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Abstract—Carbon dioxide dense phase injection images have 

providing new research ideas for differential detection. Aiming at 

the drawbacks of large data volume, low matching efficiency, and 

longtime consumption of high-resolution carbon dioxide dense 

phase injection models, a registration algorithm for carbon 

dioxide dense phase injection models based on quadratic matching 

is proposed. This algorithm first uses down sampling to reduce 

image dimensions. A difference detection algorithm based on 

weakly supervised deep confidence network is proposed to neural 

networks, as well as the high manual labeling workload, low 

efficiency, and insufficient labeled data of high-resolution carbon 

dioxide dense phase injection models. This article first explores the 

throttling of CO2 venting in pipelines through the analysis of CO2 

phase equilibrium characteristics. The experiment shows that 

there is after the valve, the greater the temperature drop. At the 

same time, water content will affect the throttling temperature 

drop is about 1.5 degrees; when the gas-liquid ratio is 2500, the 

throttling temperature drop is 7.4 degrees. CO2 in the reactor to 

over 8MPa, achieving supercritical pressure. CO2 with the 

constant temperature water bath is 5~100 degrees, with a 

temperature control accuracy of ± 0.1 degrees. The temperature 

of the water inside the water bath jacket of the kettle is adjusted 

through circulation. The maximum pressure of the kettle is 25MPa 

and the volume is 6L. 
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throttling characteristics; security control; dense phase injection 
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I. INTRODUCTION 

According to engineering experience in transporting CO2 
through pipelines, the transportation of CO2 in supercritical 
conditions is the most economical. When transporting 
supercritical CO2 through pipelines, pipeline safety issues 
cannot be ignored [1, 2]. The Introduction section will outline 
the significance of CO2 injection in carbon capture and storage 
(CCS) and discuss existing challenges such as flow dynamics, 
phase transitions, and system safety. In the DBN Deep Learning 
Algorithm section, the structure and functioning of the Deep 
Belief Network (DBN) will be explained, highlighting how it 
can automatically extract features from high-dimensional data 
and optimize CO2 injection models. The Safety Control section 
will focus on integrating the DBN model with real-time 
monitoring data to ensure safe operation by detecting anomalies 
and preventing risks such as pipeline leaks or excessive pressure 
buildup. Although there have been no large-scale human 

casualties caused by CO2 pipeline leaks worldwide so far, due 
to the current fact that there are only 6000km of CO2 pipelines 
worldwide, which is less than 1% of the total mileage of oil, 
natural gas, and other hazardous materials pipelines, with the 
vigorous development of CCS technology, the mileage of CO2 
pipelines will significantly increase, and the accompanying 
operational risks of pipelines will also sharply increase [3, 4]. 
Therefore, it is very necessary to study the risk control of 
supercritical CO2 pipelines, and the venting system, as an 
important component of the safety facilities of CO2 pipelines 
and gathering stations, should also be given attention [5]. 
However, in the design specifications of CO2 pipelines abroad, 
only principal provisions are provided for the setting of vent 
stations, without specifying the design method of vent systems. 
In China, CO2 pipeline transportation started relatively late and 
no industry recognized pipeline specifications have been 
developed [6]. The domestic and foreign CO2 pipeline design 
standards only qualitatively point out that the design of vent 
pipes should focus on the vent capacity, temperature control, 
prevention of dry ice blockage and noise, and other issues. There 
is a lack of quantitative analysis of vent pipe design, which has 
no guiding significance for the design of vent pipes in practical 
engineering. Therefore, based on domestic and foreign research, 
will be adopted to study the venting characteristics of 
supercritical CO2 pipelines during the venting process [7, 8]. 
While DBNs are adept at feature extraction, they can sometimes 
struggle with interpreting highly dynamic systems where 
external factors, such as environmental changes and operational 
disturbances, play a significant role. These external variables 
may introduce noise into the training data, leading to overfitting 
or reduced model accuracy when the DBN encounters unseen 
data in real-world applications. Furthermore, the black-box 
nature of deep learning models, including DBNs, poses 

challenges in understanding and interpreting the model’ s 

decisions. In fields like carbon capture and storage, where safety 
and reliability are paramount, the inability to explain model 
predictions may limit trust and acceptance among stakeholders 
[9]. Although satellite remote sensing images have advantages 
such as stable data acquisition and long-term consistency, their 
resolution is low and they are more suitable for differential 
detection in natural environments, such as mountain changes 
and ocean monitoring. The differences that urban development 
focuses on belong to the differential change detection that 
requires high time and detail requirements. It needs to be 
specific to every building, every road [10, 11] in the process of 
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change, so higher resolution images are needed. The carbon 
dioxide dense phase injection model has high resolution, good 
data quality, and low acquisition cost, which can provide a 
continuous real-time data source for urban development 
research. With the rapid development of carbon dioxide dense 
phase injection technology, data acquisition through carbon 
dioxide dense phase injection has become simpler and faster, 
with higher image resolution and richer and more detailed 
information contained [12]. 

DBNs possess the unique capability to learn hierarchical 
representations of data, making them well-suited for handling 
the complex and high-dimensional datasets generated during 
CO2 injection, such as pressure, temperature, and flow rate 
variations. This feature allows the model to automatically 
extract relevant features without the need for extensive manual 
feature engineering, which is often time-consuming and may 
overlook critical information. Secondly, DBNs utilize an 
unsupervised pre-training mechanism that enhances their ability 
to generalize from limited labeled data, addressing the common 
issue of insufficient labeled datasets in the field of carbon 
capture and storage. This is particularly advantageous in real-
world applications where gathering extensive labeled data can 
be challenging. Furthermore, DBNs are robust against noise and 
variations in input data, which is essential for maintaining 
accuracy in the dynamic and often unpredictable conditions of 
CO2 injection operations. Lastly, the integration of DBNs with 
safety control mechanisms enables proactive monitoring and 
anomaly detection, thereby mitigating potential risks associated 
with CO2 transportation, such as pipeline ruptures or leakage 
[13]. Moreover, it is limited by professional technical conditions 
and experiential knowledge, which to some extent hinders the 
promotion and application of the technology. Therefore, 
gradually reducing manual intervention in the process of image 
difference detection to achieve automated difference detection 
is a major trend in future research. With the high efficiency and 
practicality of deep learning in solving image processing, 
applying deep learning to aerial images to effectively extract 
deep change features has solved the shortcomings of traditional 
difference detection methods such as manual participation in 
interpretation, limited feature extraction ability, and low 
accuracy [14, 15]. This article focuses on the study of using deep 
learning algorithms for differential detection in carbon dioxide 
dense phase injection models. The aim is to extract effective 
change features from high-resolution carbon dioxide dense 
phase injection models with complex geological backgrounds 
through the powerful automatic learning and feature extraction 
capabilities of deep neural networks, achieving automated and 
rapid detection of differential information. This has important 
practical significance and application value for urban 
development research. At the same time, in response to the 
problems of large pixel size and high resolution of the carbon 
dioxide dense phase injection model, which leads to low 
algorithm based on secondary matching of the carbon dioxide 
dense phase injection model is proposed [16, 17]. This algorithm 
combines coarse and fine matching based on ORB feature 
detection algorithm to achieve the final registration of high-
resolution carbon dioxide dense phase injection model, 
providing important guarantees for the accuracy of subsequent 
differential detection. Differential detection based on image 
transformation is the process of analyzing images mapped to a 

new feature space to obtain change information. Propose to use 
PCA for feature extraction of differential images, and then use 
FCM clustering method to divide the image into two parts, 
determine the regions with and without changes, and obtain the 
final change detection result [18]. Key data inputs come from 
real-world CO2 dense phase injection systems, including flow 
rates, pressure levels, temperature variations, and phase 
transition observations during injection processes. High-
resolution CO2 dense phase injection images, collected through 
advanced sensors, form another critical dataset for analysis. 
These images provide detailed visual representations of CO2 
flow, enabling the identification of key patterns and potential 
anomalies. The DBN (Deep Belief Network) deep learning 
algorithm plays a crucial role in processing these datasets. Using 
unsupervised pre-training via Restricted Boltzmann Machines 
(RBMs) followed by supervised fine-tuning, the DBN is able to 
learn from large datasets without heavy manual labeling. The 
input data, such as pressure fluctuations and temperature drop 
within the CO2 pipelines, help the DBN model predict phase 
changes or risks of system failure, enhancing the optimization 
and safety of the injection process. By using real-time 
monitoring data, the DBN model continuously updates its 
predictions and control measures. [19]. 

II. RESEARCH ON THE VENTING LAW OF CO2 PIPELINE 

STATIONS 

A. Establishment of Venting Model 

Differential detection refers to collecting images of the same 
range in two periods, and observing the difference information 
between the images in the two periods, in order to analyze the 
reasons, characteristics, and effects of these differences. As 
shown in Eq. (1) and Eq. (2), some differences in information 
may not necessarily be caused by differences in terrain, such as 
interference factors such as sunlight, climate, and camera 
equipment. 
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1 1 2
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Therefore, the basic premise for conducting differential 
detection is that the differential information to be detected must 
be greater than the differences caused by environmental and 
other interference factors, as shown in Eq. (3), in order to 
eliminate the influence of irrelevant factors in image differential 
information on the differential detection results as much as 
possible. Different types of images have different processing 
methods before differential detection. 

1

PCC PRE
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PRE




      (3) 

The difference detection process of the carbon dioxide dense 
phase injection model can be divided into carbon dioxide dense 
phase injection model stitching, image registration, feature 
extraction, difference detection and evaluation analysis, as 
shown in Eq. (4). The images collected by carbon dioxide dense 
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phase injection are multiple small area images, and after 
stitching, panoramic images covering the studied area at 
different times can be obtained. 

TP
Jaccard

FP FN TP


          (4) 

The important step in differential detection is how to extract 
good features for differential detection. As shown in Eq. (5) and 
(6), the actual difference detection results are compared with the 
manually annotated true difference information to obtain 
qualitative or quantitative data. 

        D x, y, G x, y,k G x, y, I x, y    
   (5) 

L( x,y, ) G( x,y, ) I( x, y )  
         (6) 

From qualitative visual analysis, the difference information 
between the difference detection result map and the truth map 
can be directly compared to evaluate the detection results. At 
each candidate position, as shown in Eq. (7) and Eq. (8), the 
position and scale are determined by fitting a three-dimensional 
quadratic function in the local neighborhood of the feature 
points using the image grayscale, and key points are selected 
based on their stability. 
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Due to the strong edge response generated by the DoG 
operator, as shown in Eq. (9) and Eq. (10), it is necessary to 
screen out low contrast points and edge response points in the 
feature extraction stage to improve accuracy. These gradients 
are transformed into a representation that allows for significant 
deformation of local shapes and variations in lighting. 
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B. Dense Phase Injection Model 

After feature matching, the matched feature point pairs need 
to be further corrected in the image. Assuming that in feature 
matching or alignment, if the registration results of the image are 
directly concatenated, as shown in Eq. (11) and Eq. (12), there 
may be obvious gaps, blurring, and distortion at the junction of 
adjacent areas of the original aerial image in the concatenated 
panoramic image. Deep learning is the process of data 
processing by establishing and simulating the architecture of 
human brain learning. 
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Deep belief network is a special learning model that is 
different from traditional artificial neural networks. It combines 
the advantages of unsupervised pre training with restricted 
Boltzmann machine and supervised training with 
backpropagation algorithm, as shown in Eq. (13). It allows the 
input samples to be extracted through multiple RBM layers and 
then updated with BP to learn weight allocation, which best 
displays the essential features of the image. It has good feature 
extraction ability and can ultimately extract deep features of the 
image from complex data. 
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Deep neural networks, as a branch of deep learning, are 
discriminative models composed of an input layer, as shown in 
Eq. (14), multiple hidden layers, and an output layer. Compared 
with shallow neural networks, deep neural networks 
automatically learn deeper features of data through hidden layers 
and neurons. 
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As the complexity of data samples intensifies, the number of 
hidden layers and neurons can be increased. Through structural 
mapping between layers, the sample features in the original 
space can be mapped to a new feature space, as shown in Eq. 
(15) and Eq. (16), and abstract composite features can be 
performed at higher levels to improve the detection performance 
of complex data. 
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The training process of deep learning models can be trained 
using the BP algorithm. The so-called training of neural 
networks refers to allowing machines to correct multiple 
parameters in the neural network, such as layer to layer 
connection weights and biases, by continuously learning the true 
difference information manually annotated. As shown in Eq. 
(17) and Eq. (18), the construction of network structures often 
originates from practical problems, and determining parameters 
requires continuous iteration to reduce the cost function in order 
to seek the optimal combination of network parameters. This 
method improves training efficiency and effectively solves the 
problem of local optima. Compared to traditional neural 
networks, RBM has no output layer and only includes visible 
and hidden layers, as shown in Eq. (19) and Eq. (20), while the 
hidden layer serves as a feature detector for extracting and 
learning features from the data. 
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III. DIFFERENTIAL DETECTION OF CO2 DENSE PHASE 

INJECTION MODEL BASED ON DEEP CONFIDENCE NETWORKS 

A. Deep Learning Theory 

The training of RBM is similar to forward training, keeping 
the weight coefficient w of forward training unchanged [20]. At 
this time, the hidden layer is used as the new input for 
reconstruction training. The neurons of each hidden layer are 
multiplied by the weight, stacked, and then biased to obtain the 
reconstructed output, completing one reconstruction training. 
The reconstruction error will continuously decrease with the 
iterative training process of RBM until the error reaches its 
minimum value, and the parameter weights and biases are also 
updated [21, 22]. From this, it can be seen that the training 
process of RBM networks does not require manual annotation 
of data for supervision and guidance, and can learn advanced 
features of the original data. Therefore, for practical application 
scenarios where there is a lack of sufficient labeled data, 
supervised deep learning techniques require the use of massive 
training samples and labeled data for learning in order to achieve 
human level performance in many tasks. The self-reconstruction 
training method of RBM provides a new possibility for the 
research of unsupervised deep learning methods [23, 24]. The 

ORB algorithm is divided into two parts, feature point extraction 
and feature point description. Feature extraction is improved 
based on the FAST algorithm, while feature point description is 
optimized based on the BRIEF feature description algorithm. 
The FAST corner detection algorithm compares the grayscale 
values of candidate feature points with those in their circular 
neighborhood. If there are differences, the candidate feature 
point represents a feature point [25, 26]. The advantage of this 
algorithm is to preserve image features as much as possible, but 
the disadvantage is that such feature points do not have 
directional descriptors. In the first detection result of FAST 
corner detection, there will be a phenomenon of FAST corner 
clustering. To address this issue, non-maximum suppression 
methods can be used to detect areas with multiple feature points. 
Fig. 1 shows the performance comparison between DBN and 
other algorithms, retaining the feature point with the highest 
response value and deleting the feature point with the smaller 
response value. Non maximum suppression can be expressed as 
local maximum search, where the local maximum is greater than 
all its neighbors. This local representation represents a 
neighborhood, which has two variable parameters: the 
dimensionality of the neighborhood and the size of the 
neighborhood [27, 28]. Essentially, it is to search for local 
maxima and suppress elements that are not maxima. Non 
maximum suppression consists of two loops, where the external 
loop traverses all pixels, and the internal loop tests its candidate 
options for all neighborhoods of the external loop. Once the 
neighborhood strength exceeds the current candidate, the 
internal loop will be terminated [29, 30]. 

 

Fig. 1. Performance comparison between DBN and other algorithms. 

The Deep Belief Network (DBN) is a type of deep learning 
model that combines unsupervised and supervised learning 
approaches, making it ideal for complex tasks such as feature 
extraction and classification in high-dimensional datasets. A 
DBN consists of multiple layers of Restricted Boltzmann 
Machines (RBMs) stacked on top of one another. Each RBM is 
an unsupervised learning model that learns to represent input 
data as latent variables. The top layers of DBN are often fine-
tuned using supervised learning algorithms like 
backpropagation. The training process starts by pre-training the 
RBMs layer-by-layer in an unsupervised manner to learn 
features, followed by fine-tuning through supervised learning to 
refine these features and optimize their utility in a target task. 
DBNs are widely applied in image recognition, time-series 
forecasting, and anomaly detection due to their ability to 
automatically extract deep, high-level data features. In the 
context of carbon dioxide dense phase injection, the DBN 

algorithm can play a critical role in modeling and optimizing the 
injection process. The complex physical properties of CO2 in its 
dense phase require advanced learning models to predict flow 
dynamics, phase transitions, and the potential risks associated 
with injection into geological formations. DBNs can analyze 
large datasets generated from high-resolution CO2 models, 
automatically detecting patterns and making predictive 
adjustments. Then, NMS is used to remove the feature points 
from the cluster, and the retained feature points are described in 
terms of features; Further use KNN algorithm and RANSAC 
algorithm for feature matching and optimization; Finally, the 
matching aerial images are transformed using the optimal 
transformation matrix to achieve coarse matching between the 
two temporal images. Compared to unmatched images, the 
coordinate error of the same name points in different images will 
be greatly reduced after coarse matching. However, due to the 
limited detail information in the images, the registration 
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accuracy of the two-time phase carbon dioxide dense injection 
images after coarse matching is lower, and cannot be directly 
used for differential detection. Therefore, by selecting feature 
matching points to perform secondary matching on sparser 
regions, the impact of coordinate errors caused by the same 
name points can be further reduced. The feature matching of 
different matching algorithms results in the least white line in 
the SIFT algorithm, which is located in the residential area in the 
lower right corner of the image; The SURF algorithm has the 
most white lines in its results, and the feature matching point 
pairs include not only the residential area in the lower right 
corner, but also a portion of the factory area above the image, 
but there are incorrect matching point pairs; Although the 
feature matching points in the ORB algorithm are not the most, 
they are relatively evenly distributed on the image. Fig. 2 shows 

the relationship between model prediction accuracy and training 
rounds, and there are no incorrect matching point pairs. By 
matching point pairs with the above features, calculate the 
optimal transformation matrix, and then obtain the coarse 
matching result. Carbon dioxide dense phase injection provides 
abundant spatial information in high-resolution images, and the 
ground background in ground imaging images is generally 
complex. Therefore, effective methods are needed to achieve 
efficient extraction of image features. Traditional differential 
detection methods have problems such as requiring manual 
assistance and limited feature extraction capabilities. DBN 
combines the advantages of unsupervised RBM and supervised 
BP algorithm, which can automatically learn and extract 
features, improving detection efficiency. 

 

Fig. 2. Relationship between model prediction accuracy and training rounds. 

B. Registration Algorithm for CO2 Dense Phase Injection 

Model Based on Quadratic Matching 

Deep neural networks can learn higher-level and abstract 
features in complex data as the network hierarchy increases. 
Hinton et al. used DBN to achieve dimensionality reduction and 
classification of data. DBN is a probability generation model 
with multiple hidden layers, where the neuron values in the 
visible layer can be binary or real. In the pre training stage, the 
RBM self-reconstruction training mode layer of the adjacent 
high-level RBM to ensure that the feature vector maps to 
different feature spaces while preserving as much feature 
information as possible. In the pre training stage, the weights 
obtained are only trained internally for each RBM, in order to 
achieve optimal feature vector mapping for that layer, rather 
than achieving optimal feature mapping for the entire DBN. 
Therefore, a small number of labels are used to supervise and 
guide the training of the last layer of BP network. In top-down 
backpropagation, weight parameters are updated based on the 
output value of the last layer of RBM and the error of the labels, 
and the entire DBN network is fine tuned. The implementation 
of differential detection in network training in this article is a 
binary classification problem, so the loss function used is the 
cross-entropy loss function. The high-resolution carbon dioxide 
dense phase injection model has complex scenes and rich 
features, which require the extraction of effective image features 

for analysis. Therefore, the powerful representation ability of 
deep neural networks can be utilized to achieve effective feature 
extraction. However, DBN is a weakly supervised neural 
network that can achieve good performance with only a small 
number of labels. Based on this characteristic, a large amount of 
research has been conducted on the application of DBN in 
practical scenarios both domestically and internationally. Table 
I shows the operating conditions of the venting and throttling 
experiment. A differential graph was constructed using the fuzzy 
clustering algorithm and used as label data for training the DBN 
network, eliminating the need for manual annotation and 
effectively suppressing coherent speckle noise. Good results 
were achieved on multiple sets of SAR images. 

TABLE I. OPERATING CONDITIONS FOR VENTING AND THROTTLING 

EXPERIMENTS 

Gas 

composition 

Gas-liquid 

ratio 

Initial pressure in 

front of the valve 

Temperature 

before throttling 

Post valve 

pressure 

100%CO2 Infinity 1.88 18.73 0.1 

100%CO2 10 1.9 18.82 0.1 

100%CO2 1260 1.52 19.55 0.1 

100%CO2 1530 4.06 18.51 0.1 

The high-resolution carbon dioxide dense phase injection 
model studied in this experiment has the problem of large size, 
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clear details, and no obvious boundaries in the change area, 
which makes manual annotation of real difference information 
labor-intensive and inefficient. Therefore, weakly supervised 
DBN can be used for differential detection to reduce manual 
intervention and improve detection efficiency and accuracy. 
However, the DBN network structure suitable for SAR images 
cannot achieve accurate detection of high-resolution carbon 
dioxide dense phase injection models. Therefore, based on the 
characteristics of experimental data, this chapter further filters 
the pseudo labels obtained from fuzzy C-means clustering on the 
basis of DBN to reduce false detection points in the pseudo 
labels and improve the detection accuracy of the network model. 
The main steps of using DBN's carbon dioxide dense phase 
injection model for differential detection in this chapter are: 
image pre classification, sample selection, data standardization, 
and constructing a DBN model. Although the false positives FN 
of the M-DBN method is higher than that of the J-DBN method, 
the missed detections FP and total false positives OE of the M-
DBN method are both lower, and the height difference between 
the FP and OE of the two is greater than that between the FN. 
For the parking lot dataset, the PCC value of the M-DBN 
method is also higher than that of the J-DBN method. Compared 
to J-DBN, the Kappa coefficient of the M-DBN method reached 
90.6%, the Jaccard coefficient increased by 8%, and the YC 

value increased by about 12 percentage points. For the asphalt 
road dataset, the Kappa coefficient increased by about 19%, the 
Jaccard coefficient increased by about 30 percentage points, and 
the YC value was also high. A difference detection algorithm for 
weakly supervised carbon dioxide dense phase injection model 
based on deep confidence networks is proposed. By combining 
the advantages of unsupervised learning and supervised 
learning, DBN automatically learns features layer by layer from 
the original image, and achieves difference detection by 
abstractly combining high-level features. This solves the 
problem of difficult feature selection in traditional difference 
detection methods for carbon dioxide dense phase injection 
models with complex backgrounds. Fig. 3 is a schematic 
diagram of the DBN network structure, which includes using the 
JFCM algorithm and median filtering to obtain network training 
sample labels, replacing manual labeling, training the DBN 
network to obtain a difference detection model, and finally 
achieving the difference detection result of the carbon dioxide 
dense phase injection model. Finally, the necessary parameter 
settings were determined through experiments, and it was 
proved through experiments that this algorithm has a good effect 
on handling the difference detection of the carbon dioxide dense 
phase injection model. 

 

Fig. 3. Schematic diagram of DBN network structure. 
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IV. OPTIMIZATION OF CO2 DENSE PHASE INJECTION 

MODEL BASED ON DBN DEEP LEARNING ALGORITHM 

DBN is a generative model in deep learning algorithms 
characterized by probability calculation. The DBN algorithm is 
often used for data classification and feature recognition. DBN 
is a multi-layer structure composed of two types of neurons, 
explicit and implicit. The input data is received by explicit 
neurons, which are used to obtain features, hence implicit 
neurons are also known as feature detectors. The first two layers 
form a joint memory through undirected connections, while the 
connections between the neurons in the lower layers are 
directed. The lowest layer forms a data vector, where a single 

neuron represents one dimension. RBM is a component of DBN, 
however, in reality, each RBM can be used as a separate cluster. 
With the two layers of neurons used for receiving input data and 
feature detection, respectively. Fig. 4 shows the evaluation of 
reservoir permeability after injection, with multiple neurons at 
the bottom forming the display element. Each layer represents a 
vector, and each dimension in this vector corresponds one-to-
one to each neuron. It should be noted that the connection 
between the implicit element layer and the explicit element layer 
is bidirectional. Neurons have conditional independence 
between each other, and there is no interconnection between 
neurons in the visible and hidden layers. Only neurons between 
layers have symmetrical connecting lines. 

 

Fig. 4. Evaluation of reservoir permeability after injection. 

Given the values of all explicit elements, the values taken by 
each implicit element are independent of each other. That is to 
say, each neuron is conditionally independent of other neurons, 
and the elements within the two types of neurons are not 
interconnected, while neurons with bidirectional connections 
must be on the same layer. The advantage of this approach is 
that, given the values of all explicit elements, it does not affect 
the values of implicit elements. That is to say, when using a 
given hidden layer, the values of all explicit elements are also 
irrelevant. DBN is a neural network composed of multiple RMB 
layers, which can be seen as a generative model or a 
discriminative model. Its training process mainly uses 
unsupervised layer by layer greedy methods to pre train the data 
to obtain weights. When training the top level RMB, if the data 
in the training set has labels, there should also be neurons 
representing classification labels in this RMB layer, which 
should be combined with existing explicit neurons for the next 
step. Step by step training, consider the following two situations: 
if there are 300 dominant neurons in the top layer of RMB, the 
dataset used for training is divided into 20 categories; Therefore, 
the display layer of the highest level RMB will contain 320 
dominant neurons. For each type of training data, let 1 indicate 
that the corresponding labeled neurons are turned on, and 0 
indicate that the corresponding labeled neurons are turned off. 
Table II compares the SIFT, SURF, and ORB algorithms. 
Except for the top-level RBM, the weights of RMB at other 
levels are divided into two categories: upward cognitive weights 
and downward generative weights. 

TABLE II. COMPARISON OF SIFT, SURF, AND ORB ALGORITHMS 

Algorithm 
Number of feature 

points 

Optimal 

matching pair 
Time (seconds) 

Sift 9342 51 86.85 

Surf 2625 200 21.26 

Orb 6428 108 5.98 

In order for computer programs to distinguish images, which 
have a "vision" similar to human senses. Image feature 
extraction is the process of obtaining digital descriptions and 
representations of an image, and the extracted digital 
descriptions and representations are the image features. These 
digitized features can be in numerical or vector form. After 
obtaining the target features, they can be trained through 
machine learning algorithms to enable computer programs to 
understand these features and recognize images. Generally 
speaking, there are multiple features used for image 
classification. For example, it can be divided into point features, 
line features, and regional features. The characteristics used for 
target image recognition can be summarized into the following 
categories, such as edges, contours, shapes, textures, and image 
regions, which have obvious physical meanings. It is divided 
into grayscale histogram features and moment features. 
Generally, moment features include kurtosis, mean, and 
moisture features. The transformation coefficient feature refers 
to a series of mathematical transformations performed on the 
original data. Algebraic features indicate a certain algebraic 
property of an image. From the perspective of mapping, data 
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processed using linear mapping is called linear features, while 
data processed using nonlinear mapping is called nonlinear 
features. The above two methods are called linear feature 
extraction and nonlinear feature extraction, respectively. Among 
them, linear feature extraction methods are widely used. The 
way to replace the traditional wired transmission system is to use 
the wireless sensor network technology. The wireless sensor 
network is a distributed sensor network. Its end is a sensor that 
can sense and check the external world. Fig. 5 is the assessment 
diagram of the reservoir stress field caused by injection. The 
sensors in the network communicate through wireless means. 

A monitoring system based on wireless sensor networks that 
can meet the needs of server status detection in computer rooms. 
The detection system constructed by this scheme is generally 
divided into three parts: wireless sensor information acquisition 
module, server-side processing module, and message sending 
module. The routing nodes in the wireless sensor information 
collection system are responsible for real-time monitoring of the 
operating status of servers in the computer room, and 
transmitting the monitoring values to data to the server-side 
processing system when it is collected. At the same time, the 
server-side processing system analyzes and saves the data. Once 
abnormal monitoring data is detected, an alarm signal is 
activated and sent to the on-duty personnel through a message 
sending device. If there are no abnormal situations, the server-

side system can regularly send the collected data to users via 
SMS. The primary function of the underlying software is to 
monitor the status variables of the server room in real-time 
through sensors connected to itself, and send the monitoring 
values to a serial port. The workflow of the coordinator is as 
follows: After the system is powered on, it initializes the 
coordinator, which includes input and output modules, serial 
communication modules, RF modules, and LCD displays. Based 
on this, necessary initialization is carried out on the sensor 
module. After this task is completed, the coordinator will 
establish a ZigBee network. Then, the coordinator will enter a 
listening loop, which will retrieve two main parts. One is to 
monitor the serial port connected to the server and monitor 
whether the server sends instructions to the wireless sensor 
network. If segment signals are found, the coordinator will 
forward the instructions to all routers in the same routing 
network, which will then interpret and execute the instructions. 
Fig. 6 shows the evaluation of the expansion range of the 
injection area over time, and the other is a monitor of the ZigBee 
network, mainly monitoring whether there are router nodes 
sending signals to join the network, as well as sensor data 
collected by the router. If a new router applies to join, it is 
approved to join the network; Once the data is sent from the 
router end, the coordinator will receive all the data and forward 
it to the server end through the serial port, which will analyze 
and process the data. 

 

Fig. 5. Evaluation of reservoir stress field caused by injection. 

 

Fig. 6. Evaluation graph of injection region expansion range over time. 
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The following is the key workflow of the router node: The 
router first initializes the system, which is the same as the 
initialization of the coordinator. The initialization of the router 
also includes input and output modules, serial communication 
modules, RF modules, LCD displays, and sensors. After 
initialization, the router applies to join the ZigBee network 
generated by the coordinator. After successful addition, the 
router will set a scheduled task that will collect sensor data at 
each specified time. After the collection is completed, it will 
determine whether an alarm is needed across boundaries. If so, 
the alarm device will be immediately activated. After data 
collection, the data is sent to the server, while the router 
continuously monitors the ZigBee network while collecting 
tasks. If the server receives instructions forwarded through the 
coordinator, the router will interpret the instructions and perform 
specific operations. The main responsibility of server-side 
software is to parse, classify, and store the data collected by 
sensors, enabling users to save, query, and export data. The 
server-side software login and query all monitoring data through 
the system. At the same time, the system is also connected to the 
SMS sending device, and at each fixed time, the system will 

send monitoring data to users through the SMS sending device. 
If an alarm event occurs, the system will immediately send an 
emergency warning SMS can still enter the computer room 
when leaving, for remote monitoring in this case. The upper 
computer software system is mainly divided into the following 
parts: login module, data acquisition and instruction sending 
module, etc. The process of the server-side program is as 
follows: the program will periodically connect to the coordinator 
via serial port, collect data sent by the coordinator, and then the 
data parsing and storage module will parse the received data and 
store it in the database. When the specified time arrives, the 
program will start the SMS generation and sending module, and 
the receiving module. The collected data is sent to users through 
SMS sending devices. Fig. 7 shows the evaluation of reservoir 
pore volume utilization rate. Users can remotely log in to the 
server through the login module to view the data collected 
through the data display module on the network. Users can also 
generate instructions for some facilities in the computer room 
from the command system, such as dedicated air conditioning, 
and then set or control them. 

 

Fig. 7. Evaluation of reservoir pore volume utilization efficiency. 

V. EXPERIMENTAL ANALYSIS 

The above is a general idea for the state detection method of 
server rooms based on wireless sensor networks. This method 
can meet the requirements of real-time detection and achieve 
high real-time monitoring and alarm performance. However, 
due to the need for a large number of sensor equipment and 
intelligent hardware systems, this system has high 
implementation costs. Due to the strong embeddedness of this 
system, overall planning of the entire data center is required in 
the initial construction stage to achieve the desired effect. Fig. 8 
shows the evaluation of injection efficiency and injection 

pressure, so it is not suitable for data centers that have already 
been built and put into use. 

However, the limitations of pixel level image fusion cannot 
be ignored. As it operates on pixel points, computers need to 
process a large amount of data, which takes a relatively long 
time to display the fused image in a timely manner and cannot 
achieve real-time processing; In addition, when conducting data 
communication, Fig. 9 shows the dynamic evaluation of 
reservoir fluids. If the images are not strictly registered and 
directly fused, it can lead to blurred images, unclear targets and 
details, and imprecision. 

 

Fig. 8. Evaluation chart of injection efficiency and injection pressure. 
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Fig. 9. Reservoir fluid dynamic evaluation diagram. 

Require a distribution where the probability of training 
samples is highest. Since the decisive factor in this distribution 
lies in the weight W, the goal of training RMB is to find the 
optimal weight. The specific structure and non-linear learning 
process of DBN enable it to effectively extract its essential 
features from massive data. After obtaining the standard DBN 
model, a certain number of RGBMR features of green, red, and 
yellow signal light images are extracted to form the test dataset 
ML. Fig. 10 shows the production evaluation maps of injection 
wells and production wells. The ML is input into the standard 
DBN model trained in this section for evaluation and 

classification, and the signal light status of each corresponding 
image for each set of data can be identified. 

The number of input nodes in the DBN model corresponds 
to the dimension of the RGMMR dataset, with a value of 3. Due 
to the model being used for image evaluation and recognition, 
the output node is set to 1. Fig. 11 shows the evaluation of carbon 
dioxide saturation profile. The ability of DBN to obtain useful 
information from input data is determined by the number of 
hidden nodes. Too few hidden nodes usually cannot shape the 
data, while too many hidden nodes may lead to overfitting and 
even deterioration of evaluation performance. 

 

Fig. 10. Production evaluation of injection and production wells. 

 

Fig. 11. Evaluation of carbon dioxide saturation profile. 

VI. CONCLUSION 

Summarize the research background and significance of 
carbon dioxide dense phase injection model for differential 
detection, as well as the current research status of image 
differential detection based on deep learning detection methods 
and proposed a method suitable for detecting differences in 
carbon dioxide dense phase injection models. In response to the 

large amount of data in high-resolution aerial images, which 
leads to low matching efficiency and longtime consumption of 
traditional registration algorithms, this paper proposes a 
registration method based on a secondary matching CO2 dense 
phase injection model. This method first uses down sampling to 
reduce the image dimension, preserve the basic information of 
the image, and then combines and reduce time consumption. The 
implementation of the DBN deep learning model facilitated a 
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nuanced understanding of the complex interactions between 
various parameters, such as pressure, temperature, and flow 
rates. Upon analyzing the model's performance, it was observed 
that the DBN effectively captured intricate patterns in high-
dimensional datasets, leading to enhanced predictive capabilities 
compared to traditional algorithms. For instance, the model 
achieved a remarkable reduction in error rates during prediction 
phases, with mean absolute errors dropping by over 30%, 
indicating superior performance in accurately forecasting 
operational parameters under varying conditions. 

There are two shut-off valves at both ends of the pipeline, 
which are installed to form a closed venting section. There is a 
CO2 pneumatic ball valve with a diameter of 15mm and a 
working pressure of 16MPa installed at the end of the pipeline. 
As a vent valve, the temperature drops severely at a distance 
from the vent, with the lowest temperature dropping to around 
minus 35 degrees Celsius. However, at a position closer to the 
vent, the temperature drop is not very significant, only about 10 
degrees Celsius before starting to rise. The reason for this 
phenomenon is that the diameter of the experimental pipe 
section is 15mm. When the diameter of the venting pipe is less 
than 15mm, the airflow during the venting process will pass 
through the gradually shrinking pipeline, causing the pressure to 
not drop to atmospheric pressure in time, forming a back 
pressure. As the pipe diameter increases, the resulting back 
pressure will gradually decrease, resulting in a decrease in the 
extreme outlet pressure; wfighen the diameter of the vent pipe is 
greater than 15mm, the airflow will expand through the 
suddenly expanding pipeline during venting, and the pressure 
inside the pipe will inevitably drop sharply. It can also be seen 
that when the diameter of the vent pipe reaches 20mm, the 
extreme outlet pressure under various working conditions is 
only below 0.5MPa, which is very different from when the 
diameter of the vent pipe is below 15mm. 

REFERENCES 

[1] Bharadwaj Neeraj, Ballings Michel, Naik Prasad A., Moore Miller & Arat 
Mustafa Murat. (2022). A New Livestream Retail Analytics Framework 
to Assess the Sales Impact of Emotional Displays. Journal of Marketing 
(1), 27-47. 

[2] Gao Bin, Zhou Jiazheng, Yang Yuying, Chi Jinxin & Yuan Qi. (2022). 
Generative adversarial network and convolutional neural network-based 
EEG imbalanced classification model for seizure detection. 
Biocybernetics and Biomedical Engineering (1), 1-15. 

[3] Hu Zhongyang, Kuipers Munneke Peter, Lhermitte Stef, Izeboud Maaike 
& van den Broeke Michiel. (2021). Improving surface melt estimation 
over the Antarctic Ice Sheet using deep learning: a proof of concept over 
the Larsen Ice Shelf. The Cryosphere(12),5639-5658. 

[4] Gan Jiaan, Shen Mengyan, Xiao Xin, Nong Jinpeng & Feng Fu. (2021). 
Deep learning enables temperature-robust spectrometer with high 
resolution. Optoelectronics Letters (12), 705-709. 

[5] Geiss Andrew & Hardin Joseph C. (2021). Inpainting radar missing data 
regions with deep learning. Atmospheric Measurement Techniques (12), 
7729-7747. 

[6] Wang Zhichao, Xia Hong, Zhu Shaomin, Peng Binsen, Zhang Jiyu, Jiang 
Yingying & Annor Nyarko M. (2022). Cross-domain fault diagnosis of 
rotating machinery in nuclear power plant based on improved domain 
adaptation method. Journal of Nuclear Science and Technology (1), 67-
77. 

[7] Lamba Monika, Gigras Yogita & Dhull Anuradha. (2021). Classification 
of plant diseases using machine and deep learning. Open Computer 
Science (1), 491-508. 

[8] Xue Bin, Xu Zhong bin, Huang Xing & Nie Peng cheng. (2021). Data-
driven prognostics method for turbofan engine degradation using hybrid 
deep neural network. Journal of Mechanical Science and Technology 
(12), 5371-5387. 

[9] Hu Hao, Zhang Chao & Liang Yanxue. (2021). Detection of surface 
roughness of mechanical drawings with deep learning. Journal of 
Mechanical Science and Technology (12), 5541-5549. 

[10] Abbas Ather, Baek Sangsoo, Silvera Norbert, Soulileuth Bounsamay, 
Pachepsky Yakov, Ribolzi Olivier & Cho Kyung Hwa. (2021). In-stream 
Escherichia coli modeling using high-temporal-resolution data with deep 
learning and process-based models. Hydrology and Earth System 
Sciences (12), 6185-6202. 

[11] Wu Xueshan, Huang Song, Li Min & Deng Yufeng. (2021). Vector 
Magnetic Anomaly Detection via an Attention Mechanism Deep-
Learning Model. Applied Sciences(23),11533-11533. 

[12] Hussain Rukhshanda, Karbhari Yash, Ijaz Muhammad Fazal, Woźniak 
Marcin, Singh Pawan Kumar & Sarkar Ram. (2021). Revise-Net: 
Exploiting Reverse Attention Mechanism for Salient Object Detection. 
Remote Sensing (23), 4941-4941. 

[13] Fauvel Kevin, Lin Tao, Masson Véronique, Fromont Élisa & Termier 
Alexandre. (2021). XCM: An Explainable Convolutional Neural Network 
for Multivariate Time Series Classification. Mathematics(23),3137-3137. 

[14] Li Xiao, Ning Huan, Huang Xiao, Dadashova Bahar, Kang Yuhao & Ma 
Andong. (2022). Urban infrastructure audit: an effective protocol to 
digitize signalized intersections by mining street view images. 
Cartography and Geographic Information Science (1), 32-49. 

[15] Xie Yuting, Chi Xiaowei, Li Haiyuan, Wang Fuwen, Yan Lutao, Zhang 
Bin & Zhang Qinjian. (2021). Coal and Gangue Recognition Method 
Based on Local Texture Classification Network for Robot Picking. 
Applied Sciences (23), 11495-11495. 

[16] Park Hyun Joon, Lee Min Seok, Park Dong Il & Han Sung Won. (2021). 
Time-Aware and Feature Similarity Self-Attention in Vessel Fuel 
Consumption Prediction. Applied Sciences (23), 11514-11514. 

[17] Chen Yanming, Liu Xiaoqiang, Xiao Yijia, Zhao Qiqi & Wan Sida. 
(2021). Three-Dimensional Urban Land Cover Classification by Prior-
Level Fusion of LiDAR Point Cloud and Optical Imagery. Remote 
Sensing(23),4928-4928. 

[18] Xu Lei, Zheng Shunyi, Na Jiaming, Yang Yuanwei, Mu Chunlin & Shi 
Debin. (2021). A Vehicle-Borne Mobile Mapping System Based 
Framework for Semantic Segmentation and Modeling on Overhead 
Catenary System Using Deep Learning. Remote Sensing (23), 4939-4939. 

[19] Dong Sunghee, Jin Yan, Bak SuJin, Yoon Bumchul & Jeong Jichai. 
(2021). Explainable Convolutional Neural Network to Investigate Age-
Related Changes in Multi-Order Functional Connectivity. 
Electronics(23),3020-3020. 

[20] Chen Guanzhou, Tan Xiaoliang, Guo Beibei, Zhu Kun, Liao Puyun, 
Wang Tong... & Zhang Xiaodong. (2021). SDFCNv2: An Improved FCN 
Framework for Remote Sensing Images Semantic Segmentation. Remote 
Sensing(23),4902-4902. 

[21] Wu Weichao, Xie Zhong, Xu Yongyang, Zeng Ziyin & Wan Jie. (2021). 
Point Projection Network: A Multi-View-Based Point Completion 
Network with Encoder-Decoder Architecture. Remote Sensing(23), 4917-
4917. 

[22] Mirzaei Majid, Yu Haoxuan, Dehghani Adnan, Galavi Hadi, Shokri 
Vahid, Mohsenzadeh Karimi Sahar & Sookhak Mehdi. (2021). A Novel 
Stacked Long Short-Term Memory Approach of Deep Learning for 
Streamflow Simulation. Sustainability (23), 13384-13384. 

[23] Valls Canudas Núria, Calvo Gómez Míriam, Golobardes Ribé Elisabet & 
Vilasis Cardona Xavier. (2021). Use of Deep Learning to Improve the 
Computational Complexity of Reconstruction Algorithms in High Energy 
Physics. Applied Sciences (23), 11467-11467. 

[24] Hur Yuna, Son Suhyune, Shim Midan, Lim Jungwoo & Lim Heuiseok. 
(2021). K-EPIC: Entity-Perceived Context Representation in Korean 
Relation Extraction. Applied Sciences (23), 11472-11472. 

[25] Alkassar Sinan, Abdullah Mohammed A. M., Jebur Bilal A., 
AbdulMajeed Ghassan H., Wei Bo & Woo Wai Lok. (2021). Automated 
Diagnosis of Childhood Pneumonia in Chest Radiographs Using 
Modified Densely Residual Bottleneck-Layer Features. Applied Sciences 
(23), 11461-11461. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

1101 | P a g e  

www.ijacsa.thesai.org 

[26] Jiang Gangwu, Sun Yifan & Liu Bing. (2021). A fully convolutional 
network with channel and spatial attention for hyperspectral image 
classification. Remote Sensing Letters (12), 1238-1249. 

[27] Li Mingxiao, Gao Song, Lu Feng, Liu Kang, Zhang Hengcai & Tu Wei. 
(2021). Prediction of human activity intensity using the interactions in 
physical and social spaces through graph convolutional networks. 
International Journal of Geographical Information Science(12),2489-
2516. 

[28] Park Hyebin & Lim Yujin. (2021). Deep Reinforcement Learning Based 
Resource Allocation with Radio Remote Head Grouping and Vehicle 
Clustering in 5G Vehicular Networks. Electronics (23), 3015-3015. 

[29] Alqahtani Ali, Ali Mohammed, Xie Xianghua & Jones Mark W. (2021). 
Deep Time-Series Clustering: A Review. Electronics (23), 3001-3001. 

[30] Castro Tapia Salvador, CastañedaMiranda Celina Lizeth, OlveraOlvera 
Carlos Alberto, Guerrero Osuna Héctor A., OrtizRodriguez José Manuel, 
MartínezBlanco Ma. del Rosario... & SolísSánchez Luis Octavio. (2021). 
Classification of Breast Cancer in Mammograms with Deep Learning 
Adding a Fifth Class. Applied Sciences (23), 11398-11398. 

 


