j 1, M      
 (43) 

Among them, the starting point of the frequency band of 

the 1st channel is s ,1 1f f
, and the end point of the 

frequency band of the i-th channel is denoted by e,if
, and the 

following expressions are satisfied: 

e,i s ,i 1f f B ,i 1,2, ,M   
  (44) 

When the channel number M is selected, the total 
frequency band of the channel must completely cover the 

frequency hopping range, that is, s,M 1 2f B f 
. The condition 

for frequency deblurring is that the overlapping frequency band 

bandwidth between M channels does not exceed sf / 2
. In 

order to satisfy this condition, the j-th channel is reserved here. 
For different situations, it is necessary to design the frequency 
band starting point of the channel to satisfy the frequency 
de-ambiguity condition. If the mid-frequency band of any 

channel is divided into only two sub-bands, namely N2, the 
condition for frequency de-ambiguity must be established at 
this time. Therefore, the j-th channel may not exist. 

The flow chart of multi-channel frequency division 
defuzzification is shown in Fig. 7. 
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Fig. 7. Flowchart of the realization of multi-channel frequency division 

defuzzification. 

E. Linear Interpolation Zero-Crossing Frequency 

Measurement 

The zero-crossing frequency measurement method can 
directly measure the frequency through the percussion 
waveform time series waveform, that is, calculate the 
frequency of the percussion waveform by measuring the time 
interval of the zero point. It has the advantages of simple 
principle, small calculation amount, and fast operation speed. 

If it is assumed that the percussion waveform to be tested is 
a point-frequency percussion waveform with zero initial phase, 
its expression is: 

x( t ) cos( 2πft )
    (45) 

If the sampling rate of the percussion waveform is sf
, the 

expression of the discrete percussion waveform after sampling 
is: 

   s sx[ n] x nT cos 2πfnT 
  (46) 

It is easy for us to know that the position where the zero 
point appears is: 

s

π
2πfnT kπ,k N

2
  

   (47) 

That is, when s

f 2k 1
,n 1,2,3

f 4n


  

 is satisfied, the 
zero position of the simulated percussion waveform can be 
sampled. Therefore, when the sampled percussion waveform 
does not contain the zero position, it is necessary to determine 
the zero point by the method of depreciation. 

The linear interpolation method is used to measure the 
frequency, and Fig. 8 is a partial enlarged view of the cross 
position of the left and right of the zero point. A and B are two 

zeros, and ABl
 is the interval between zeros. Therefore, if 

ABl
 can be obtained, the period of the percussion waveform is 

ABT l
 and the frequency is f 1 / T . The connection 

line at the positive and negative intersection of the zero point 
can be regarded as a straight line, that is, the method of linear 
measurement, there are: 

2 2

1 1

x y

x y


     (48) 

4 4

3 3

x y

x y


     (49) 

According to the sampling theory, the percussion waveform 

sampling period is s 1 2 3 4T x x x x   
. Combining Eq. 

(48) and Eq. (49), the following formula is obtained: 

2
2 s

1 2

y
x T

y y



    (50) 

3
3 s

3 4

y
x T

y y



    (51) 

Therefore, the zero-point interval AB 2 s 3l x nT x  
 is 

obtained. Among them, n is the number of discrete points 

between the two points of C,D . 
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Fig. 8. Schematic diagram of linear interpolation geometry of zero point position. 

IV. MODEL EXPERIMENTAL RESULTS 

A. Test Model 

This article uses the algorithm model in the third part to 
extract the features of percussion sound signals, mine and 
analyze the percussion sound signals, and combine the STFT 
algorithm with undersampling algorithm. This enables direct 
deblurring of undersampled RF broadband percussion 
waveforms, thus achieving frequency estimation of the original 
RF broadband percussion waveforms, and inputting them into 
the system as recognizable data. It can provide reliable 
reference for intelligent recognition of percussion waveforms 
and virtual simulation of percussion in the future 

After the music data is input into the feature selection 
model, the corresponding feature information is obtained 
through the long and short-term memory network. Then, it is 
input into the attention calculation module to analyze the 
feature distribution of each data block. The attention 
calculation layer is composed of a two-layer neural network 
(Fig. 9), and the structure is shown in Fig. 10. 

 

Fig. 9. Modeling of percussion big data mining based on deep neural 

network. 

B. Analysis of Test Results 

The sampling module and SA module are stacked together. 
In both the downsampling and upsampling modules, the size of 
the convolution kernel is (3,3), the stride is set to 1, and the 
padding mode is set to "same". Compared to using convolution 
kernels of size (5,5), using smaller kernels can reduce the 
computational complexity of the network, while using smaller 
and deeper kernels can achieve better performance than using 
larger kernels. Each downsampling block contains 3 layers of 
network, which are in order of size (3, 3) convolutional layer, 
BN layer, and Leave Relu activation layer when viewed from 
the direction of the input network. Each downsampling block 
uses a BN layer to normalize the feature information learned in 
this layer, avoiding overfitting. Select Leave Relu to activate 
the output of the downsampling layer, making the feature 
values of the output data smoother. Each upsampling block 
consists of five network layers, namely bilinear interpolation 
layer (BI), transposed convolutional layer of size (3,3), BN 
layer, dropout layer, and Relu activation layer. Abandoning the 
use of transposed convolution to construct upsampling blocks 
and instead using bilinear interpolation for upsampling, this 
approach reduces the number of parameters while achieving 
the goal of upsampling feature maps. 

 
(a) Downsampling block 

 
(b) Upsampling block 
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(C) Encoder decoder network 

Fig. 10. Structure diagram of neural network model. 

Model checking is performed on this basis. If the 
percussion waveform to be tested is an LFM percussion 
waveform, since the bandwidth and pulse width of the LFM 
percussion waveform are known, the modulation slope can also 
be determined. At this time, it is only necessary to measure the 
initial frequency according to the above process, and then 
perform frequency compensation to obtain the center frequency 
estimation of the LFM percussion waveform. The following is 

a simulation analysis of the frequency measurement accuracy 
of the LFM percussion waveform under different 
signal-to-noise ratios. Set up three experiments, taking the 
bandwidth and pulse width of LFM percussion waveform as 
20MHz, 6 μ s, 40MHz, 8 μ s, 80MHz, 12 μ s, respectively, the 
center frequency is 380MHz, the sampling rate is 1.6GHz, the 
signal-to-noise ratio range is 30dB to 45dB, and the step is 
1dB. The simulation results are shown in Fig. 11. 

 

Fig. 11. The relationship between the frequency measurement error and the signal-to-noise ratio of the linear interpolation zero-crossing frequency measurement 

method. 

As can be seen from Fig. 11, From different bandwidth and 
pulse width conditions, the linear interpolation zero crossing 
frequency measurement method has good performance in 
different environments, when the frequency measurement of 
the LFM percussion waveform is performed by the linear 
interpolation zero-crossing frequency measurement method, 
the frequency measurement error decreases with the increase of 
the signal-to-noise ratio. When the signal-to-noise ratio is 
35dB, the frequency measurement error is close to 1MHz, 
which can meet the requirements of frequency measurement 
accuracy. When the signal-to-noise ratio is higher than 35dB, 
the frequency measurement error gradually decreases, and 
finally tends to be stable, and the frequency measurement error 
remains about 30kHz. Therefore, under the premise of 
satisfying a certain signal-to-noise ratio, the linear interpolation 

zero-crossing frequency measurement method has better 
frequency measurement accuracy and can meet the 
requirements of LFM percussion waveform frequency 
measurement. 

To further verify the effectiveness of the model proposed in 
this paper, it is compared with the methods proposed in 
references [3], [7] and [10]. Reference [3] used deep learning 
techniques, reference [7] used multimodal sentiment 
classification techniques, and reference [10] used long 
short-term memory deep neural networks 

On this basis, the waveform recognition effect of the 
percussion big data mining model based on the deep neural 
network model is tested, and the results shown in Table I are 
obtained. 
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TABLE I. THE EFFECT OF WAVEFORM RECOGNITION OF PERCUSSION BIG DATA MINING MODEL BASED ON DEEP NEURAL NETWORK MODEL 

 
The method described in reference 

[3] 

The method described in reference 

[3] 

The method described in reference 

[3] 

The method described in this 

article 

1 77.756  86.136  90.503  95.568  

2 76.835  86.398  88.912  95.481  

3 80.269  88.925  88.188  94.256  

4 74.543  85.273  86.271  94.696  

5 79.464  86.467  82.559  93.745  

6 81.740  87.310  86.812  95.699  

7 75.862  83.395  83.471  94.236  

8 76.420  84.524  87.126  95.720  

9 77.525  88.801  83.874  95.325  

1

0 
74.090  85.098  88.667  95.684  

1

1 
79.665  84.147  86.548  93.017  

1

2 
78.682  83.832  83.488  94.556  

1

3 
75.782  84.673  89.114  94.439  

1

4 
79.399  83.980  84.820  94.879  

1

5 
77.335  81.607  83.927  93.426  

The method proposed in this article first obtains 
corresponding feature information through long short-term 
memory networks, and then inputs it into the attention 
calculation module to analyze the feature distribution of each 
data block. Compared with studies [3], [7], and [10], this article 
has more reliable recognition results. From the data, the 
method proposed in this article has better performance in 
waveform recognition in percussion big data mining models. 

It can be seen from the above research that the percussion 
big data mining model based on the deep neural network model 
proposed in this paper has a good effect on waveform 
recognition. 

In the process of music data mining and model 
construction, this method has lower implementation 
complexity compared to commonly used deblurring methods 
such as remainder theorem and time-frequency analysis. In 
addition, the overall design of the simulator system was 
completed, and the system was implemented based on a 
computer platform. Through analysis of test results, the 
accuracy of the system design and the effectiveness of 
frequency measurement methods were verified. 

V. CONCLUSION 

When performing percussion works, in some passages with 
complex rhythm changes or complex time signatures, the 
performer will also subconsciously use the head, torso and 
other limbs to strike the beat to remind the audience of the 
rhythm division logic. When there is a finger hitting passage in 
the music, the shape of the finger can guide the audience's 
understanding of the phrase. Moreover, while ensuring the 
timbre, the player will design the shape of the fingers when 
hitting or after hitting, and while ensuring the beauty of the 
hitting shape, it will be integrated with the inner emotion of the 

music. This article proposes a new deblurring algorithm based 
on multi-channel frequency band division. On this basis, the 
method of linear interpolation zero crossing frequency 
measurement is used to achieve fast frequency measurement of 
broadband frequency hopping signals. This method greatly 
reduces the system complexity while reducing the ADC 
sampling rate, and does not introduce additional deblurring 
errors. Finally, fast frequency measurement was achieved 
through linear interpolation zero crossing frequency 
measurement method. 

 The percussion big datamining and modeling methods are 
researched based on the deep neural network model. The 
simulation test shows that the percussion big data mining 
model based on the deep neural network model proposed in 
this paper has a good effect on waveform recognition. 

When the signal-to-noise ratio is 35dB, the frequency 
measurement error is close to 1MHz, which can meet the 
requirements of frequency measurement accuracy. When the 
signal-to-noise ratio is higher than 35dB, the frequency 
measurement error gradually decreases and eventually 
stabilizes, with a frequency measurement accuracy of around 
30kHz. Moreover, through comparison, it can be seen that the 
model in this article has better performance in sound wave 
recognition of percussion instruments 

When simulating the frequency hopping signal echo in this 
article, only the target characteristics were considered, without 
considering the clutter and interference characteristics. At the 
same time, when simulating the target echo, the scattering 
characteristics of the target were not considered, which means 
that the target is considered an ideal point target. Therefore, in 
subsequent research work, in order to better simulate the radar 
environment, it is necessary to simulate clutter signals and 
interference signals, and analyze the echo simulation methods 
of extended targets. 
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