
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Automatic Generation of Comparison Charts of
Similar GitHub Repositories from Readme Files

Emad Albassam
Department of Computer Science-Faculty of Computing and Information Technology

King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—GitHub is a widely used platform for hosting open-
source projects, with over 420 million repositories, promoting
code sharing and reusability. However, with this tremendous
number of repositories, finding a desirable repository based
on user needs takes time and effort, especially as the number
of candidate repositories increases. A user search can result
in thousands of matching results, whereas GitHub shows only
basic information about each repository. Therefore, users evalu-
ate repositories’ applicability to their needs by inspecting the
documentation of each repository. This paper discusses how
comparison charts of similar repositories can be automatically
generated to assist users in finding the desirable repository,
reducing the time required to inspect their readme files. First,
we implement an unsupervised, keyword-driven classifier based
on the Lbl2TransformerVec algorithm to classify relevant content
of GitHub readme files. The classifier was trained on a dataset
of readme files collected from Java, JavaScript, C#, and C++
repositories. The classifier is evaluated against a different dataset
of readme files obtained from Python repositories. Evaluation
results indicate an F1 score of 0.75. Then, we incorporate rule-
based adjustments to enhance classification results by 13%.
Finally, the unique features, similarities, and limitations are
automatically extracted from readme files to generate comparison
charts using Large Language Models (LLMs).

Keywords—Multi-class classification; keyword-driven classifica-
tion; rule-based classification; unsupervised classification; GitHub
repositories; comparison charts

I. INTRODUCTION

Publicly available code repositories are widely used for
managing and sharing application source codes. Due to their
publicity, external users can review and improve these reposi-
tories, increasing their quality. Therefore, software developers
engaged in development projects rely on these repositories to
achieve high reusability. One such widely used code repository
platform is GitHub. A recent report shows that GitHub hosts
420 million repositories with over 100 million registered de-
velopers [1]. However, this tremendous number of repositories
introduces the challenge of finding a repository that adequately
satisfies the user’s needs.

In recent years, there has been considerable interest in cat-
aloging the growing number of public repositories to facilitate
the search, identification, and selection of these repositories
for end-users. Several supervised approaches have been inves-
tigated in which the available textual documentation of public
repositories is collected, analyzed, and classified to address this
problem (e.g. [2] [3]). However, such supervised approaches
require human intervention to manually label large datasets for
training. In contrast, unsupervised approaches do not require
such manual efforts since they can learn hidden patterns from

large datasets. Therefore, labeled data are not required. Al-
though several unsupervised approaches for cataloging public
repositories have been proposed (e.g. [4]), they focus on the
problem of tagging them with a limited set of topics. Therefore,
these topics do not represent all of the capabilities provided by
the corresponding repositories. As a result, users often need
to read the documentation of each repository to understand
its capability. This makes manual searching for candidate
repositories complex and time-consuming since users need
to inspect and read the documentation associated with each
repository to understand their advantages and limitations be-
fore deciding. We consider the case in which a user knows
the type of repository they are looking for but not the exact,
full features provided by the repository. Furthermore, without
careful inspection of their documentation, users might neglect
important features during repository selection, which might
be decided to be necessary after adopting another repository
lacking these features.

As a motivation example, Fig. 1 shows typical repository
search results performed on GitHub, where the user search
terms include “email client”, and results are sorted based on
best matches. This figure shows that the search results by
GitHub include approximately 7.1k repositories that match the
search terms. Furthermore, only basic information is displayed
for each repository. The results include a list of topics for
some repositories. However, repository owners set these topics
manually, which can be incomplete, error-prone, or missing
in many repositories [4]. Therefore, users need to inspect
each repository individually by reading its documentation to
assess its relevance to their needs. In addition, users might
be aware only of a subset of the features and functionality
they desire, neglecting other features that could be equally
important during selection.

Concerning these challenges, this work contributes to the
literature by discussing how comparison charts of similar
GitHub repositories can be automatically generated from their
readme files using unsupervised learning. Each comparison
chart consists of a set of N user-selected repositories list-
ing (1) each repository’s provided features and functionality,
(2) the commonality between these repositories, and (3) the
limitations of each repository, thus minimizing the effort and
time to inspect and compare these repositories individually.
Second, we show how the predictive performance of the
Lbl2TransformerVec algorithm [5] [6] [7], an algorithm for
unsupervised document classification and retrieval, can be
improved by rule-based adjustments to classify the content
of readme files in cases where multiple classes have approxi-
mately similar scores.

www.ijacsa.thesai.org 1126 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Fig. 1. An example of GitHub search results, with over 7.1k results satisfying user search terms.

The remainder of this paper is organized as follows.
Section II contains the related works. Section III describes
the architecture of the proposed. This includes data collec-
tion, preprocessing, and model training. Section IV presents
our results of evaluating the various models incorporated to
generate comparison charts. Section V discusses the strengths
and limitations of the proposed solution and highlights future
research directions. Section VI concludes our work.

II. RELATED WORKS

Many prior studies investigated the problem of analyzing
GitHub repositories from their readme files. Work by Prana
et al. [2] showed how a multi-label classifier can categorize
GitHub readme files. Their approach labels the content based
on eight categories: what, why, how, when, who, references,
contribution, and others. The approach incorporates supervised
learning where readme files obtained from GitHub repositories
are manually analyzed and labeled. The work by Wu et al. [3]
shows how repositories can be retrieved through functional
semantics where readme files need to be manually inspected.
Their dataset is based on JavaScript repositories. However,
their data preprocessing involves the removal of many contents
that are outside of functionality, including how to use the
repository. Compared to these approaches, our work considers
an unsupervised approach in which the training dataset is not
labeled. Furthermore, we focus here on the comparison of
different GitHub repositories.

Prior works have investigated different types of tasks re-
lated to GitHub repositories. Work by Zhou et al. [8] proposed
an approach for recommending GitHub trending repositories.
Sipio et al. [9] investigated a topic recommendation system
of GitHub repositories, which repository developers can use
to label their repositories correctly. However, their work uses
a supervised model. Prior works have also considered cate-
gorizing GitHub repositories based on functionality [10] and
application domains [11]. Compared to these works, we focus
on comparing different repositories in a single artifact when
users do not have the full knowledge of the features they
seek in repositories. Although it is possible to tag software
repositories from their bytecode and dependencies among them
[12], such approaches are considered technology-specific. We
consider in this work an approach that relies on textual readme
files, which makes it applicable to any repositories with such
files [13]. The work of Zhang et al. [4] presented a keyword-
driven hierarchical classification of GitHub repositories to
assign topic labels to GitHub repositories. Their work is un-
supervised but requires users to provide one keyword for each
class. Although topics play a significant role in the cataloging
of repositories, this work considers a different problem where
similar repositories need to be compared.

Several prior works investigated the nature and quality of
documentation available in GitHub repositories. Results of Liu
et al. [14] show that readme files of open-source Java projects
do not align with GitHub guidelines. Furthermore, work by

www.ijacsa.thesai.org 1127 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Venigalla and Chimalakonda [15] shows that the presence of
readme files, lists, images, and links increases the popularity
of repositories. The work by Treude et al. [16] provides an
assessment of documentation quality in ten dimensions, where
their results show that documentation of various artifacts such
as references, documents, and articles are different in terms
of quality. Elazhary et al. [17] investigated GitHub developer
contribution guidelines through a mixed-method study of 53
GitHub projects, where their results show that approximately
68% of these projects diverge significantly from the expected
process model. Venigalla and Chimalakonda [18] investigated
software documentation on GitHub and showed that multiple
software artifacts can contribute to documentation. Work by
Hellman et al. [19] proposed an approach for generating
GitHub repository descriptions. Their analysis showed that
descriptions of GitHub repositories are poor due to a lack
of purpose in their description. These works clearly show
the challenges associated with analyzing the documentation of
publicly available repositories, such as lack of standardization
and quality immaturity. This paper investigates several such
challenges to generating meaningful comparison charts to end
users.

Table I summarizes the research limitations identified in
prior works. While all prior works focus on individual reposi-
tories to generate topics, the proposed approach considers the
generation of comparison charts of multiple repositories. This
approach is not limited to identifying the features provided
by repositories but also identifies their commonalities and
limitations, which, to the best of our knowledge, have not been
investigated previously in prior works.

III. AUTOMATIC GENERATION OF COMPARISON CHARTS

This section first provides an overview of the proposed
solution for generating comparison charts from GitHub readme
files. Then, we discuss each process within the architec-
ture, including data collection, data preprocessing, and model
training processes, where the goal is to implement a multi-
class classifier capable of classifying the sections of a given
GitHub readme file that are likely to contain the features and
functionalities provided by the corresponding repository. We
then discuss each process related to the automatic generation
of comparison charts.

A. Overview of Proposed Solution

The architecture of the proposed solution (see Fig. 2)
consists of two modules: offline and online. The offline module
is performed once to train a multi-class classifier capable of
classifying the contents of readme files obtained from GitHub
repositories. The model is keyword-driven and is trained
to classify the various sections based on the likelihood of
containing relevant information for constructing comparison
charts. The model is complemented with rule-based heuristics
to adjust the classifier’s results when multiple classes have
approximately close scores by the classifier.

On the other hand, the online module is responsible
for generating comparison charts of GitHub repositories that
satisfy the user search terms. First, this module performs a
live search of GitHub repositories using user-provided search
terms. The user then selects N repositories from the search

TABLE I. LIMITATIONS OF LITERATURE

Ref. Limitations

[2] • Supervised learning approach requiring manual labeling of
the training set.

• Proposed approach does not consider comparison of dif-
ferent repositories and does not extract unsupported fea-
tures/functionalities of repositories.

[3] • Manual inspection of GitHub readme files.
• Manual removal of all sections in readme files except sec-

tions related to functionality.
• Proposed approach does not consider comparison of dif-

ferent repositories and does not extract unsupported fea-
tures/functionalities of repositories.

• Dataset is limited to Javascript repositories.

[4] • Proposed approach requires user providing one keyword for
each class as guidance (Although a keyword enrichment
process module is incorporated to expand the single key-
word to a keyword set for each category).

• Proposed approach does not consider comparison of dif-
ferent repositories and does not extract unsupported fea-
tures/functionalities of repositories.

• Dataset is limited to Machine Learning and Bioinformatics
domains.

[13] • Featured topics may neglect detailed functionalities pro-
vided by repositories. Thus, users still need to inspect
individual readme files to understand their capabilities.

• Featured topics may evolve, which may require retraining of
the supervised models.

• Proposed approach does not consider comparison of dif-
ferent repositories and does not extract unsupported fea-
tures/functionalities of repositories.

[10] • Proposed approach is semi-automated, with steps requiring
manual human intervention.

• Functionalities are extracted from readme file segments by
computing the similarity between the segments and a short
1-2 lines of description from the repository’s homepage,
which may result in missed functionalities.

• Proposed approach does not consider comparison of dif-
ferent repositories and does not extract unsupported fea-
tures/functionalities of repositories.

[20] • Proposed approach recommends trending repositories for
developers based on their historical commits on GitHub (i.e.
does not target general users of GitHub).

• Proposed approach does not consider comparison of dif-
ferent repositories and does not extract unsupported fea-
tures/functionalities of repositories.

results they wish to compare. The online module then auto-
matically retrieves the readme files corresponding to the user-
selected N repositories and incorporates the hybrid classifier
from the offline module to extract relevant sections required by
subsequent processes. The online module then extracts relevant
information, including provided features and limitations, from
these sections and computes the similarity of features from the
different repositories to generate comparison charts.

We describe each process in the architecture in the follow-
ing subsections.

B. Automatic Data Collection

To prepare the dataset used in this work, we collected
283 readme files obtained from GitHub repositories. These

www.ijacsa.thesai.org 1128 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Fig. 2. An overview of the architecture for generating comparison charts.

files are collected automatically through GitHub’s Represen-
tational State Transfer (REST) API for searching [21]. To
ensure diverse coverage of repositories, we retrieve repositories
whose primary programming language is Java, JavaScript, C#,
Python, or C++. We obtain the readme files of the top 100
repositories for each of these languages, where the results are
sorted in descending order based on repository stars. Then,
we filter the results by including only the repositories with
readme files written in English and exceeding 1000 bytes.
These filtering rules aim to include only mature repositories
with high stars, which increases the likelihood of obtaining
well-written readme files.

We further split the collected readme files into two classes:
training and testing. The training class contains the readme
files corresponding to repositories whose primary program-
ming languages are Java, JavaScript, C#, and C++. On the
other hand, the readme files related to Python will be used for
testing purposes to evaluate the hybrid classifier. By splitting
the readme files based on the programming language, we
decrease the likelihood of language bias during evaluation
since our model is never trained on readme files related
to the repositories related to the Python language. Table II
summarizes the number of readme files collected from GitHub
and shows the percentages of training and testing classes. As
seen in this table, selecting the readme files related to the
Python language as the testing class splits the collected readme
files at an approximately 80:20 ratio.

C. Data Preprocessing

The contents of collected readme files are cleansed as
follows. Embedded HTML tags and elements (such as HTML
comments) are removed. All code blocks and URLs that appear
in readme files are replaced with the constant strings @code
and @link, respectively. Irrelevant content, such as images,
task lists, color codes, and emojis, are removed.

After data cleansing, we extract the heading and content
of all sections and subsections found in the readme files using
regular expressions, which, according to GitHub formatting
syntax [22], start with ‘#’ symbols. Each extracted (sub)section
represents an instance in our dataset. For each instance, we also
record (1) the GitHub repository ID to maintain traceability
between the instances and the files from which they were
extracted, (2) the level of the (sub)section heading, which
can range from 1 (i.e. a first-level heading) to 6 (a sixth-
level heading), and (3) the order of the (sub)section in the
document. Table III summarizes the number of instances
obtained after preprocessing and instance extraction grouped
by programming language. As can be seen, the training set
accounts for 78.2% of the number of instances, while the
testing set accounts for 21.5%.

D. Keyword-Based Model Training

After data preprocessing, we trained various keyword-
driven models based on the Lbl2TransformerVec algorithm,

www.ijacsa.thesai.org 1129 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

TABLE II. SUMMARY OF DATA COLLECTION PROCESS OF README FILES OBTAINED FROM GITHUB REPOSITORIES

Language Total Number of Readme Files Class Pct.Initial After Excl. Non-English After Excl. files < 1KB
Java 100 files 45 files (55 files excl.) 43 files (2 files excl.) Training 12.7%

JavaScript 100 files 73 files (27 files excl.) 71 files (2 files excl.) Training 20.9%
C# 100 files 83 files (17 files excl.) 80 files (3 files excl.) Training 23.6%

C++ 100 files 81 files (19 files excl.) 78 files (3 files excl.) Training 23%
Python 100 files 67 files (33 files excl.) 67 files (0 files excl.) Testing 19.8%

TABLE III. SUMMARY OF EXTRACTED INSTANCES FROM COLLECTED
README FILES

Language No. of Instances Class Pct.
Java 617 Training 13.5%

JavaScript 1112 Training 24.35%
C# 977 Training 21.4%

C++ 876 Training 19.2%
Python 984 Testing 21.55%

an algorithm for unsupervised document classification and
retrieval that does not require stemming or lemmatization
and can work on short texts [5] [6] [7]. For each model
we train, we incorporate a different transformer, as shown
in Table IV, where the goal is to evaluate the impact of the
various transformers on the classifier’s classification results.
The models are trained on the training set corresponding to
the Java, JavaScript, C#, and C++ instances (see Table II).

Our aim for the trained models is to classify the various
instances in the dataset (i.e. sections obtained from readme
files) into one of the following classes: Functionality, Usage,
or Miscellaneous so that information required to construct the
comparison charts can be obtained. The Functionality class
represents instances about a repository containing statements
such as an overview, high-level features or functionalities, a
list of its advantages, how it compares to other solutions,
and changes over different versions/releases. We consider that
information in such sections highly relevant for construct-
ing comparison charts. The Usage class represents instances
corresponding to the how-to details, such as configuration,
installation, and coding instructions related to a repository.
Thus, these sections can provide additional information for
constructing more detailed comparison charts. Finally, the Mis-
cellaneous class represents instances corresponding to sections
less relevant to comparison chart generation, such as user
contributions and donations.

TABLE IV. MODELS INCORPORATED INTO LBL2TRANSFORMERVEC
DURING TRAINING

Model Ref./Model Card
bart-large-mnli [23]

all-MiniLM-L6-v2 [24]
all-mpnet-base-v2 [25]
all-distilroberta-v1 [26]
all-MiniLM-L12-v2 [24]

unsup-simcse-bert-base-uncased [27]
unsup-simcse-bert-large-uncased [27]

unsup-simcse-roberta-base [27]
unsup-simcse-roberta-large [27]

To train the models, we pass the keywords list for each
class to the Lbl2TransformerVec algorithm, shown in Table V.
These keywords are chosen based on a combination of exper-
tise and familiarity with GitHub readme files and by relying on

a dictionary for word synonyms. For the Lbl2TransformerVec
hyperparameters used to train the models, we set the similar-
ity threshold to 0.6 so that only instances with this threshold
or higher with respect to the provided keywords are included
to calculate the label embeddings. Furthermore, we set the
min num docs parameter, which controls the minimum num-
ber of instances used to calculate the label embeddings, to 700.
All other hyperparameters are set to their default values. Table
VI provides the hyperparameter values used for training the
various models.

After model training, to better understand their ability to
classify the content of readme files, we run the models on the
training dataset to classify all instances and then extract the
most frequent words for each class. Fig. 3 plots the class-word
distribution with a KxM shape, where K is 3, representing the
number of classes, and M is the vocabulary size. As shown in
this figure, the most frequent words for class 3 (i.e. sections
classified by the model as Miscellaneous) include license,
contributing, community, issues, and support, indicating the
model’s capability of labeling such sections. The most frequent
words for sections labeled by the model as class 2 (i.e. Usage
class) include use, build, install, and run. Finally, sections
labeled with class 1 (i.e. Functionality) have as most frequent
words the words library, features, platform, and simple, all
of which are likely to appear in sections discussing the high-
level functionalities and features of a repository. It can also
be seen that several classes share some common frequent
words such as link and code. This is because these words can
appear in any section of these classes. For example, adding
URLs pointing to external websites is a common practice for
defining some terminologies or redirecting the user to extra
resources to understand some functionality. Therefore, these
URLs are part of Functionality. On the other hand, adding
URLs in usage-related sections is also a common practice
to refer users to more detailed installation documentation,
configuration, and usage. Similarly, for the word code, readme
files of many GitHub repositories can contain code snippets in
the introduction, usage, and citation sections.

E. Rule-Based Classification Adjustments

During class prediction, the keyword-driven classifier may
assign approximately similar scores to different classes for a
section, which may result in incorrect classification for some
of these sections. We incorporate rule-based adjustments to
enhance classification results in such cases by considering the
classes assigned to parent and sibling sections of a section i
as follows.

Let i be a (sub)section in a readme file R, pi be the
predicted class for i, and pi2 be the second most likely class
for i as scored by the keyword-driven classifier. For any

www.ijacsa.thesai.org 1130 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

TABLE V. KEYWORDS USED FOR MODEL TRAINING

Class Keywords Purpose
Functionality Introduction, Intro, Welcome, Overview, Index, Compatability, Comparison, What’s, New, Mo-

tivation, Contents, Feature, Provide, Contain, Supports, Definition, Goal, Overview, Roadmap,
Release, Version, Vision, About, What, About, Simple, Fast, Reliable, Flexible, Modern, Powerful,
Cross-Platform, Alternative

(Sub)sections labeled by the model with
this class are likely to contain high-level
features and functionality of the repository

Usage Getting, Started, Demo, Try, Updating, Quick, Start, Code, Snippet, Steps, Commands, Configu-
ration, Setup, Requirements, Install, Uninstall, Installation, Tutorial, Instructions, Documentation,
Dependencies, Prerequisites, Manual, Example, Examples, Resources, FAQ, Usage, How, Im-
port, Flags, Parameters, Arguments, Download

(Sub)sections labeled by the model with
this class are likely to contain detailed
functionality and usage information related
to the repository

Miscellaneous Contribution, Contributing, Contribute, Contributed, Partners, Sponsors, Authors, Backers, Bib-
Tex, Community, Mission, Feedback, Copyright, Disclaimer, Trademark, Credits, Publications,
Conduct, DOI, Thank, Thanks, Please, Announcements, Legal, Subscribe, Issues, Contact, Join,
Inquiries, Donation, Donate, Citation, Cite, Paper, Licensed, License, Help, Support Discussion,
Social, Twitter, Telegram, Facebook, Discord, Forum, Backers, Acknowledgment, Acknowledg-
ments, Company, People, Who

(Sub)sections labeled by the model with
this class are less likely to contain im-
portant features and functionality of the
repository

Fig. 3. Class-word distribution of training dataset for functionality (class 1), Usage (class 2), and miscellaneous (class 3).

TABLE VI. HYPERPARAMETERS PASSED TO LBL2TRANSFORMERVEC
FOR MODEL TRAINING

Hyperparameter Value
keywords list The keywords list shown in Table V
transformer model The models shown in Table IV
similarity threshold 0.6
similarity threshold offset default (0)
min num docs 700
max num docs default (None)
clean outliers default (False)

(sub)section i ∈ R, if |score(pi) − score(pi2)| < α, then the
following rules are applied, in the shown order, to adjust the
predicted class for i:

1) Keywords ratio rule: The model computes the number
of keywords (see Table V) that appeared in i for each class

and then calculates the ratio of these numbers. If the ratio of
class pi2 is larger than a threshold β, then the predicted class
of i is set to pi2.

2) Relevance to parent rule: The model considers the
predicted class assigned to i’s parent section. If (1) the parent
section is classified as class pi2, (2) the parent section has a
high keywords ratio for one class, (3) i has a low keywords
ratio, and (4) α is negligible, then the predicted class of i is
set to pi2.

3) Relevance to siblings rule: The model considers the
predicted classes assigned to i’s siblings (i.e. subsections at
the same level as i) by calculating the class frequency of these
siblings sections. If the most frequent class for these siblings
is class pi2 and this frequency exceeds a threshold β, then the
predicted class of i is set to pi2.

www.ijacsa.thesai.org 1131 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

To illustrate each rule and its purpose for adjusting classifi-
cation, consider the examples shown in Table VII of erroneous
classifications made by the keyword-driven model to some
instances in the dataset:

• For instance 1, this instance discusses
usage/documentation of the repository. However,
the model classified this instance as Miscellaneous.
Since the score difference between the actual and
predicted classes is less than α = 0.04 and this
instance has more keywords related to the Usage
class compared to other classes, then the model
adjusts the predicted class for this instance from
Miscellaneous to Usage according to the keywords
ratio rule.

• For instance 2, this instance discusses usage details
of a repository’s functionality. However, the model
classified this instance as Features. Since the score
difference between the actual and predicted classes
is less than α = 0.05 and the model labeled the
parent’s section of this instance as Usage, then the
model adjusts the predicted class for this instance from
Features to Usage according to the relevance to parent
rule.

• For instance 3, this instance provides users testimo-
nials of the repository. However, the model classified
this instance as Functionality. Since the score differ-
ence between the actual and predicted classes is less
than α = 0.031 and the most frequent class assigned
by the model to sibling subsections is Miscellaneous,
then the model adjusts the predicted class for this in-
stance from Functionality to Miscellaneous according
to the relevance to siblings rule.

F. Extraction of Repository Limitations

Repository owners may explicitly state in readme files the
limitations of their repositories, such as unsupported features
and functionalities or constraints related to operational envi-
ronments. Such limitations must be identified so that they are
not mistakenly classified as supported features by the proposed
solution when generating comparison charts. Statements of
such limitations in readme files may include specific keywords
in sentences such as limitation or unsupported. Additionally,
statements can include longer phrases to convey these limi-
tations. For example, a repository of key-value storage may
state that it does not support indexes or will receive limited
maintenance. An example of such limitations is the readme
file of Apache Airflow repository indicating that “MariaDB is
not tested/recommended”.

To extract these limitations and unsupported features of
a repository, we incorporated a zero-shot classifier [28] based
on the bart-large-mnli model, which is based on the bart-large
model [23] and trained on the MultiNLI dataset consisting of
433k sentence pairs annotated with textual entailment informa-
tion. For each section in the input readme files, we extract the
sentences of the section and pass it to the zero-shot classifier to
identify the score of being labeled as “Unsupported Feature”
by the classifier. The default threshold is set to 0.9. Therefore,
sentences that this zero-shot classifier scores with a value

equal to or exceeding this threshold are extracted as candidate
limitations for the repository.

G. Extraction of Repository Features

To identify a repository’s supported features and capa-
bilities, the multi-class classifier classifies extracted sections
from the readme files corresponding to the user-selected N
repositories. Sections labeled as Functionaly or Usage are
further processed by removing all sentences corresponding
to identified limitations by the zero-shot classifier. Then, we
extract from these sections the keywords and key phrases
capturing the repository’s features and capabilities by incorpo-
rating KeyBERT [29]. The KeyBERT model is initialized with
a Text-to-Text generation pipeline (also known as Sequence-
to-Sequence modeling)[30]. We incorporate into this pipeline
Llama-2-7b-chat-hf [31][32], which is a large langnuage model
(LLM) consisting of 7 billion parameters fine-tuned for di-
alogue use cases. The pipeline tokenizes the provided text
and relies on an encoder-decoder architecture to process the
input text and generate a list of candidate features for each
repository.

H. Calculating Similarity of Repositories’ Features

Given each repository’s extracted features, the online mod-
ule calculates the semantic similarity between all possible
feature pairs from the different repositories. The online module
creates a sentence transformer [33] based on the sentence-t5-
base [34] model to accomplish this task. For each feature pair
of different repositories, the online module encodes the textual
representation of each feature using the sentence transformer.
As a result, the transformer encodes each feature into a 768-
dimensional dense vector space. The cosine similarity [35] is
then calculated from these vectors. Two features are labeled
similar if the computed cosine similarity exceeds a threshold
α.

IV. RESULTS

A. Evaluation Results of the Hybrid Classifier for Classifying
the Content of GitHub Readme Files

We use the testing set corresponding to readme files ob-
tained from GitHub repositories for the Python programming
language to evaluate the hybrid classifier (see Table III). This
set contains 984 instances and is not previously seen by the
model since it was not used during training.

We first identify the actual class for each instance in the
testing set through manual classification. Then, we run the
hybrid model on this set to determine the predicted class for
instances. Finally, we compute the F1 score to measure the
predictive maintenance of the classifier. Although the proposed
approach is unsupervised, manual classification is performed
for evaluation purposes of the model.

To determine the actual class for each instance, we man-
ually classify instances in the testing set by labeling each
instance as either Functionality, Usage, or Miscellaneous. Our
labeling process consists of reading the heading title of each
(sub)section to determine its class. If we cannot determine the
class from the subsection’s heading title, then we read the first
sentences in the subsection to determine its class. Finally, if

www.ijacsa.thesai.org 1132 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

TABLE VII. EXAMPLES OF ERRONEOUS CLASSIFICATIONS BY THE KEYWORD-DRIVEN MODEL AND EXPLANATION OF RULE-BASED ADJUSTMENTS

Example Instance Actual Class (Score by Model) Predicted Class (Score by Model) Explanation
1 Documentation. Read the Manual

@link for more details.
Usage(0.5447) Miscellaneous(0.5585) Although the words documentation, manual,

and details in this sentence correspond to
keywords for class Usage, the model labeled
this instance as Miscellaneous. Therefore,
according to the keywords ratio rule, the pre-
dicted class is adjusted from Miscellaneous
to Usage.

2 Train with DDL Statements. DDL
statements contain information about
the table names, columns, data
types, and relationships in your
database. @Code

Usage(0.6138) Features(0.6187) Although the model mistakenly labeled this
instance as Features instead of Usage, this
subsection is a child of a higher section
that was labeled correctly by the model as
Usage. Therefore, according to the Rele-
vance to Parent rule, the predicted class is
adjusted from Features to Usage.

3 Testimonials. Mike Bayer, author of
SQLAlchemy link : I can’t think of
any single tool in my entire program-
ming career that has given me a
bigger productivity increase by its in-
troduction. I can now do refactorings
in about 1% of the keystrokes that
it would have taken me previously
when we had no way for code to
format itself...

Miscellaneous(0.6173) Functionality(0.6219) Testimonial statements by users are labeled
by the classifier as Functionality instead of
Miscellaneous with a score difference of less
than 0.01. However, the model correctly la-
bels sibling subsections as Miscellaneous.
Therefore, according to the Relevance to
Siblings rule, the predicted class is adjusted
from Functionality to Miscellaneous.

the class still cannot be determined, we read the content of the
subsection to determine its class.

Given the actual and predicted classes for each instance in
the test dataset, we compute the F1 score (also known as the
balanced F-score) [36] according to the following formula:

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(1)

Where TP represents the number of true positives, FN
represents the number of false negatives, and FP represents
the number of false positives.

Evaluation results for the various Lbl2TransformVec mod-
els are shown in Table VIII. Classification based on keyword-
driven approaches produces F1 scores that range from 0.6930
to 0.7601. Furthermore, several models have equal scores,
possibly due to these models sharing the same base model. The
improvement column shows the percentage change between
the F1 scores obtained from the evaluation of keyword-driven
models and the F1 scores obtained from the evaluation of com-
bining keyword-driven models with rule-based adjustments. As
seen in this table, incorporating rule-based adjustments shows
observable improvement in scores by an average of 13.26%
increase. Table IX shows an example of the contribution of
each rule in adjusting the classification results, where the
keyword ratio rule contributed the most by correcting 75
instances while failing to adjust 27 instances. On the other
hand, the relevance to the parent rule has contributed the least
in adjusting classification results. As seen in Table VIII rule-
based adjustments contributed the least when applied to all-
MiniLM-L6-v2. Inspection of correction results for this model
reveals significant incorrect adjustments, particularly to the
relevance to siblings rule with 40 incorrect adjustments.

We analyzed the class-word distribution of the classified
instances from the testing set. The most frequent words for
subsections identified as Functionality include words such as
models, data, index, and new. The words model and data
appear as frequently since many Python repositories discuss

machine-learning-related libraries and algorithms. On the other
hand, instances classified as Usage contain as frequent words
the words Python, install, use, run, command, and pip. Finally,
the words license, contributing, issues, community, and help
appeared among the most frequent keywords in instances
classified as Miscellaneous.

TABLE VIII. F1 SCORES FOR CONTENT CLASSIFICATION USING THE
LBL2TRANSFORMERVEC ALGORITHM WITH DIFFERENT UNDERLYING

MODELS, WITH AND WITHOUT RULE-BASED CLASSIFICATION
ADJUSTMENTS

Model F1 Score Improv.Key-Driven w/ Rule-Based
bart-large-mnli 0.7601 0.8607 +13.23%

all-MiniLM-L6-v2 0.6961 0.7571 +8.76%
all-mpnet-base-v2 0.6930 0.7957 +14.82%
all-distilroberta-v1 0.6930 0.7957 +14.82%
all-MiniLM-L12-v2 0.6930 0.7957 +14.82%

unsup-simcse-bert-base-uncas 0.7601 0.8607 +13.23%
unsup-simcse-bert-large-uncas 0.7601 0.8607 +13.23%

unsup-simcse-roberta-base 0.7601 0.8607 +13.23%
unsup-simcse-roberta-large 0.7601 0.8607 +13.23%

TABLE IX. EXAMPLES OF CORRECTION RESULTS BY RULE-BASED
CLASSIFICATION ADJUSTMENTS

Rule Correct Adjustments Incorrect Adjustments
Keywords Ratio 75 instances 27 instances

Relevance to Parent 10 instances 5 instances
Relevance to Siblings 42 instances 18 instances

B. Evaluation Results of Zero-Shot Classifier for Classifying
the Limitations of Repositories

To evaluate the zero-shot classifier presented in Section
III-F, we constructed a subset dataset derived from the orig-
inal dataset (see Table III) by searching for instances that
explicitly state limitations of repositories as well as instances
of non-limitation sentences. The resulting dataset consists of
55 instances, where 26 represent limitation sentences, and
29 represent non-limitation sentences. We run the zero-shot
classifier to classify each instance in the subset dataset and

www.ijacsa.thesai.org 1133 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

then calculate the F1 score. Evaluation results show that the
predictive performance of the zero-shot classifier in classifying
sentences as being Unsupported Features has an F1 score of
0.72.

Table X shows examples of limitation sentences found
in several instances in the dataset, with some instances of
non-limitation sentences. As can be seen in this table, the
classifier gave high scores to sentences including specific
keywords and key phrases (such as “not tested/recommended”,
“won’t be able to save files”, “does not work on” and “not
compatible with”. On the other hand, instances 5 and 6, which
do not convey any limitations, scored very low by the zero-
shot classifier, as expected. Instances 7-9 show examples of
erroneous classifications by the zero-shot classifier in nuanced
cases where limitations can be implied.

C. Motivation Example Continued: Generated Comparison
Charts

Continuing with the motivation example discussed in Sec-
tion I, Fig. 4 shows the result of generating the comparison
chart, represented as an HTML file, by the online module
for this example. In this example, the user selects N = 3
repositories from GitHub’s search results. These repositories
are Mailspring [37], Mailpile [38], and emailengine [39],
all of which are top-starred repositories for the search term
“email client”. The comparison chart displays the features of
each repository. If two features from different repositories are
similar, they are assigned an equal number (shown in blue in
Fig. 4). The identified limitations for each repository (if any)
are shown next.

In this chart, the online module has identified a single
limitation for the second repository, which corresponds to
the Mailpile repository, as obsolete. Inspection of the repos-
itory’s readme file reveals that the online module has iden-
tified this limitation through the zero-shot classifier since it
appeared in the introduction section of the file, where the
Lbl2TransformerVec algorithm previously labeled this section
with the feature class.

The lists of features and extended features in this compari-
son chart are extracted from Functionality and Usage sections,
respectively. The total number of words in this chart’s features
and extended features lists is 397. Compared to the total
number of words in the readme files for the three repositories,
which is 1742 words, the comparison chart achieves a reduc-
tion of 125% of textual information that needs to be read by
the user.

The commonality between repositories based on semantic
similarity is shown in the features list. For each pair of similar
features, a unique number (shown in blue in Fig. 4) is assigned.
For example, the Mailspring and Mailpile repositories include
“fast” as a feature. As a result, both features are identified
by the online module as common. Similarly, both repositories
indicate that they are free and are grouped as similar features.
However, our results include false positives. For example,
the “Read Receipt” and “Documentation and Details” are
calculated as similar.

V. DISCUSSION AND THREATS TO VALIDITY

Analyzing the readme files of similar GitHub repositories
to understand their unique features, limitations, and similarities
with one another is a challenging task since these files do not
adhere to a standard and may vary in their level of detail.
Furthermore, these files are written in different styles. Our
results show that combining several Large Language Models
(LLMs) can address these challenges and generate useful
comparison charts for these repositories. First, the keyword-
driven classifier based on Lbl2TransformerVec can identify
relevant sections (containing important information about the
repository) and irrelevant sections (that are unlikely to con-
tain significant information about the repository’s provided
features, such as Contribution Acknowledgment, Licence, and
Donation). After identifying relevant sections, their sentences
are extracted and passed to a zero-shot LLM based on bart-
large-mnli to determine whether the sentence intends to convey
a limitation of the repository. These limitations are extracted
so that they are not mistakenly considered as features by
the proposed approach. A keyword extractor LLM based
on KeyBERT is incorporated to extract the most relevant
keywords representing the features of each repository. Finally,
a sentence transformer is incorporated to find the semantic
similarity between features of different repositories.

Although our results show that models generated by
Lbl2TransofmerVec, which is a similarity-based approach
leveraging embeddings generated by deep learning models [5],
can classify the content of readme files, rule-based adjust-
ments can improve the algorithm’s results. This is because
Lbl2TransofmerVec trains models to classify (sub)sections
in isolation irrespective of their relations to other sections.
Therefore, the lack of such view of relations during model
training can cause incorrect classifications by these models.
The rule-based adjustments complement keyword classification
with such a view where these relations are considered. These
rule-based adjustments are possible since readme files are often
well-structured as reported previously by Treude et al. [16].

The collected dataset covers different application domains
since the collection process is blind to such domains. To
confirm this, we inspected the collected Python repositories
used for testing to determine their domains. Inspection reveals
that the test dataset covers various domains such as video
production, deepfake, cryptocurrencies, cloud development,
SQL-related libraries, and machine learning. Therefore, the
proposed approach generalizes across different repository types
or domains as it relies on textual readme files unrelated to the
source code or bytecode of repositories [13].

Our results show that larger sequence-to-sequence and
bidirectional transformer encoder models such as bart-large-
mnli and unsup-simcse variants achieve better F1 scores than
smaller models such as all-MiniLM-L6-v2. This is because
larger models with more parameters and larger embeddings
can capture complex patterns and relationships within the data
compared to smaller models with fewer parameters and smaller
embeddings. On the other hand, we observe that smaller
models, such as all-MiniLM-L6-v2, are more efficient than
larger models in terms of training and inference times and
require lower resource usage, making them more appropriate
when dealing with resource-constrained environments.

www.ijacsa.thesai.org 1134 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Fig. 4. An example of a generated comparison chart for three GitHub repositories. In this chart, the features (A) and extended features (B) of repositories are
identified by KeyBert from sections that are classified as Functionality and Usage, respectively. Limitations (C) are sentences identified by the zero-shot

classifier as Unsupported Features. Features from different repositories with matching numbers (D) are considered as potentially common.

www.ijacsa.thesai.org 1135 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

TABLE X. EXAMPLES OF ZERO-SHOT CLASSIFICATION OF LIMITATIONS WHERE SCORE THRESHOLD IS SET TO 0.9

No. Instance Example Repository Is Limitation? ScorePredicted Expected
1 MariaDB is not tested/recommended Apache Airflow Yes Yes 0.997
2 You won’t be able to save files to system folders due to UWP restriction windows,

system32
Notepads Yes Yes 0.995

3 It does not work on non-Android devices incl. LG or Samsung TVs SmartTube Yes Yes 0.94
4 Swiper is not compatible with all platforms Swiper Yes Yes 0.986
5 If your platform is unsupported or not listed above, there is still a chance you can run the

release or manually build it by following the instructions
osu No No 0.33

6 it is a modern touch slider which is focused only on modern apps/platforms to bring the
best experience and simplicity

Swiper No No 0.001

7 Importantly, we have not yet fine-tuned the Alpaca model to be safe and harmless stanford alpaca No Yes 0.28
8 This repository is receiving very limited maintenance leveldb No Yes 0.11
9 convert.py has been deprecated and moved to examples/convert-legacy-llama.py,

please use convert-hf-to-gguf.py @link
llama.cpp Yes No 0.99

Compared to prior works incorporating supervised learning
for classifying the content of GitHub readme files, Perna
et al. reported an F1 score of 0.72 [2], while our hybrid
approach achieved an F1 score of up to 0.86 (with rule-based
adjustment). However, it should be noted that their supervised
approach is multi-label and considers more classes. In contrast,
our approach merges some of the classes they reported in their
work as we focus on extracting the functionality and features
of repositories from readme files. For example, the What, Why,
and When classes in their work correspond to the Functionality
class in our work.

Although our results show adequate extraction of com-
parison charts, we identify several challenges and possible
improvements for future works as follows:

• Immature or incomplete readme files: Throughout
our data collection process, we discovered that the
readme files of many GitHub repositories, including
repositories with high star ratings, may lack detailed
information on their functionalities and features. In-
stead, they add internal or external URLs (such as the
product’s official website) for further details. There-
fore, the generated comparison charts are incomplete
and do not represent the repositories’ full features
and limitations. Thus, the proposed approach can be
extended to automatically cover such internal and
external resources. In addition to analyzing the readme
files of a repository, it is also possible to extend the
proposed approach by gathering additional sources of
information using GitHub’s API, including GitHub
issues, pull requests, and discussions. A pull request
represents a proposal for merging a set of changes
before these changes are integrated into the main
codebase [40]. Therefore, analyzing pull requests and
their current statuses makes it possible to expand
the comparison charts with information unavailable
in readme files. For example, merged pull requests
can reveal new features/functionalities of a repository.
Similarly, an open pull request can reveal potential
limitations yet to be addressed. GitHub issues and
discussions can be analyzed to discover a repository’s
features and limitations. However, since any user can
create issues and participate in public repositories, the
challenge is to validate these issues and discussions
before relevant information is extracted and used in
comparison charts, as some issues can result from user

misunderstanding or misuse of the repository.

• Sentence-Level content classification: Our work as-
sumes that each (sub)section in readme files is mapped
to a specific class (e.g. functionality, usage, or Mis-
cellaneous). Although many repository owners ensure
that each (sub)section has a clear and single purpose
to achieve, our observation indicates sections can
include sentences of various classes. For example,
some readme files may contain Usage instructions in
the introduction section. This may result in missed
features and functionalities if conveyed in sections
classified as Miscellaneous. Therefore, one may con-
sider enhancing the classification task at the sentence
level for such sections.

• Interpretability and explainability: The generated
comparison charts can be inaccurate and biased.
Therefore, it is essential to incorporate appropri-
ate mechanisms so that these charts are explainable
[41] [42] to the end users, conveying the underly-
ing model’s accuracy and achieving transparency. For
example, interactive elements can be added to these
charts to explain how the proposed approach obtains
and calculates the various parts (i.e. repository fea-
tures, extended features, limitations, and similarities).
Furthermore, incorporating tractability mechanisms
between these parts and the source from which they
are obtained (i.e. line numbers within readme files)
enables users to validate these parts.

• Repository Limitations Extraction: Our evaluation re-
sults of the zero-shot classifier to identify the limita-
tions of repositories demonstrate its capability for this
task. However, this approach needs to be investigated
further. First, the small dataset used to validate the
zero-shot classifier is a threat to validity, as a larger
dataset is required for evaluation. The challenge is
obtaining a large dataset representing limitations found
in real GitHub repositories, as most repository owners
focus on stating what their repository provides rather
than stating the limitations. Second, our results show
that sentences with implied limitations (e.g. instance
7 in Table X) can result in erroneous classifications
by the zero-shot classifier. One potential solution is
to train the classifier on a dataset of real limitations
from GitHub repositories. Finally, the zero-shot clas-
sifier lacks a contextual view during classification;

www.ijacsa.thesai.org 1136 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

for example, the classifier cannot distinguish whether
the limitation is related to the user-selected repository
or other related/external repositories referenced in a
readme file. This challenge applies to identifying a
repository’s features as well. A possible improvement
is to add steps for analyzing the sentence(s) structure
and linguistic features to determine whether a lim-
itation (or a feature) is related to the user-selected
repository and not other related repositories referenced
in the readme files.

• Feature commonalities between repositories: Our re-
sults show that identifying common features between
different repositories is challenging. One possible rea-
son is the usage of technical terms that are not incor-
porated during the training of LLMs. One potential
future direction is to investigate the enhancement of
similarity approaches in this respect.

• Quantitative Metrics Generation: Our approach relies
on extracting qualitative data from readme text files.
However, it might be possible to extract more qualita-
tive and quantitative data. For example, the frequency
with which each repository is updated, the average
response time of a repository’s owner to issues, and
the overall maturity of each repository compared to
others can be considered. These metrics can enrich the
generated comparison charts and their overall added
value to end-users.

VI. CONCLUSION

While prior works investigated the analysis of individual
readme files, with most works following a supervised ap-
proach, our work focuses on an unsupervised approach for the
classification task, which aims to generate comparison charts
of similar GitHub repositories from their readme files. Our
evaluation results show that textual information in comparison
charts can be 125% less compared to the amount of text in
readme files, thus minimizing the time and effort required
for users to read these files to understand and compare their
features and capabilities. Our approach utilizes a hybrid model
based on the Lbl2TransformerVec algorithm and augmented
with rule-based classification adjustments. The model is trained
based on readme files automatically obtained from GitHub for
Java, JavaScript, C++, and C# repositories. The model is then
evaluated using a different set of readme files from Python
repositories. Our results show that rule-based classification
adjustment can improve the model’s predictive performance by
up to 13%. We then incorporated this model in an online mod-
ule to generate comparison charts of GitHub repositories based
on user search terms. Our future work includes investigating
several enhancements to the proposed approach to address
its limitations, as identified in the previous section, including
(1) investigating how comparison charts can be enriched with
information from other sources (such as GitHub pull requests,
discussions, and issues), (2) extending the proposed approach
so that the generated comparison charts are explainable to
the end users, and (3) adding quantitative metrics to these
charts. Furthermore, we plan to expand the evaluation of this
approach using a larger dataset of GitHub repository features
and limitations.

REFERENCES

[1] GitHub, Inc. (2024) Build software better, together. [Online]. Available:
https://github.com/about

[2] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo,
“Categorizing the Content of GitHub README Files,” Empirical
Software Engineering, vol. 24, no. 3, pp. 1296–1327, Jun. 2019.
[Online]. Available: https://doi.org/10.1007/s10664-018-9660-3

[3] J. Wu, Y. Sun, and J. Zhang, “An Open-source Repository Retrieval
Service Using Functional Semantics for Software Developers,” in 2022
International Conference on Service Science (ICSS), May 2022, pp. 12–
20. [Online]. Available: https://ieeexplore.ieee.org/document/9860185

[4] Y. Zhang, F. F. Xu, S. Li, Y. Meng, X. Wang, Q. Li, and
J. Han, “Higitclass: Keyword-driven hierarchical classification of
github repositories,” in 2019 IEEE International Conference on Data
Mining, ICDM 2019, Beijing, China, November 8-11, 2019, J. Wang,
K. Shim, and X. Wu, Eds. IEEE, 2019, pp. 876–885. [Online].
Available: https://doi.org/10.1109/ICDM.2019.00098

[5] T. Schopf, D. Braun, and F. Matthes, “Evaluating unsupervised
text classification: Zero-shot and similarity-based approaches,” in
Proceedings of the 2022 6th International Conference on Natural
Language Processing and Information Retrieval, ser. NLPIR ’22.
New York, NY, USA: Association for Computing Machinery, 2023, p.
6–15. [Online]. Available: https://doi.org/10.1145/3582768.3582795

[6] T. Schopf, D. Braun, and F. Matthes, “Semantic label representations
with lbl2vec: A similarity-based approach for unsupervised text clas-
sification,” in Web Information Systems and Technologies, ser. Lecture
Notes in Business Information Processing, M. Marchiori, F. Domı́nguez
Mayo, and J. Filipe, Eds. Germany: Springer, Jan. 2023, pp. 59–73.

[7] T. Schopf, D. Braun, and F. Matthes, “Lbl2vec: An embedding-based
approach for unsupervised document retrieval on predefined topics,” in
Proceedings of the 17th International Conference on Web Information
Systems and Technologies - WEBIST,, INSTICC. SciTePress, 2021,
pp. 124–132.

[8] Y. Zhou, J. Wu, and Y. Sun, “GHTRec: A Personalized
Service to Recommend GitHub Trending Repositories for
Developers,” in 2021 IEEE International Conference on Web
Services (ICWS), Sep. 2021, pp. 314–323. [Online]. Available:
https://ieeexplore.ieee.org/document/9590294

[9] C. Di Sipio, R. Rubei, D. Di Ruscio, and P. T. Nguyen, “A
Multinomial Naı̈ve Bayesian (MNB) Network to Automatically
Recommend Topics for GitHub Repositories,” in Proceedings of
the 24th International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’20. New York, NY, USA:
Association for Computing Machinery, Apr. 2020, pp. 71–80. [Online].
Available: https://doi.org/10.1145/3383219.3383227

[10] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo, “Cataloging
github repositories,” in Proceedings of the 21st International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
314–319. [Online]. Available: https://doi.org/10.1145/3084226.3084287

[11] F. Zanartu, C. Treude, B. Cartaxo, H. S. Borges, P. Moura,
M. Wagner, and G. Pinto, “Automatically categorising github
repositories by application domain,” 2022. [Online]. Available:
https://arxiv.org/abs/2208.00269

[12] S. Vargas-Baldrich, M. Linares-Vásquez, and D. Poshyvanyk, “Auto-
mated tagging of software projects using bytecode and dependencies
(n),” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015, pp. 289–294.

[13] M. Izadi, A. Heydarnoori, and G. Gousios, “Topic recommendation
for software repositories using multi-label classification algorithms,”
Empirical Software Engineering, vol. 26, no. 5, p. 93, Jul. 2021.
[Online]. Available: https://doi.org/10.1007/s10664-021-09976-2

[14] Y. Liu, E. Noei, and K. Lyons, “How ReadMe files are
structured in open source Java projects,” Information and Software
Technology, vol. 148, p. 106924, Aug. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922000775

[15] A. S. M. Venigalla and S. Chimalakonda, “An empirical study on
correlation between readme content and project popularity,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.10772

www.ijacsa.thesai.org 1137 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

[16] C. Treude, J. Middleton, and T. Atapattu, “Beyond accuracy:
assessing software documentation quality,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for
Computing Machinery, Nov. 2020, pp. 1509–1512. [Online]. Available:
https://doi.org/10.1145/3368089.3417045

[17] O. Elazhary, M.-A. Storey, N. Ernst, and A. Zaidman, “Do as I
Do, Not as I Say: Do Contribution Guidelines Match the GitHub
Contribution Process?” 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 286–290, Sep.
2019, conference Name: 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME) ISBN: 9781728130941
Place: Cleveland, OH, USA Publisher: IEEE. [Online]. Available:
https://ieeexplore.ieee.org/document/8919187/

[18] A. S. M. Venigalla and S. Chimalakonda, “What’s in a github
repository? – a software documentation perspective,” 2021. [Online].
Available: https://arxiv.org/abs/2102.12727

[19] J. Hellman, E. Jang, C. Treude, C. Huang, and J. L. C.
Guo, “Generating github repository descriptions: A comparison
of manual and automated approaches,” 2021. [Online]. Available:
https://arxiv.org/abs/2110.13283

[20] Y. Zhou, J. Wu, and Y. Sun, “Ghtrec: A personalized service to
recommend github trending repositories for developers,” in 2021 IEEE
International Conference on Web Services (ICWS), 2021, pp. 314–323.

[21] GitHub, Inc. REST API endpoints for search. [Online]. Available:
https://docs.github.com/en/rest/search/search

[22] GitHub, Inc. Writing on GitHub. [Online]. Available:
https://docs.github.com/en/get-started/writing-on-github

[23] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: Denoising
sequence-to-sequence pre-training for natural language generation,
translation, and comprehension,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, D. Jurafsky,
J. Chai, N. Schluter, and J. Tetreault, Eds. Online: Association
for Computational Linguistics, Jul. 2020, pp. 7871–7880. [Online].
Available: https://aclanthology.org/2020.acl-main.703

[24] W. Wang, H. Bao, S. Huang, L. Dong, and F. Wei, “MiniLMv2: Multi-
head self-attention relation distillation for compressing pretrained
transformers,” in Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, C. Zong, F. Xia, W. Li, and R. Navigli,
Eds. Online: Association for Computational Linguistics, Aug. 2021, pp.
2140–2151. [Online]. Available: https://aclanthology.org/2021.findings-
acl.188

[25] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: masked and
permuted pre-training for language understanding,” in Proceedings of
the 34th International Conference on Neural Information Processing
Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran Associates Inc.,
2020.

[26] sentence-transformers/all-distilroberta-v1 · Hugging Face. [On-
line]. Available: https://huggingface.co/sentence-transformers/all-
distilroberta-v1

[27] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive learning
of sentence embeddings,” in Empirical Methods in Natural Language
Processing (EMNLP), 2021.

[28] W. Yin, J. Hay, and D. Roth, “Benchmarking zero-shot text
classification: Datasets, evaluation and entailment approach,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), K. Inui, J. Jiang,
V. Ng, and X. Wan, Eds. Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 3914–3923. [Online].
Available: https://aclanthology.org/D19-1404

[29] M. Grootendorst, “Keybert: Minimal keyword extraction with bert.”
2020. [Online]. Available: https://doi.org/10.5281/zenodo.4461265

[30] Hugging face pipelines. [Online]. Available:
https://huggingface.co/docs/transformers/en/main classes/pipelines

[31] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril,
J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,
K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian,
X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu,
Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang,
A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open
foundation and fine-tuned chat models,” 2023. [Online]. Available:
https://arxiv.org/abs/2307.09288

[32] (2024, Aug.) meta-llama/Llama-2-7b-chat-hf · Hugging Face. [Online].
Available: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

[33] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available:
https://arxiv.org/abs/1908.10084

[34] J. Ni, G. Hernandez Abrego, N. Constant, J. Ma, K. Hall, D. Cer,
and Y. Yang, “Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models,” in Findings of the Association for
Computational Linguistics: ACL 2022, S. Muresan, P. Nakov,
and A. Villavicencio, Eds. Dublin, Ireland: Association for
Computational Linguistics, May 2022, pp. 1864–1874. [Online].
Available: https://aclanthology.org/2022.findings-acl.146

[35] E. Schubert, “A triangle inequality for cosine similarity,” in Similarity
Search and Applications, N. Reyes, R. Connor, N. Kriege, D. Kazem-
pour, I. Bartolini, E. Schubert, and J.-J. Chen, Eds. Cham: Springer
International Publishing, 2021, pp. 32–44.

[36] Z. C. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal thresholding of
classifiers to maximize f1 measure,” in Machine Learning and Knowl-
edge Discovery in Databases, T. Calders, F. Esposito, E. Hüllermeier,
and R. Meo, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 225–239.

[37] (2024, Sep.) Foundry376/Mailspring. Original-
date: 2016-10-13T06:45:50Z. [Online]. Available:
https://github.com/Foundry376/Mailspring

[38] (2024, Sep.) mailpile/Mailpile. Original-date: 2011-10-30T23:45:22Z.
[Online]. Available: https://github.com/mailpile/Mailpile

[39] (2024, Sep.) postalsys/emailengine. Original-
date: 2020-02-28T17:17:44Z. [Online]. Available:
https://github.com/postalsys/emailengine

[40] GitHub, Inc. About pull requests. [Online]. Available:
https://docs.github.com/en/pull-requests/collaborating-with-pull-
requests/proposing-changes-to-your-work-with-pull-requests/about-
pull-requests

[41] N. A. Sharma, R. R. Chand, Z. Buksh, A. B. M. S. Ali, A. Hanif,
and A. Beheshti, “Explainable AI Frameworks: Navigating the Present
Challenges and Unveiling Innovative Applications,” Algorithms,
vol. 17, no. 6, 2024. [Online]. Available: https://www.mdpi.com/1999-
4893/17/6/227

[42] S. A. and S. R., “A systematic review of explainable artificial intelli-
gence models and applications: Recent developments and future trends,”
Decision Analytics Journal, vol. 7, p. 100230, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S277266222300070X

www.ijacsa.thesai.org 1138 | P a g e

