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Abstract—This paper presents the development and evaluation 

of a medical service robot equipped with 3D LiDAR and advanced 

localization capabilities tailored for use in hospital environments. 

The robot employs LiDAR-based Simultaneous Localization and 

Mapping (SLAM) to navigate autonomously and interact 

effectively within complex and dynamic healthcare settings. A 

comparative analysis with the established 3D-SLAM technology in 

Autoware version 1.14.0, under a Linux ROS framework, 

provided a benchmark for evaluating our system's performance. 

The adaptation of Normal Distribution Transform (NDT) 

Matching to indoor navigation allowed for precise real-time 

mapping and enhanced obstacle avoidance capabilities. Empirical 

validation was conducted through manual maneuvers in various 

environments, supplemented by ROS simulations to test the 

system’s response to simulated challenges. The findings 

demonstrate that the robot's integration of 3D LiDAR and NDT 

Matching significantly improves navigation accuracy and 

operational reliability in a healthcare context. This study not only 

highlights the robot's ability to perform essential tasks with high 

efficiency but also identifies potential areas for further 

improvement, particularly in sensor performance under diverse 

environmental conditions. The successful deployment of this 

technology in a hospital setting illustrates its potential to support 

medical staff and contribute to patient care, suggesting a 

promising direction for future research and development in 

healthcare robotics. 

Keywords—Medical service robots; 3D LiDAR technology; 

autonomous navigation; hospital environments; robot-assisted 

healthcare; healthcare robotics; operational reliability; patient care 

automation 

I. INTRODUCTION 

The integration of robotics into healthcare represents a 
transformative shift in rehabilitation medicine, promising 
enhanced precision, efficiency, and patient outcomes. 
Rehabilitation robotics, especially in hospital environments, has 
seen considerable growth, propelled by advancements in 
automation and sensor technology. This paper focuses on the 
development of a medical service robot designed specifically for 
hospital settings in rehabilitation medicine, employing LiDAR-
based Simultaneous Localization and Mapping (SLAM) to 
navigate and function autonomously [1]. 

Rehabilitation robots are primarily developed to assist with 
the delivery of intensive, repetitive, and task-specific 

interventions which are often labor-intensive and require high 
levels of precision [2]. The role of these robots extends beyond 
mere assistance, as they are increasingly equipped with 
autonomous features that allow them to navigate complex 
hospital environments and interact with patients and healthcare 
staff effectively [2]. The adoption of LiDAR technology in 
medical service robots enhances these capabilities by providing 
accurate and real-time 3D maps of the environment, which is 
critical for the autonomous navigation and operational safety of 
robots [3]. 

The importance of autonomous navigation systems in 
medical robots cannot be overstated, as they significantly reduce 
the human resources needed for operation and maintenance, 
thereby increasing the healthcare system's overall efficiency [4]. 
Simultaneous Localization and Mapping (SLAM) technology, 
which combines data from various sensors to create a map of an 
unknown environment while simultaneously tracking the robot's 
location, is pivotal in this context. SLAM has been extensively 
studied and applied in mobile robotics, and its adaptation to the 
specific needs of medical environments presents unique 
challenges and opportunities [5]. 

The application of SLAM in medical service robots involves 
not only technical development but also consideration of the 
ethical, privacy, and safety concerns associated with robotic 
operations in human-centric environments [6]. Robots in 
hospitals must adhere to stringent safety standards and be 
capable of interacting with patients in a manner that 
complements the therapeutic goals of rehabilitation [7]. 
Furthermore, the integration of robots into public health settings 
raises significant privacy concerns, particularly in relation to the 
storage and handling of sensitive patient data captured by 
robotic sensors [8]. 

The development of robots equipped with LiDAR and 
SLAM for rehabilitation medicine also necessitates a 
multidisciplinary approach, combining insights from 
engineering, computer science, and healthcare. Such 
collaboration is crucial for ensuring that the robots are not only 
technically proficient but also tailored to meet the practical 
needs of patients and healthcare providers [9]. Moreover, the 
implementation of these technologies must be supported by 
robust clinical trials to validate their efficacy and safety in real-
world hospital settings [10]. 
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Past research has demonstrated the potential of robotic aids 
in enhancing patient engagement and improving recovery 
outcomes in rehabilitation settings [11]. For instance, robots that 
assist with walking or deliver physical therapy have been shown 
to improve mobility and accelerate recovery, providing a level 
of consistency and repeatability that is difficult to achieve 
through human intervention alone [12]. The development of a 
medical service robot with sophisticated navigation and 
mapping capabilities could further these benefits by enabling 
more dynamic and responsive interaction with the environment 
and the patients. 

This research aims to bridge the gap between the current 
capabilities of medical service robots and the evolving demands 
of modern healthcare facilities. By focusing on the integration 
of LiDAR-based SLAM technology, the study seeks to address 
several of the limitations faced by earlier models of 
rehabilitation robots, such as limited autonomy and the inability 
to adapt to new and complex environments [13]. The ultimate 
goal is to develop a robot that not only supports the logistical 
needs of hospitals but also contributes directly to the therapeutic 
processes, enhancing the overall quality of care and patient 
satisfaction [14]. 

The development of a medical service robot equipped with 
LiDAR-based SLAM technology for use in rehabilitation 
medicine represents a significant advancement in the field. This 
research contributes to a deeper understanding of the technical 
challenges and clinical implications of deploying autonomous 
robots in sensitive environments, aiming to maximize both the 
efficacy and safety of robotic interventions in healthcare settings 
[15]. 

II. RELATED WORKS 

In the evolving landscape of rehabilitation medicine, the 
integration of robotics has marked a significant technological 
advancement, aiming to enhance patient care through automated 
assistance and precise intervention. The adoption of advanced 
technologies like LiDAR and Simultaneous Localization and 
Mapping (SLAM) within medical service robots presents a 
novel approach to navigating complex hospital environments 
efficiently. This section reviews the pertinent literature 
surrounding rehabilitation robotics, with a focus on the 
incorporation of these sophisticated technologies into their 
design and functionality. The discussion extends across the 
technological underpinnings, applications, and the specific 
challenges faced, thereby setting a foundational context for this 
research. 

A. Overview of Rehabilitation Robotics 

Rehabilitation robotics has emerged as a vital tool in modern 
therapeutic practices, primarily focusing on enhancing patient 
recovery and automating repetitive therapy tasks. These robotic 
systems are designed to deliver high-intensity, precise 
interventions that are essential for the rehabilitation of patients 
with diverse physical impairments. According to Zhao et al. 
(2022), rehabilitation robots not only facilitate consistent 
therapeutic activities but also significantly reduce the physical 
burden on healthcare providers by automating routine tasks [16]. 

The evolution of these systems has been marked by 
significant advancements in their ability to interact with patients 

and adapt to various therapeutic needs. As highlighted by Hou 
et al. (2024), the integration of sophisticated sensors and 
actuators in these robots enables them to perform complex tasks 
with greater autonomy and accuracy [17]. This technological 
enhancement improves the quality of interventions and supports 
a broader range of rehabilitation activities. 

Moreover, the clinical impact of rehabilitation robotics is 
profound, with studies indicating improved patient outcomes in 
mobility and independence [18]. These robots provide tailored 
therapeutic exercises that are crucial for effective rehabilitation, 
making them an indispensable asset in modern healthcare 
settings. 

B. Technological Foundations in Medical Service Robots 

Medical service robots incorporate a variety of advanced 
technologies to enhance their functionality and autonomy in 
healthcare settings. Central to their operation are automation 
technologies and intelligent systems that allow these robots to 
perform a wide range of tasks, from patient care to logistical 
support within hospitals. According to Avutu et al. (2023), the 
use of real-time data processing and machine learning enables 
these robots to make informed decisions and adapt to dynamic 
environments, significantly enhancing their operational 
efficiency [19]. 

Actuators and sensor technologies play pivotal roles in the 
functionality of medical service robots. These components 
ensure precise control and interaction capabilities, critical for 
tasks that require high levels of accuracy such as medication 
delivery or patient monitoring [20]. Furthermore, the integration 
of communication interfaces facilitates seamless interaction 
with healthcare professionals, allowing for efficient 
coordination and data exchange. 

Moreover, the implementation of robotics in medical 
services often involves complex system architectures that 
combine hardware and software solutions to meet the stringent 
safety and performance requirements typical of medical 
environments [21]. These integrated systems not only ensure 
patient safety but also contribute to the overall resilience and 
reliability of robotic operations in healthcare settings. 

C. Use of LiDAR Technology in Robotics 

Light Detection and Ranging (LiDAR) technology has been 
pivotal in advancing robotic navigation systems. LiDAR sensors 
provide accurate distance measurements by illuminating a target 
with laser light and measuring the reflection with a sensor. This 
technology's application in robotics, as detailed by Chen et al. 
(2023), involves creating high-resolution maps of the robot's 
surroundings, which is essential for navigating through dynamic 
environments without human input [22]. In medical settings, the 
precision of LiDAR technology ensures that robots can navigate 
crowded hospital corridors and interact with patients and staff 
safely. 

D. Simultaneous Localization and Mapping (SLAM) 

SLAM technology is crucial for autonomous navigation, 
enabling robots to build a map of an unknown environment 
while simultaneously tracking their location within it. The 
convergence of SLAM with medical service robots enhances 
their operational autonomy. Takanokura et al. (2023) discuss 
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various SLAM algorithms, each with different strengths, 
catering to the specific needs of the environment and the task at 
hand [23]. In the context of rehabilitation robotics, the 
implementation of SLAM allows robots to adapt to new and 
evolving environments, facilitating seamless integration into 
hospital settings. 

E. Integration of SLAM in Medical Robotics 

The integration of Simultaneous Localization and Mapping 
(SLAM) technology in medical robotics represents a significant 
advancement in the autonomous operational capabilities of these 
systems within complex healthcare environments. SLAM 
technology allows medical robots to dynamically map their 
surroundings while maintaining an accurate location within the 
map, which is critical for navigation and task execution in 
hospital settings [24]. 

Incorporating SLAM into medical robotics facilitates 
enhanced spatial awareness and adaptability, enabling these 
robots to autonomously maneuver through crowded and 
dynamically changing hospital corridors and rooms. According 
to Mbunge et al. (2021), the ability to update and refine their 
environmental models in real-time allows these robots to operate 
safely and efficiently around both stationary obstacles and 
moving individuals, such as patients and medical staff [25]. 

Furthermore, the application of SLAM in medical robotics 
not only improves operational efficiency but also enhances the 
interaction capabilities of these robots with their human 
counterparts. Pereira et al. (2022) highlight that SLAM-
equipped robots can more effectively collaborate with 
healthcare providers, ensuring that therapeutic and logistical 
tasks are carried out with minimal human intervention [26]. This 
seamless integration into healthcare workflows greatly 
contributes to the overall productivity and patient care standards 
within medical facilities. 

F. Challenges and Limitations 

Despite the advancements, the integration of LiDAR and 
SLAM into medical service robots faces significant challenges. 
Yam et al. (2021) outline several technical challenges, including 
the high cost of LiDAR sensors and the computational demands 
of SLAM algorithms, which can limit their widespread adoption 
[27]. Additionally, ethical concerns regarding patient privacy 
and data security are paramount, as these technologies often 
collect sensitive information that could be vulnerable to 
breaches. Makhdoom et al. (2022) stress the importance of 
developing robust security protocols to protect patient data and 
ensure compliance with healthcare regulations [28]. 

G. Gap Analysis 

The current literature reveals several gaps in the application 
of advanced technologies like LiDAR and SLAM within the 
domain of medical service robots, particularly in rehabilitation 
settings. While significant advancements have been made in 
technical capabilities, there is a lack of comprehensive studies 

focusing on the practical integration of these technologies in 
real-world healthcare environments [29]. Additionally, existing 
research often overlooks the user-centric design and ethical 
considerations essential for deploying robots in sensitive areas 
such as patient care [30]. 

Moreover, despite the potential of these technologies to 
enhance robotic functionality, there is a notable deficiency in 
tailored solutions that address specific clinical needs and 
seamlessly adapt to the unique dynamics of hospital settings 
[31]. Addressing these gaps through focused research could lead 
to more effective and contextually appropriate robotic systems 
that improve patient outcomes and healthcare efficiency [32]. 

III. MATERIALS AND METHODS 

A. Data Collection 

The conceived system of the driven automated guided 
vehicle (AAGV) was formulated to elevate the execution of 
manual environmental mapping tasks currently in use through 
the utilization of self-positioning and autonomous navigation 
that operates nearby the layout map of the area. Given the fill 
running of an environmental assessment, the AGV 
autonomously constructs a map of the surrounding, a process 
that depends on conventional methods as well. This innovative 
approach exploits the factory indoor formation for micro-
localization and precise mobile robot self-positioning. By using 
point cloud data as input, 3D Lidar’s structural analysis module 
focuses on the portion gleaned from the wall structures, where 
the variance is measured subsequently by comparing it with a 
reference 2D layout map and the mapped horizontal trajectory 
(or wheel odometry) of the UGV. The filtering method 
implemented to achieve the localization uses a particle filter 
with Monte Carlo method, while the base of this navigation is 
the information determined from the map coordinate and 
transformed point cloud data [33]. 

Fig. 1 presents the basic control scheme of the proposed 
medical service robot, illustrating the integration of 3D LiDAR 
technology for autonomous navigation within hospital 
environments. The control architecture is divided into three 
primary components: 3D LiDAR processing, Mapping, and Path 
Planning. Initially, the 3D LiDAR sensor collects point cloud 
data which is processed by the Encoder and Odometry to track 
the robot’s position and movement. Wall point clouds are 
extracted to delineate boundaries and detect obstacles, ensuring 
the robot avoids collisions. Subsequently, the Mapping process 
involves assessing the robot's position and converting the 
environmental map to a point cloud format for real-time 
navigation updates. In the Path Planning segment, the robot sets 
navigation goals, computes feasible paths, and creates a 
navigational trajectory, culminating in the autonomous mobility 
of the robot. This control scheme underscores a comprehensive 
approach to navigating complex healthcare settings, leveraging 
advanced sensing and computational techniques to enhance 
operational efficacy and safety. 
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Fig. 1. Basic control scheme of the proposed medical service robot. 

B. The Hardware Module 

In this study, the Shenzhen Yahboom Technology 
Rosmaster X3 Plus mobile robot was utilized as a primary 
research tool. This robot, operating within a hybrid system 
environment, combines physical hardware with virtual systems 
managed through Ubuntu 20.04 on a VMware Workstation 
virtual machine, and further controlled via the ROS-Noetic 
operating system specifically tailored for robotic management. 
The choice of the Rosmaster X3 Plus for this research is 
predicated on its advanced capabilities and adaptability to 
complex tasks, making it an ideal candidate for detailed study in 
robotic navigation and interaction within structured 
environments. 

The Rosmaster X3 Plus is equipped with cutting-edge 
hardware that enhances its sensing and computational abilities, 
crucial for effective navigation and task execution. Central to its 
operation is the Jetson Orin NX processor, boasting 16GB of 

memory, which facilitates robust real-time processing for tasks 
such as obstacle navigation and localization. Environmental 
perception is significantly enhanced by the integration of a 
YDLidar 4ROS Lidar system, which provides high-resolution 
3D point cloud data. Complementing this, an Astra Pro depth 
camera provides detailed 3D visual inputs that are integrated 
with the Lidar data for a comprehensive environmental 
understanding. This hardware-software synergy not only boosts 
the robot’s operational efficiency but also underscores the 
effectiveness of modern technologies in autonomous robotic 
navigation. 

The operation of the motor is governed by signals originating 
from Pulse Width Modulation (PWM), which dictate the motor's 
speed, and directional signals that guide the rotation. These 
commands are dispatched by a microcomputer integrated within 
the motor driver, initiating motion based on inputs. Fig. 3 shows 
motor drive set-up. 
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Fig. 2. Medical service robot of the study. 

 
Fig. 3. Motor drive setup (a) DC Motor setup (b) Encoder configuration. 

Further, a serial communication line facilitates the 
transmission of these commands from the microcomputer to a 
personal computer (PC), allowing operators to manage the cart's 
functions effectively through PC-based controls. Additionally, 

communication between the motor's encoder and the 
microcomputer is handled via an SPI interface, which transmits 
precise rotational angle data, subsequently relayed to the PC, 
enhancing clarity in monitoring and controlling the motor's 
activity and the cart’s trajectory. 

C. Odometry 

The integration of 3D LiDAR with wheel odometry equips 
the robot with enhanced capabilities to both perceive its 
surroundings and track its movement accurately. Odometry, 
fundamentally reliant on mathematical equations and principles, 
plays a crucial role in this process. It operates by analyzing the 
rotation of the robot's wheels, which directly informs the 
calculation of the distance traveled. Each wheel is equipped with 
an encoder that records the number of rotations, allowing for 
precise measurement. Given the radius r  of the wheels and the 
number of encoder ticks N , the distance D  each wheel travels 

can be calculated, providing critical data for navigating and 
mapping the robot's environment effectively. 


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   (1) 

Where totalN  is the total number of ticks per complete 

wheel rotation. 

For a two-wheeled robot, the distance traveled  
avgD  and 

change in orientation are given by: 
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Where LD  and RD  are the distances traveled by the left 

and right wheels, respectively, and W  is the width between the 

wheels. 

3D LiDAR technology generates a detailed point cloud that 
captures the robot's surroundings, facilitating a comprehensive 
understanding of its movements and orientation through external 
reference points. When combined with wheel odometry, LiDAR 
helps to correct potential inaccuracies and drifts that may 
accumulate in the odometry data over time. Fig. 2 shows 
medical service robot of the study. 

The process of merging odometry with 3D LiDAR data 
involves a methodical approach: 

1) Initial estimation: Wheel odometry is initially used to 

estimate the robot's trajectory. 

2) LiDAR correction: The point cloud produced by LiDAR 

is compared against a pre-established map to identify any 

deviations that suggest errors in the odometry data. 

3) Data fusion: Techniques such as the Kalman filter are 

employed to amalgamate the data from both odometry and 

LiDAR. This integration enhances the accuracy of the robot's 

navigation system by providing a more reliable data set that 
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accounts for any discrepancies identified between the odometry 

and LiDAR inputs. 

 1|1||
ˆˆˆ

  kkkkkkkk xHyKxx
  (4) 

Where kkx |
ˆ  is the a posteriori state estimate, 1|

ˆ
kkx  is the a 

priori estimate, kK  is the Kalman gain, ky  represents the 

measurement (Lidar data), and H  is the measurement matrix 
relating the state to the measurement. 

Update Position and Orientation: Adjust the robot's 
estimated position and orientation based on the fused data: 
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Subsequently, the robot's position and orientation are 
updated based on corrected data derived from the integration of 
wheel odometry and LiDAR measurements. This fusion ensures 
that the robot accurately maintains its location and direction, 
reducing errors that might arise from wheel slippage or uneven 
terrain. 

By combining 3D LiDAR data with wheel odometry, our 
mobile robot achieves superior navigation precision and detailed 
environmental mapping. This sophisticated odometry system 
underpins the robot's ability to autonomously operate in 
complex and dynamically changing environments, facilitating 
reliable performance across various operational scenarios. 

D. Localization 

The navigation capability of our mobile robot is enhanced by 
3D LiDAR technology, utilizing a sophisticated localization 
algorithm that precisely determines the robot's position within 
its operating environment. This section delves into the 
mathematical principles and operational mechanics of the 
localization algorithm employed in our system, emphasizing the 
integration of 3D scanning data to improve node localization 
accuracy. 

Central to our localization strategy is Monte Carlo 
Localization (MCL), also known as particle filter localization. 
This probabilistic method uses a collection of hypothetical 
particles to represent potential positions and orientations (states) 
of the robot within its environment. Each particle is weighted 
based on its congruence with environmental data gathered via 
LiDAR scans and the robot’s observed movements, effectively 
merging sensor inputs with motion data to estimate the robot’s 
location with higher accuracy. 

Particle Representation: In our system, each particle in the 
set represents a potential state of the robot, encompassing both 
its location and orientation, forming the basis for calculating the 
most probable actual state of the robot as it navigates. 

 iiii yxp ,,
   (6) 

iii yx ,,  denote the particle's position and orientation. 

Weight Calculation. The weight iw  is calculated for each 

particle taking into account the degree of matching of the 
predicted sensor readings for the desired particle state with the 
real sensor readings given by the 3D Lidar. 

 iti pzPw |
   (7) 

Where 
tz  is the Lidar measurement at time t , and 

 it pzP |  is the likelihood of observing 
tz  given the state 

represented by particle i . 

Resampling within the Monte Carlo Localization (MCL) 
framework involves selecting particles based on their weights, 
with particles possessing higher weights more likely to be 
chosen. This process concentrates the particle distribution 
around the most likely states of the robot’s position, refining the 
model’s accuracy over time. 

Integrating 3D LiDAR data significantly enhances the MCL 
algorithm's localization precision by allowing a detailed 
comparison between the environmental features detected by the 
LiDAR and the pre-existing map model. The LiDAR’s point 
cloud captures environmental details at a granular level, 
facilitating highly accurate weight calculations for each particle 
within the model. 

The sensor model associated with the 3D LiDAR converts 
the point cloud data from a sequential format into a probabilistic 
one, aligning it with the map’s specifications. This 
transformation allows for an effective comparison, essentially 
converting 3D data into a more manageable 2D format to match 
the map, thereby enhancing the fidelity and utility of the particle 
data. 

Before assigning weights to each particle, a motion update is 
conducted based on the reported movements of the robot. This 
update adjusts the positions and orientations of the particles to 
reflect the robot’s dynamics as captured by its odometry data, 
ensuring that the model remains consistent with the robot's 
actual movements. The motion model updates are critical for 
maintaining the accuracy of the localization process. 

  ,'

tii uppp
  (8) 

where 
'

ip  is the updated particle state, p  is the change in 

state due to the control input tu  (e.g., velocity, angular velocity) 

at time t , and   represents the motion noise. 

E. Obstacle Avoidance 

Obstacle avoidance is a critical component of autonomous 
navigation systems, involving two main functions: detecting 
obstacles and formulating alternate paths to circumvent them. 
Consider a scenario where a predetermined route is blocked on 
the left side by an obstruction. In such cases, navigational 
coordinates are structured into waypoints, each associated with 
a specific detection zone. This zone is typically envisioned as a 
cylindrical area encompassing each waypoint along the robot's 
path, serving as a detection field for obstacles. 
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Fig. 4. Obstacle avoidance of the proposed medical service robot. 

Within this cylindrical detection zone, any detected objects 
that do not correspond to the ground are classified as obstacles. 
The presence of these obstacles renders the area impassable, 
necessitating a rerouting of the planned path. This mechanism 
ensures that the robot can adapt its route in real-time to avoid 
obstacles, maintaining smooth and continuous navigation as 
depicted in Fig. 4. 

The obstacle avoidance strategy within autonomous 
navigation systems functions by designating areas where 
obstacles are detected as blocked, typically highlighted in red on 
navigational maps. This prompts the system to seek alternative 
corridors for maneuvering around the impediment. The 
algorithm evaluates possible detours, actively searching for 
viable paths adjacent to the obstruction. If a feasible route is 
identified along one side of the obstacle, it is selected for 
navigation, and the route-finding algorithms are updated to 
reflect this new path. Conversely, if obstructions block all 
potential routes, rendering them impassable, the vehicle halts its 
progress until an alternate path becomes available. This adaptive 
mechanism ensures that the vehicle can flexibly and effectively 
navigate through varying environmental conditions by 
dynamically adjusting its course in response to encountered 
obstacles. 

IV. RESULTS 

This section explores the evaluation of the map accuracy 
generated by our medical service robot, which is crucial for self-
localization and overall system performance assessment. Our 
system was rigorously tested against the renowned 3D-SLAM 
technology implemented in Autoware version 1.14.0, an 

established open-source platform designed for autonomous 
driving technologies under the Linux ROS framework. A critical 
aspect of Autoware’s capability is the Normal Distribution 
Transform (NDT) Matching, which utilizes point cloud scan 
matching to enhance localization accuracy. This method 
employs normal distributions to model point clouds within 
specified segments, facilitating precise alignment of overlapping 
point clouds, a feature vital for accurate localization in 
environments requiring high precision, such as autonomous 
navigation systems. 

To empirically validate our system, data collection involved 
manually maneuvering a mobile trolley through various 
environments, recording its positions to verify the accuracy of 
the self-localization predictions. This testing covered diverse 
measurement points, extending through indoor and outdoor 
settings and spaces between different structures. Additionally, 
our self-localization methods were tested through ROS 
simulations using the collected positional data. This detailed 
validation approach ensures that our system’s performance is 
thoroughly understood and reliable in practical scenarios, 
demonstrating robust capabilities in a real-world application 
context. 

Fig. 5 presents a series of diagrammatic representations 
illustrating the navigation process within a two-dimensional 
environment, capturing the dynamic nature of path planning. 
The sequence starts with Fig. 5(a) and 5(b), which mark the 
initiation of the path planning phase and lay the groundwork for 
subsequent navigational decisions. This is followed by Fig. 5(c), 
which details the iterative steps involved in path planning as the 
robot maneuvers through various directions. This stage 
highlights the dynamic and repetitive nature of adjusting the 
planned route as the robot encounters different scenarios. 
Conclusively, Fig. 5(d) captures the culmination of the path 
planning process, displaying a finalized map that delineates the 
actual path taken by the robot. This sequence effectively 
demonstrates the progression from initial path determination 
through to adaptive adjustments and the final mapping, 
underscoring the complex and responsive strategy employed in 
robotic navigation. 

Fig. 6 provides a detailed exploration of the path planning 
processes implemented by a robot within a three-dimensional 
framework, showcasing the steering strategies employed as it 
navigates through cluttered environments. This diagram 
effectively illustrates the robot's capability to assess and adapt 
its trajectory in real-time as it maneuvers through various 
terrains and obstacles in 3D space. It serves as a critical visual 
tool for understanding the sophisticated 3D capabilities of 
autonomous systems, highlighting their ability to perceive and 
interact with their surroundings comprehensively. The figure 
emphasizes the advanced algorithms that enable these systems 
to not only navigate intelligently but also to create detailed 3D 
maps upon the completion of their routes. This depiction 
confirms the complexity and dynamism of new 3D path 
planning techniques, reflecting significant advancements in the 
autonomous vehicle industry, where precision and efficiency are 
paramount in navigating complex environments. 
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a) Path planning from left to right side b) Path planning from bottom to up 

  

c) Path planning process d) Path planning process has been completed 

Fig. 5. The path planning process for the medical service robot. 

  

  

Fig. 6. Path planning in 3D for medical service robot from various foreshortening. 
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a) Start of mobile robot path planning b) Mobile robot navigation 

Fig. 7. Mobile medical service robot navigation using 3D LiDAR. 

Fig. 7 showcases the developed mobile robot equipped with 
3D LiDAR technology, operating in a real-world or field setting, 
which illustrates the robot's design and its operational 
capabilities. This image particularly highlights how the 
integrated 3D LiDAR technology enables the robot to perceive 
and interact dynamically with its environment. The diagram 
captures the robot as it navigates a specified area, utilizing 
LiDAR data to facilitate steering, obstacle avoidance, and 
localization tasks. Through this visual representation, the 
practical functioning of the mobile robot is conveyed, 
underscoring the real-time application and demonstrating the 
effectiveness of the combined technologies in enhancing the 
navigation system. This figure serves as a vital link between the 
theoretical concepts underlying the study and their practical 
implementation, showcasing the translation of academic 
research into actionable, autonomy-enhancing strategies within 
robotic systems. 

V. DISCUSSION 

In this discussion, we delve into the findings from the 
deployment and validation of our medical service robot, 
equipped with advanced 3D LiDAR technology and an 
innovative localization system. The results underscore the 
robot's potential to revolutionize navigation and interaction 
within hospital environments, providing critical insights into 
both the capabilities and areas for further enhancement of 
autonomous robotic systems in healthcare settings. 

The application of 3D LiDAR technology in our medical 
service robot has proven to be a cornerstone for enhancing 
autonomous navigation. The high-resolution data obtained from 
LiDAR not only facilitated accurate real-time mapping but also 
significantly improved the robot's ability to detect and navigate 
around obstacles. This capability is critical in a hospital setting 
where dynamic obstacles such as moving people and medical 
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equipment are common. The integration of 3D LiDAR with the 
robot's other sensory systems has enabled a level of situational 
awareness that is paramount for safe and efficient operation 
within such complex environments. 

Our comparative analysis with Autoware's 3D-SLAM 
technology highlighted the effectiveness of our localization 
approach. The Normal Distribution Transform (NDT) Matching 
method, typically used in autonomous vehicular navigation, was 
adapted for indoor use with our robot. This adaptation was 
crucial as it addressed the unique challenges of indoor 
navigation, which include lower GPS reliability and the 
presence of numerous static and dynamic obstacles. The 
successful application of NDT in our system underscores its 
potential for broader application in other robotic systems that 
operate in similarly challenging environments. 

Furthermore, the empirical validation of our robot's 
localization accuracy through manual maneuvering across 
different environments provided substantial evidence of its 
robustness. The robot demonstrated a high degree of precision 
in maintaining its course within tightly controlled trajectories, 
an essential feature for medical applications where precise 
movements are often necessary. However, it was noted that 
certain environmental conditions, such as highly reflective 
surfaces or areas with poor LiDAR reception, could disrupt the 
localization process. This finding points to the need for further 
research into improving sensor fusion techniques to mitigate the 
effects of such environmental factors on the robot's 
performance. 

The ROS simulations used for further validation played a 
crucial role in this study, allowing us to replicate and analyze 
numerous scenarios that the robot might encounter. These 
simulations were instrumental in refining the robot’s path 
planning algorithms, ensuring that the system could adapt to 
unexpected changes in the environment efficiently and 
effectively. The ability to conduct such simulations highlights 
the importance of flexible and robust software frameworks in 
the development of autonomous robotic systems. 

Moreover, the data collected during the robot's operation in 
different factory settings revealed valuable insights into the 
practical challenges of deploying such systems in real-world 
environments. For instance, the transition from indoor to 
outdoor settings posed navigation challenges that were not fully 
anticipated, such as changes in lighting conditions affecting 
sensor performance. Addressing these challenges will require 
the development of adaptive algorithms capable of adjusting to 
varying environmental conditions seamlessly. 

The discussion would be incomplete without considering the 
implications of this technology for patient care. The precision 
and reliability of the robot's navigation and localization systems 
have direct implications for its potential use in delivering 
medications, assisting with patient transport, or conducting 
routine monitoring tasks. These activities require a high level of 
accuracy to ensure patient safety and care quality. Our findings 
suggest that with further development, such robots could 
become integral components of healthcare delivery, enhancing 
the efficiency and effectiveness of medical services. 

In summary, the development and validation of our medical 
service robot with integrated 3D LiDAR and advanced 
localization capabilities represent a significant step forward in 
the field of healthcare robotics. The successful deployment of 
this technology in a hospital environment showcases its 
potential to enhance operational efficiencies and patient care. 
Nonetheless, the study also highlights several areas for further 
improvement, particularly in enhancing the robot's adaptability 
to diverse and changing environments. Future research should 
focus on refining the integration of sensory and navigational 
technologies to build even more robust, versatile, and reliable 
robotic systems. Such advancements will not only improve the 
functionality of medical service robots but also expand their 
applicability across different sectors within healthcare, 
ultimately contributing to the broader goal of automating and 
improving medical service delivery. 

VI. CONCLUSION 

In conclusion, the research conducted on the development of 
a medical service robot equipped with 3D LiDAR and advanced 
localization technologies has substantiated its potential to 
significantly enhance navigational and operational capabilities 
in hospital environments. This study not only demonstrated the 
robot's proficiency in precise and adaptive navigation through 
complex and dynamic settings but also emphasized its utility in 
the context of healthcare delivery. The integration of 3D LiDAR 
technology facilitated a robust sensing environment, enabling 
the robot to perform with high levels of accuracy in obstacle 
detection and path planning. Moreover, the comparative 
validation with established technologies like Autoware’s 3D-
SLAM provided a robust framework for assessing the 
effectiveness of our localization system, confirming its 
applicability and reliability. Despite encountering challenges 
such as sensor sensitivity to environmental factors, the research 
identified critical insights for future enhancements, notably in 
improving sensor fusion and algorithm adaptability. These 
advancements are imperative for ensuring the robot can 
seamlessly integrate into the diverse and evolving landscape of 
healthcare facilities. The potential for such autonomous systems 
to assist in routine tasks and patient care suggests a promising 
horizon not only for improving efficiency but also for enriching 
the quality of care. Moving forward, continued refinement and 
testing in real-world conditions would be crucial to fully realize 
the capabilities of medical service robots, setting a precedent for 
their broader adoption in healthcare settings. 
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