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Abstract—Early disease diagnosis is critical in improving 

patient outcomes, reducing healthcare costs, and preferably 

timely intervention. Unfortunately, the algorithms used in 

conventional diagnostic technology have difficulties dealing with 

uncertain and imprecise medical data, which may result in either 

delay or misdiagnosis. This paper describes the combined 

framework of fuzzy logic and machine learning algorithms to 

improve the accuracy and reliability of early disease diagnosis. 

Fuzzy logic addresses imprecision in patient symptoms and 

variability in clinical data, while machine learning algorithms 

provide data analytical and predictive capabilities. The proposed 

system enhances the abilities and complements rule-based 

reasoning with a predictive model to handle imprecise inputs and 

deliver accurate disease risk estimation. An experimental 

analysis of the medical datasets of heart disease, diabetes, and 

cancer reveals that the proposed method enhances the accuracy, 

precision, and ultimately robustness of a conventional diagnostic 

system. 
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I. INTRODUCTION 

Early disease diagnosis is a vital component of patients’ 
care as it enhances timely detection and treatment procedures 
and reduces the worsening of diseases. As technology 
progresses, artificial intelligence (AI) and machine learning 
(ML) programs have been quite helpful to the diagnostic 
process, especially when traditional methods encounter 
limitations due to partial or uncertain data. Also, Fuzzy logic 
provides a framework for modeling uncertainty and handling 
ambiguous or imprecise data, which is very common in 
medical diagnostics. Using fuzzy logic and machine learning 
together, it is possible to combine intelligent diagnostic 
systems to process complex medical data more thoughtfully 
and interpretably [1-3]. 

Diagnosis in the medical field means working with 
incomplete and noisy data, where the symptoms of the diseases 
are interchangeable in most cases since it is not unlikely to 
have two different diseases manifesting in the same symptoms; 
the data is subjective and sometimes uncertain. Traditional 
machine learning algorithms for structured data cannot 
efficiently manage vague clinical data. This issue is solved by 
fuzzy logic since members in a given category have only 

partial membership in multiple diagnostic categories, thus, a 
perfect coupling to machine learning methods used in the 
medical field. For instance, fuzzy logic systems have been 
successfully applied in systems, especially for diagnosing 
diseases such as diabetes, cardiovascular conditions, and 
cancer [4, 5]. 

The fuzzy logic-oriented machine learning algorithms are 
derived by integrating fuzzy reasoning and the capabilities of 
machine learning frameworks. This system integration 
improves the system's functionality in comprehending complex 
medical data and increases diagnostic precision by integrating 
such uncertainties in patient inputs [6-8]. Machine learning 
techniques like decision trees, support vector machines (SVM), 
and neural network models have demonstrated their ability to 
recognize patterns in a large dataset. Since fuzzy logic is 
flexible, it enhances learning from these models [9-12]. 
Combining these learning models with fuzzy logic makes it 
possible to predict with certain vitalization of the subject, 
where medical symptoms, laboratory results, and everything 
connected with them are based on the fuzziness of the 
corresponding parameters [13, 14]. 

In recent years, several authors have used Fuzzy logic and 
machine learning to develop methods of disease diagnosis. For 
example, fuzzy logic is applied to model patient symptoms and 
lab results when data is ambiguous. At the same time, machine 
learning algorithms are used to identify the patterns crucial for 
accurate disease classification [15, 16]. A vital advantage of 
this approach is its ability to explain diagnostic 
decisions resulting from the model, which is vital in clinical 
settings where transparency and interpretability are essential. 

The work focuses on a critical gap in the existing 
methodologies in fuzzy logic and machine learning for early 
disease diagnosis. Existing methodologies hardly involve both. 
Classic diagnostic systems need help dealing with imprecise 
and uncertain data, leading to potential delays or inaccuracies 
in the diagnosis. Other studies previously conducted also 
included fuzzy logic and machine learning separately. Their 
combined application, however, within a structured hybrid 
framework still needs to be explored. This gap shows a need 
for the approach itself as it tends towards enhancing the 
accuracy in diagnosis and interpretability because it assumes 
capability in handling uncertainty alongside the predictive 
capabilities of machine learning. The system presented bridges 
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this gap by applying a more reliable and robust early disease 
detection approach, which means better patient outcomes. 

Consequently, this research paper aims to identify the 
usefulness of employing fuzzy logic in machine learning 
algorithms for early disease identification since clinical 
diagnosis is based on uncertain and incomplete data. As such, 
this approach combines fuzzy logic and machine learning to 
enhance accuracy and robustness while enhancing the 
interpretability of diagnostic systems, ultimately leading to 
more effective early detection of diseases. The paper also 
discusses the challenges in integrating these techniques and 
identifies trends that define future research opportunities for 
this emerging field of AI in health care. Fig. 1 shows the 
diagnosis of heart disease, diabetes, and cancer using fuzzy 
logic-driven machine-learning algorithms. 

 

Fig. 1. The diagnosis of heart disease, diabetes, and cancer using fuzzy logic-

driven machine-learning algorithms. 

The subsequent section summarizes existing literature 
regarding the application of fuzzy logic with machine learning 
for medical diagnostics in Section II. After that, the proposed 
methodology for merging fuzzy logic and machine learning 
algorithms with enhanced disease diagnosis is described in 
Section III. Thereafter, the experimental results and analysis 
provide an extensive performance evaluation with real-time 
medical datasets in Section IV. Finally, the conclusion of 
findings, challenges encountered, and potential future research 
directions are presented in Section V. 

II. RELATED WORK 

Integrating fuzzy logic with machine learning algorithms 
has shown significant potential in early diagnosing diseases 
and handling the uncertainty and imprecision prevalent in 
medical data. Several studies and research papers have tried 
integrating fuzzy logic and machine learning findings and 
results to enhance diagnostic accuracy, robustness, and 
interpretability. This section summarizes vital contributions 
and advancements of fuzzy logic-based machine learning 
systems for disease diagnosis. 

A. Fuzzy Logic in Medical Diagnosis 

Initially introduced by Lotfi Zadeh et al. (1965) [1], fuzzy 
logic is used to deal with imprecise data, which is typical for 

medical data. Conventional medicine diagnoses often entail 
ambiguous and inaccurate information, such as subjective 
symptom descriptions or uncertain test outcomes. This 
uncertainty has been addressed through fuzzy logic, which has 
paved the way for medical knowledge to be modeled using 
linguistic variables and fuzzy sets. As far back as Lotfi Zadeh 
et al. (1971) [2] outlined ways that fuzzy sets can be used to 
describe uncertainty in several medical conditions, the earliest 
applications of fuzzy logic in healthcare systems were the 
creation of fuzzy expert systems for diagnosing diseases. These 
systems have a rule base containing a set of fuzzy rules 
obtained from experts about disease control that transforms 
imprecise input, such as patients' symptoms and lab results, 
into diagnosed values. For example, Yen and Langari et al. 
(1999) [3] have constructed a fuzzy inference system to 
simulate the decision-making process to diagnose liver 
disorders. Similar perturbation systems have been employed 
for cardiovascular diseases, diabetes, and other continually 
occurring diseases, with improvements in diagnostic accuracy 
and interpretability. 

B. Machine Learning 

Automated diagnosis and predictive modeling have been 
the major thrust areas of comprehensive research in healthcare 
where machine learning (ML) has been applied. H. Habehh et 
al. (2021) [4] and M.M. Ahsan et al. (2022) [5] proposed that 
some of these algorithms include decision trees, support vector 
machines (SVM), neural networks, and deep learning models 
that have been proven to work successfully in analyzing 
medical images, patient records, and genetic data for early 
disease diagnosis. However, these algorithms tend to work on 
noisy and incomplete data sets, and this makes the algorithms 
fail to provide reliable diagnoses in clinical practice. 

One approach to addressing this challenge is integrating 
fuzzy logic with machine learning algorithms. Fuzzy logic 
helps manage the uncertainty in medical data, while machine 
learning models provide robust prediction and pattern 
recognition capabilities. 

C. Hybrid Fuzzy Logic and Machine Learning 

Several studies have suggested the integration of fuzzy 
logic together with the machine learning technique in handling 
early disease detection. Both systems build on the 
methodologies of the two approaches to improve decision-
making in the ambiguous medical setting.  For instance, R. 
Prasad et al. (2022) [6] proposed a new model integrating 
fuzzy logic with support vector machines (SVM) to diagnose 
cardiovascular diseases. Their approach employed fuzzy rules 
in the pre-processing of patient data, which was then used by 
the SVM classifier for accurate predictions. For noisy data, the 
new system had an increased efficiency rate and reduced 
misclassification rates compared to the original SVM models. 

Mehrabi Hashjin et al. (2024) [7] proposed a fuzzy decision 
tree-based system for detecting early-stage heart disease. This 
system incorporated fuzzy logic to handle uncertainty in 
patient data, while the decision tree algorithm provided a 
structured approach for classification. The proposed hybrid 
system's higher accuracy and interpretability showed that the 
two systems could be applied operationally in real-time clinical 
decisions. 
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III. PROPOSED METHODOLOGY 

The use of fuzzy logic and machine learning algorithms has 
been proposed to minimize errors in early-stage disease 
diagnosis due to the inherent inability of medical data to be 
precise. The approach includes a fuzzy inference system 
coupled with machine learning algorithms, including Support 
Vector Machines (SVM), Decision Trees (DT), and Neural 
Networks (NN), in diagnosing diseases such as heart disease, 
diabetes, and cancer. 

A. Data Collection and Preprocessing 

Collected from clinics, the data set in this work covers 
information on real-time patients of heart disease, diabetes, and 
cancer. Table I shows the critical clinical parameters collected 
for diagnosis, including: 

TABLE I.  CLINICAL PARAMETERS 

Medical Parameter 
Real-Time Value 

Range 
Fuzzy Categories 

Age 25–85 years 
Young, Middle-
aged, Old 

Heart Rate (HR) 60–120 bpm Low, Normal, High 

Blood Pressure (BP) 
90/60 – 180/120 

mmHg 
Low, Normal, High 

Cholesterol Level 120–300 mg/dL 
Normal, Elevated, 

High 

Blood Sugar (BS) 60–250 mg/dL Low, Normal, High 

Tumor Size (Cancer) 0.1–10 cm 
Small, Medium, 

Large 

Family History Yes/No Positive, Negative 

Genetic Markers (BRCA1, 

BRCA2) 
Mutant/non-mutant Present, Absent 

Hormonal Receptor Status 

(ER, PR, HER2) 
+/− Positive, Negative 

The dataset is normalized to the range [0, 1] using the 
following Eq. (1): 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛


Where: 

𝑥 is the original value of the feature, 

𝑥𝑚𝑖𝑛  𝑎𝑛𝑑  𝑥𝑚𝑎𝑥 are the minimum and maximum values in 
the dataset. 

B. Fuzzification of Input Data 

Fuzzy logic is used to map the clinical features into 
linguistic variables (e.g., "Low," "Normal," "High"). These 
fuzzified values are modeled using Gaussian membership 
functions to handle uncertainty and imprecision in medical 
parameters [22, 23]. 

The Gaussian membership function is defined in Eq. (2): 

𝜇𝐴(𝑥) = 𝑒
−

(𝑥−𝑐)2

2𝜎2 

Where: 

 𝜇𝐴(𝑥) is the degree of membership of input 𝑥 to fuzzy 
set 𝐴, 

 𝑐 is the center of the fuzzy set, 

 𝜎 is the spread of the fuzzy set. 

Example: Fuzzification of Blood Pressure (BP): 

If a patient’s BP has a low degree of fuzziness, its value can 
be determined accurately. 

 Heart Rate (HR): 60–120 bpm is fuzzified into "Low", 
"Normal", and "High". 

 Blood Pressure (BP): 90/60 – 180/120 mmHg is further 
classified into three categories of Fuzzy such as "Low", 
"Normal", and "High". If the patient’s BP is measured 
at 140/90 mmHg, it is fuzzified into categories such as: 

o "Normal" with membership value as shown in Eq. 

(3): 

𝜇𝑁𝑜𝑟𝑚𝑎𝑙(140) = 𝑒
−

(140−120)2

2(15)2 ≈ 0.3

o "High" with membership value as shown in Eq. 

(4): 

𝜇𝐻𝑖𝑔ℎ(140) = 𝑒
−

(140−160)2

2(15)2 ≈ 0.7

 Tumor Size (Cancer): 0.1–10 cm is fuzzified into 
"Small", "Medium", and "Large". 

C. Feature Extraction 

Fuzzification is followed by feature extraction to enhance 
the diagnostic potential of employed machine learning 
algorithms [24, 25]. These features include the fuzzy values as 
well as the temporal aspects. For example: 

The tumor growth rate is calculated as shown in Eq. (5): 

𝑟𝑡𝑢𝑚𝑜𝑟 =
𝛥𝑇𝑢𝑚𝑜𝑟 𝑆𝑖𝑧𝑒

𝛥𝑇𝑖𝑚𝑒


Where: 

𝛥𝑇𝑢𝑚𝑜𝑟 𝑆𝑖𝑧𝑒  is the change in tumor size between two 
observations, 

𝛥𝑇𝑖𝑚𝑒 is the time interval between the observations. 

 Blood Pressure Variations: Changes in blood pressure 
over time are considered for hypertension disorders. 

 Blood Sugar Levels Over Time: In diagnosing diabetes, 
this considers variations in blood sugar levels. 

D. Machine Learning Model Integration 

Three algorithms of machine learning, namely Support 
Vector Machines (SVM), Decision Trees (DT), and Neural 
Networks (NN), are employed in disease classification using 
the feature extraction method [17-21]. Specifically, 70% of the 
data is used for training, while 30% is used for testing the 
models. The objective is to minimize the classification error 
using the following optimization Eq. (6) (for SVM): 

𝑤, 𝑏
𝑚𝑖𝑛

(
1

2
∥ ω ∥2+ C ∑N

i=1 ξi)

Subject to: 

yi(ω ⋅ ϕ(𝓍i) + b) ≥ 1 − ξi ≥ 0,   i = 1, . . . , N
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Where: 

 ω and b are the weight and bias terms, 

 C is the regularization parameter, 

 ξi are the slack variables for misclassified instances, 

 yi is the class label, for instance i, 

 ϕ(𝓍i)  represents the mapping function for input 
features. 

E. Classification and Decision Making 

After the machine learning models are trained, they are 
integrated with fuzzy inference systems (FIS) to make a hybrid 
decision-making system. Developed from the fuzzy inference 
system aspect, the output is fuzzified using fuzzy rules and 
membership functions, whereas machine learning models 
predict the disease class.  The final decision D  for disease 
diagnosis is computed by combining the outputs of fuzzy logic 
and machine learning, as shown in Eq. (7): 

           D=α. Fuzzy Output+(1−α). ML Model Output     (7) 

Where: 

 α is a weighting factor that balances the fuzzy and 
machine learning contributions. 

F. Evaluation Metrics 

The system's performance is evaluated using the following 
metrics: 

Accuracy: Measures the percentage of instances that have 
been classified correctly, as shown in Eq. (8). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                

Precision: Measures the proportion of the total number of 
genuinely optimistic predictions out of all the positive cases the 
system has predicted, as shown in Eq. (9). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃


Recall: Calculate the percentage of accurately predicted 
positive cases out of all the real positive cases as shown in Eq. 
(10). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁


F1-Score: The harmonic mean between precision and 
recall, as shown in Eq. (11). 

   𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                    (11) 

Where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝑎𝑛𝑑 𝐹𝑁  denote true positives, true 
negatives, false positives, and false negatives, respectively. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

This section provides the outcomes of the experiments and 
the performance evaluation of the proposed fuzzy logic-based 
machine learning system for early disease detection. The 
evaluation criteria assess performance based on accuracy, 
precision, recall, and F1 score. The methodology was applied 
using real-time medical datasets, and the results were analyzed 

based on the system's performance on various disease 
diagnoses. 

A. Experimental Setup 

The dataset was divided into two sets: 

Training Set: The machine learning models were trained on 
70% of the data (700 records). 

Test Set: 30% of the data (300 records) was used for testing 
and evaluation. 

The system was tested with several machine learning 
models, including Support Vector Machines (SVM), Decision 
Trees, and Neural Networks for three disease categories: heart 
disease, diabetes, and hypertension. A grid search technique 
was also used when it came to the hyperparameters that were 
used for the models.  Fig. 2 displays the distribution of models 
used in the experiments. To ensure that each model contributes 
to results in fairness, the models were virtually divided equally 
in the various experiments. 

 
Fig. 2. Distribution of machine learning models used in the experiment. 

Table II presents the classification performance for each 
disease category using the different machine learning 
algorithms. 

TABLE II.  CLASSIFICATION PERFORMANCE BY DISEASE CATEGORY 

Disease Model 
Accura

cy (%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Heart 
Disease 

SVM 89.5 90.2 88.9 89.5 

Decision Tree 85.6 86.4 84.7 85.5 

Neural 

Network 
91.0 92.3 89.7 91.0 

Diabetes 

SVM 87.2 88.5 85.6 87.0 

Decision Tree 82.3 84.1 81.5 82.7 

Neural 

Network 
89.8 91.0 88.1 89.5 

Hyperten
sion 

SVM 90.1 91.0 89.4 90.2 

Decision Tree 86.7 87.8 85.2 86.4 

Neural 

Network 
92.5 93.4 91.2 92.3 

B. Analysis of Results 

1) Accuracy: The Neural Network outperformed the other 

two models in terms of accuracy throughout the different 
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disease categories; the diseases of heart and hypertension 

received excellent outcomes, with an accuracy of 92.5% for 

hypertension. SVM also provided pretty good accuracy, with 

values above 90%. The Decision Tree was slightly less 

accurate than the Decision Model but was accurate between 

82% and 86%. Fig. 3 shows the Comparison of accuracy 

across various machine learning models. 

 
Fig. 3. Comparison of accuracy across different machine learning models. 

2) Precision and recall: Precision and recall scores 

demonstrate the capacity of the developed system to diagnose 

diseases without generating many false positives or missing 

actual cases. The Neural Network again showed the best 

results in precision, where the values were above 90% for all 

categories. Next in the sequence was SVM, especially in 

diagnosing heart disease, with a precision of 90.2%. The 

Decision Tree showed slightly lower precision and recall 

values, especially for diabetes, where it scored 84.1% 

precision and 81.5% recall. Fig. 4 shows the precision vs 

recall scores for different models. 

 
Fig. 4. Precision vs. Recall scores for different models. 

3) F1 Score: The F1 Score balances precision and recall 

values and provides an overall measure of the model's 

effectiveness. Compared with the others, the Neural Network 

model demonstrated the highest F1 scores for all categories, 

especially hypertension, with an F1 score of 92.3%. The same 

is true for F1 scores, with SVM obtaining comparable results 

to the Logistic regression, with heart disease and hypertension 

F1 scores exceeding 89%. Nevertheless, the decision tree 

presented lower F1 scores at its output, but it was efficient, for 

instance, for hypertension diagnosis with an F1 score of 

86.4%. Fig. 5 shows the F1 score comparison across different 

models and disease categories. 

 
Fig. 5. F1 score comparison across different models and disease categories. 

C. Comparison of Algorithms 

Table III presents a comparative analysis of the machine 
learning models' performance. 

TABLE III.  COMPARATIVE PERFORMANCE OF MACHINE LEARNING 

MODELS 

Model 
Best Accuracy 

(%) 

Best Precision 

(%) 

Best Recall 

(%) 

Best F1 

Score (%) 

SVM 90.1 91.0 89.4 90.2 

Decision 

Tree 
86.7 87.8 85.2 86.4 

Neural 
Network 

92.5 93.4 91.2 92.3 

Fig. 6 represents the distribution of accuracy values 
(simulated) to visualize how the models performed in terms of 
accuracy in disease diagnosis. 

 

Fig. 6. Performance of accuracy distribution in disease diagnosis. 
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D. Impact of Fuzzy Logic 

Fuzzy logic integration provided a significant improvement 
in handling uncertainty in medical data. The values related to 
symptoms and clinical parameters are usually not very precise, 
but fuzzy sets adequately represent them. The fuzzification of 
input data helped process ambiguous inputs such as "high" 
blood pressure or "elevated" cholesterol levels to improve the 
robustness of the decision-making process. Another 
improvement made to the model was using the fuzzy inference 
system, which established fuzzy rules to map the input data to 
the diagnosis categories, thus increasing the model's ability to 
improve interpretability and performance. 

E. Discussion 

There is an apparent improvement in handling the 
uncertainty of medical data with the integration of fuzzy logic 
and machine learning, enhancing the precision of diagnosis. 
Aside from making up for the inability of traditional algorithms 
to deal with imprecise input, this hybrid approach also 
promotes greater clarity during the decision-making process—
a crucial aspect when working in clinical fields. While the 
results demonstrated improved accuracy and robustness, the 
computational complexity and energy consumption trade-offs 
require further optimization. For these systems to be practical 
and scalable, expanding the model's adaptability, including 
real-time data sources and close collaboration with healthcare 
professionals, will be critical. Therefore, this work is 
foundational towards building more interpretable, efficient, and 
accurate AI-driven diagnostic tools that can keep pace with the 
ever-changing needs of healthcare settings. 

V. CONCLUSION 

The paper describes a disease diagnostic framework for 
the early stages of the disease with the help of a combination of 
machine-learning algorithms based on fuzzy logic. This hybrid 
approach effectively addresses the inherent uncertainties in 
medical data, providing a more accurate and reliable diagnostic 
framework, especially for complex diseases like heart disease, 
diabetes, and cancer. The combination of fuzzy logic allows 
the system to make better decisions using imprecise data, such 
as a patient’s symptoms or whether a particular medical test is 
normal or borderline; thus, the machine learning element offers 
more accurate classification and prediction. 

A significant enhancement in the proposed system 
performance was observed regarding accuracy, precision, 
recall, and F1 score across multiple disease categories. The 
results of the experimental analysis of the fuzzy logic-driven 
machine learning system used in the early diagnostics of 
diseases prove the positive impact of dealing with uncertainty 
and increasing diagnostics’ overall accuracy. Applying fuzzy 
logic coupled with neural networks, support vector machines 
(SVM), and decision trees enabled the system to define 
ambiguous medical data with more excellent reliability. 
Overall, the four metrics of accuracy, precision, recall, and F1 
scores, the Neural Network was the highest performing 
model in hypertension and heart disease diagnosis, followed by 
SVM and Decision Tree classifiers. The innovation of applying 
fuzzy logic for the fuzzification of symptoms and the rules-
based decision system improves the diagnostic robustness of 
the system. 

Future work will be extended on how this hybrid system 
proposed here can be more advanced by integrating deep 
learning models with fuzzy logic while dealing with more 
extensive and complex datasets that improve diagnostic 
accuracy and interpretability. Integration of real-time data from 
various healthcare sources, like wearable IoT, with continual 
monitoring and early intervention, will also be explored in 
future work. Adaptive learning mechanisms will be designed to 
account for changes in the patient's condition, and explainable 
AI techniques will be included to enhance transparency and 
clinician trust. Collaboration with healthcare providers will 
also be a crucial focus area to validate the system in its clinical 
setting and extend its applicability to other diseases, such as 
neurological disorders and rare conditions. Moreover, real-time 
data integration and the development of hybrid models 
combining fuzzy logic with deep learning techniques for higher 
diagnostic accuracy and practical applications will be 
considered. 
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