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Abstract—Object detection in aerial images is gradually gain-
ing wide attention and application. However, given the prevalence
of numerous small objects in the Unmanned Aerial Vehicle
(UAV) aerial images, the extraction of superior fusion features
is critical for the detection of small objects. However, feature
fusion in many detectors does not fully consider the specific
characteristics of the detection task. To obtain suitable features
for the detection task, the paper proposes an improved Feature
Pyramid Network (FPN) named ATG-Net, which aims to improve
the feature fusion capability. Firstly, we propose an Adaptive Tri-
Layer Weighting (ATW) module that adaptively assigns weights
to each layer of the feature map according to its size and content
complexity. Secondly, a Triple Feature Encoding (TFE) module is
implemented, which can fuse feature maps from three different
scales. Finally, the paper incorporates the Global Attention
Mechanism (GAM) into the network, which includes improved
channel attention mechanisms and spatial attention mechanisms.
The experiments are conducted on the VisDrone2020 dataset, and
the result shows that the network significantly outperforms the
baseline detector and a variety of popular object detectors, which
significantly improves the feature fusion capability of the network
and the detection accuracy of small objects.

Keywords—Object detection; feature pyramid network; adaptive
tri-layer weighting; triple feature encoding; global attention mech-
anism

I. INTRODUCTION

Object detection technology in the UAV capture scene is
rapidly advancing, and it plays an important role in the fields of
power line inspection, crop analysis, military security [1], [2],
[3], and so on. With the development of deep learning, espe-
cially convolutional neural networks [4], [5], [6], [7], [8], [9],
the performance of object detection has been greatly improved.
The detectors contain three main components: backbone, neck,
and head. The primary function of the backbone is feature
extraction. The mainstream architectures include VGG [10],
ResNet [11], DenseNet [12], MobileNet [13], EfficientNet
[14], CSPDar-knet53 [15], and SwinTransformer [16], which
have been relatively mature. The main function of the neck
network is multi-scale feature fusion, feature enhancement, and
integration of contextual information. It plays a crucial role
in the object detection task. The role of the detection head
is to parse the fused feature output from the neck network,
including object localization and bounding box regression. The
performance of the detection head is largely dependent on
the quality of the fused features. Therefore, the design of an
effective necking network has a decisive impact on improving
the performance of the entire detection system.
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A widely adopted neck network is to build a feature pyra-
mid network (FPN) [17], which consists of top-down paths and
adds lateral connections to the network to achieve the fusion of
multi-scale features, enabling the model to better understand
and capture the semantic information of the object at different
scales. The FPN network usually up-samples the high-level
semantic feature maps and combines them with low-level fea-
tures through simple summation. However, this approach does
not adequately address the semantic gaps and dissimilarities
between the features, thereby limiting the network’s ability to
generate highly discriminative features. Furthermore, fusing
only high-level and low-level features cannot fully leverage
the contextual information of small objects. Such a structure
is limited in its ability to capture the fine details of small
objects, leading to inaccurate inferences of their locations
and categories, which ultimately diminishes overall object
detection accuracy.

In recent years, various FPN networks have been proposed
to enhance the multi-scale feature fusion capabilities. PANet
[18] augmented FPN with a bottom-up path enhancement, al-
lowing information from lower layers to be directly transferred
to higher layers, thereby enhancing the flow of information.
Bi-FPN [19] proposed a bidirectional cross-scale connectivity
structure. This structure enhances feature fusion by adding
top-down paths to the FPN. Additionally, it introduces more
lateral connections between different levels. These connections
improve the fusion of features. Zhang Y et al. [20] proposed a
feature pyramid network that combines top-down and bottom-
up approaches. By integrating these two architectures, feature
maps with richer semantic information and conducive to object
detection can be obtained. EFPN [21] designed a feature
texture transfer module, which endows the extended feature
pyramid with reliable details, extending the original FPN to
specialize in small object detection for high-resolution images.
SAFPN [22] designed an efficient feature pyramid network for
crowded human detection, integrating a refined HS-block into
the original FPN to mitigate the effects of scale variations
introduced by crowds. With this structure, a single level of
features can encompass more receptive fields, accommodating
objects at different scales. Although the methods can obtain
rich semantic information, they perform a simple summation
when fusing low-level and high-level semantics without con-
sidering the varying degrees of importance among the features.
As a result, they fail to generate highly discriminative features.
Additionally, fusing only high-level and low-level semantic
features does not fully utilize the contextual information.

Considering cross-layer feature fusion, new design schemes
have been proposed. CFPN [23] is a novel cross-layer feature
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pyramid network that aggregates multi-scale feature maps and
then assigns the aggregated features to the corresponding lay-
ers. This enables direct cross-layer communication, improving
the asymptotic fusion in salient object detection and yielding
better feature maps. However, the method only scales the
weights of different feature layers with scaled weights and
does not further fuse the feature layers to generate highly
discriminative features. ImFPN [24] proposed an improved
feature pyramid network based on a similarity fusion module
and an attention module, which can fuse different features to
accommodate instances of varying sizes. However, the design
of the fusion module neglects the differences in the relative
importance of the feature maps and, to some extent, increases
the computational burden.

In order to solve the above problems, this paper specifically
designs a feature pyramid network named ATG-Net for aerial
image detection. Firstly, in order to better utilize the contextual
information of multi-scale features, a Triple Feature Encoding
(TFE) module is proposed to fuse large, medium, and small
scale feature maps. Considering that feature maps of differ-
ent sizes may have different importance in object detection,
this paper proposes an Adaptive Tri-Layer Weighting (ATW)
module that is able to adaptively predict a set of weights for
feature maps of different sizes. Considering that the attention
mechanism can make the network more focused on the features
of small objects, the Global Attention Mechanism (GAM) [20]
is integrated into the network. In the following, Section II
outlines the relevant research and studies. Section III details
the methodologies of ATW, TFE, and GAM. The detailed
comparative experiments and visual analysis are provided in
Section IV. Section V concludes with a discussion of the
advantages and limitations of the proposed model.

II. RELATED WORK

A. Object Detectors

Contemporary object detectors can be roughly divided
into two categories according to the detection process: one-
stage and two-stage detectors. One-stage detectors directly
predict the class and location of objects within an image.
While these detectors offer higher computational efficiency,
their accuracy is generally lower compared to alternative
approaches. RetinaNet [25] overcomes the obstacle of sam-
ple imbalance by introducing focus loss and improves the
detection precision. SCA-YOLO [26] proposes a multilayer
feature fusion algorithm. In this approach, the single-stage
object detection algorithm YOLOv5 is embedded with two
newly proposed models and utilizes an adaptive feature fusion
network. This enhances the network’s feature representation
capabilities, significantly improving the detection accuracy of
small objects. ASF-YOLO [27] proposes a framework based
on attentional scale sequence fusion, which combines both
spatial and scale features for accurate and fast cellular instance
segmentation. Compared with one-stage detectors, two-stage
detectors pursue better detection accuracy at the expense of
speed. The R-CNN family of detectors [28], [29] employs
a Region Proposal Network (RPN) to generate high-quality
candidate anchors, which are then classified and localized. This
design enhances the precision of object detection. Double-
head R-CNN [30] respectively uses fully connected head

and convolutional head for classification and bounding box
regression, achieving excellent detection performance.

B. Attention Mechanism

The application of the attention mechanism in object detec-
tion has been proven to be extremely effective, which enables
the model to focus on the most important areas in the image,
thereby improving the accuracy and efficiency of object detec-
tion. Squeeze-and-Excitation Networks (SENet) [31] automat-
ically calibrates the responses of feature channels by explicitly
modeling the dependencies between the feature channels. By
recalibrating the responses of the channels, the model can
more effectively leverage the available features. Convolutional
block attention module (CBAM) [32] is a straightforward yet
effective attention mechanism for feed-forward convolutional
neural networks. It generates attention maps independently
along the channel and spatial dimensions, thereby enabling
adaptive feature refinement. Inspired by CBAM, the Global
Attention Mechanism (GAM) [33] enhances the performance
of deep neural networks by mitigating information loss and
strengthening global interaction representation. Additionally,
it incorporates 3D alignment using a multilayer perceptron
for channel attention and integrates a convolutional spatial
attention submodule. The global attention mechanism is able
to amplify the cross-dimensional interactions and capture im-
portant features in all three dimensions (channel, spatial width,
and spatial height), better preserving the effective information
of the original features.

III. APPROACH

The proposed ATG-Net network (see Fig. 1) consists of a
Tri-Layer Weighting Module (ATW), a Triple Feature Encoder
Module (TFE), and a Global Attention Mechanism (GAM).
ATW enhances the fusion of small, medium, and large-scale
features by improving their mechanical properties. It is capable
of adaptively predicting a set of weights based on the sig-
nificance of each feature level for effective aggregation. TFE
effectively captures localized fine features of small objects,
enabling the integration of local and global information to
produce fused features that are better suited for small object
recognition. GAM improves the performance of deep neural
networks for detecting small objects by reducing information
reduction and amplifying the global interaction representation.

A. Adaptive Tri-Layer Weighting Module

Directly fusing feature maps may lead to the loss of
important information. Different feature maps may contain
distinct types of information, and directly adding or concate-
nating them can result in certain key features being masked
or weakened. Different feature maps may capture distinct
features, some of which may be contradictory. Directly fusing
these feature maps can lead to feature conflicts, making it
difficult for the model to learn effective representations. In
order to solve the above problems, the paper proposes an
adaptive three-layer weighting (ATW) module that can adap-
tively predict a set of weights based on the importance of the
features for each level. This enables the generation of salient
features that are more favorable for small object detection.
Fig. 2 illustrates the ATW model structure. Here, C denotes
the number of channels, R denotes the feature resolution,
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Fig. 1. The framework of ATG-Net. It consists of a backbone network, ATG-Net, and a detection head.

and FC denotes the fully connected layer. Large, Medium,
and Small refer to the large-size, medium-size, and small-
size feature maps, respectively. First, the features of large,
medium, and small sizes are convolved by 1x1 to adjust the
number of channels. Secondly, ATW employs global average
pooling on each feature map to compress spatial information,
resulting in a numerical value for each channel. The channel
information is then concat. Finally, the concatenated features
are passed through two fully connected layers to generate
weight information for the three features. Formally, each layer
is characterized by Xn ∈ Cn×RHn×Wn , and ATW computes
the channel-wise global representation of Z ∈ RC×1 by the
following formula:

Z =∥Nn=1 zn =∥Nn=1

 1

Hn ×Wn

Hn∑
i=1

Wn∑
j=1

Xn(i, j)

 . (1)
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（X1）
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(X2)

AdapAvg
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AdapAvg
Pooling Concat FC
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(1C,1R)

(1C,1)

(1C,1)

(1C,1)

(3C,128)
(128,3)

W0
W1
W2

L1=W0 x X0

M1=W1 x X1

S1=W2 x X2
AdapAvg
Pooling

FC

Fig. 2. The structure of the ATW module.

Where ∥ represents the concatenation function, C =∑N
n=1 Cn represents the number of channels represented glob-

ally, n ∈ 0,1,2. N represents the number of the feature map, and
Xn(i, j) represents represents the feature value at the position
(i,j) of the n-th feature map. This paper attempts to make use
of aggregate information Z to focus on the features of each
level on the significant region rather than the overall feature
map. The integrated information Z is passed through two linear
transformations to obtain the assigned weight W ∈ RN×1.

W = FC2(Relu(FC1(Z))) (2)

As shown in Fig. 2, the symbol Wn represents the nth
element of W, and × denotes the scalar multiplication between
Xn and Wn. This approach facilitates the adaptive enhance-
ment of features at each level, thereby promoting precise
saliency detection in computer vision applications.

B. Triple Feature Encoder Module

Traditional feature pyramid networks introduce a top-down
path to generate multi-scale feature maps by upsampling high-
level feature maps and fusing them with low-level feature
maps. However, due to the insufficient interaction of seman-
tic information between levels, it is difficult to effectively
synergize the low-level detail information with the high-
level semantic information, which affects the characterization
ability of the fused feature graph. This paper proposes the
Triple Feature Encoder Module (TFE) approach, which fuses
three scales of feature information to generate high-quality
semantic information. The design can not only enhance the
characterization ability of features but also improve and refine
the feature information.

Fig. 3 shows the structure of the TFE module. Here, C
represents the number of channels and R the resolution of
feature maps. L1, M1, and S1 denote the large, medium, and
small feature maps from the output of the ATW module. The
upsample uses nearest neighbor interpolation. For large-size
feature maps (L1), a hybrid structure of maximum pooling
and average pooling is utilized for down sampling, which
is beneficial to preserve the validity and diversity of high-
resolution features and small objects. Medium-size feature
maps (M1) can be subjected to a convolution operation or
without any untransformation. For small-size features (S1),
the nearest neighbor interpolation method is used to adjust the
resolution to 1R. The three changed features are then subjected
to a concat operation, which undergoes a 1*1 convolution
operation to modify the output channel. This approach helps
to preserve the local feature richness of low-resolution images.
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Fig. 3. The structure of the TFE module.

C. Global Attention Mechanism

However, small objects occupy fewer pixels and contain
less information in the image, making them more susceptible to
being ignored or misclassified during detection. The attention
mechanism guides the network to prioritize the features of
small objects, thereby enhancing their distinguishability in
subsequent processing by improving the representation of their
features. By facilitating the capture of long-range dependen-
cies, this mechanism leverages context from surrounding pixels
and the broader image, thereby augmenting the network’s
feature representation capabilities. However, both SENet and
CBAM approaches overlook the interactions between chan-
nels and spatial dimensions, leading to the loss of cross-
dimensional information. The global attention mechanism
(GAM) [33] mitigates information loss and amplifies inter-
actions across global dimensions. This enhancement bolsters
the features of small objects, mitigates information loss, and
thereby elevates the detection performance for such objects.

Fig. 4 shows the overview of the Global Attention Mech-
anism (GAM), where diagram A represents the overall input-
output flow of the GAM, subdiagram B represents the flow of
the channel attention mechanism, and subdiagram C represents
the flow of spatial attention. Where F1, F2 and F3 represent the
input feature map, intermediate state map, and output feature
map, respectively. The expressions are as follows:

F2 = Mc(F1)⊗ F1 . (3)

F3 = Ms(F2)⊗ F2 . (4)

where Mc denotes the channel attention mechanism, Ms

denotes the spatial attention mechanism, and ⊗ denotes
element-by-element multiplication.

The channel attention submodule arranges spatial infor-
mation into 1 dimension and realigns dimensional positions.
It subsequently applies a two-layer multi-layer perceptron
(MLP) to enhance the interdimensional dependencies between
channels and spatial features.

In order to expand the receptive field, the spatial atten-
tion mechanism uses 7*7 convolutional layers. To reduce the
computational effort, the number of channels is regulated
using the channel reduction rate r. Finally, the feature map is
passed through a sigmoid activation function, which generates
attention weights that indicate the degree of importance of
different locations or features.
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Fig. 4. The overview of the global attention mechanism.

IV. EXPERIMENTS

To verify the effectiveness of the ATG-Net for small
object detection, this paper conducts extensive experiments
on the VisDrone2020 [34] dataset, a popular and challenging
benchmark for aerial image detection.

1) VisDrone2020: This dataset contains a total of 10,209
images, of which 6471 were used for training, 548 for val-
idation, 1610 for general testing, and 1580 for challenging
testing. The image resolution of the dataset is approximately
2000×1500. The dataset encompasses 2.6 million annota-
tions across various categories, primarily focusing on vehicles
such as cars, buses, bicycles, tricycles, motorcycles, awning-
tricycles, trucks, and vans, along with pedestrians, all captured
from drone-based observations. It has extreme category imbal-
ance and scale imbalance, making it an ideal benchmark for
studying small object detection problems.

2) Implementation details: RetinaNet (Retina) [25], Faster
R-CNN (FRCNN) [29], and Cascade RCNN (CRCNN) [39]
are respective representatives of one-stage detectors, two-
stage detectors, and cascade detectors. Accordingly, the paper
designates them as the baseline detection networks for com-
parison. For data augmentation, the paper utilizes simple yet
effective methods such as random resizing, random cropping,
and random flipping. We implement the ATG-Net based on
mmdetection on a single Nvidia 3060Ti GPU with 16GB
of graphics memory. The optimizer employed is Stochastic
Gradient Descent (SGD), initialized with a learning rate of
0.01. The learning rate strategy integrates both linear and
cosine annealing schedules, initially employing a linear decay
over the first 10 epochs, followed by a cosine decay for the
subsequent 20 epochs, thereby encompassing a total training
duration of 30 epochs. To assess the network’s performance,
Average Precision (AP) is utilized as the key metric. AP50:95

is the average accuracy calculated over a range of different
Intersection over Union (IoU) thresholds. It provides a more
comprehensive picture of the model’s performance under dif-
ferent IoU thresholds. AP50 and AP75 are computed at single
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TABLE I. DETECTION RESULTS OF DIFFERENT NETWORKS ON THE VISDRONE2020 VALIDATION SET

Method Backbone AP50:95 AP50 AP75 PED PER BC Car Van Truck TRI ATRI Bus MO
Retina [26] R50 13.9 27.7 12.7 13.0 7.9 1.4 45.5 19.9 11.5 6.3 4.2 17.8 11.8

FRCNN [26] R18 21.8 39.2 21.5 18.1 12.9 7.3 50.3 30.5 21.5 15.5 8.1 34.8 18.7
FRCNN [26] R50 21.7 39.8 21.0 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7
FRCNN [26] R101 21.8 40.2 20.9 20.9 14.8 7.3 51.0 29.7 19.5 14.0 8.8 30.5 21.2
CRCNN [26] R50 23.2 40.7 23.1 22.2 14.8 7.6 54.6 31.5 21.6 14.8 8.6 34.9 21.4

FRCNN+ MMF [35] R50 22.6 41.7 21.6 21.6 15.3 9.6 51.5 28.5 20.4 15.9 7.5 33.7 21.6
FRCNN+SimCal [36] R50 20.0 35.8 19.6 18.7 13.8 5.7 51.0 28.4 16.4 13.6 5.9 27.0 19.4

FRCNN+RS+BGS [37] R50 23.0 43.0 22.0 21.8 16.0 8.1 51.8 31.1 19.8 15.0 8.4 36.1 21.5
FRCNN+DSHNet [38] R50 24.6 44.4 24.1 22.5 16.5 10.1 52.8 32.6 22.1 17.5 8.8 39.5 23.7

Retina+ATG-Net R50 18.1 30.6 18.7 13.8 7.7 5.0 48.2 24.7 21.1 10.5 5.5 31.9 12.6
CRCNN+ATG-Net R50 24.9 40.8 26.3 20.5 12.5 10.2 54.3 34.6 27.4 17.7 11.2 40.2 20.7
FRCNN+ATG-Net R18 27.2 44.8 28.8 22.5 16.2 12.5 54.9 38.2 27.7 20.4 13.1 42.8 23.6
FRCNN+ATG-Net R50 28.9 46.8 30.9 23.7 17.2 13.8 56.2 39.7 30.4 22.6 13.9 47.1 24.9

IoU thresholds of 0.5 and 0.75 across all categories. APs,
APm and APl presents the average precision of the model
in detecting small, medium, and large sizes receptively.

A. Experimentation Results

1) Comparison with baseline models: To demonstrate the
effectiveness of the ATG-Net algorithm for detecting various
types of targets on UAV images, the paper compares the pro-
posed model with three baseline models and various improved
FPN methods. The baseline models include Faster RCNN (FR-
CNN), RetinaNet (Retina), and Cascade RCNN (CRCNN), all
evaluated under the same experimental conditions. ResNet18
(R18) and ResNet50 (R50) were chosen as the backbone
networks. The evaluation metric for the object category utilizes
AP50:95. Experimental results with the baseline model and
various improved FPN methods are shown in Table I. Where
PED stands for pedestrian, PER stands for person, BC stands
for bicycle, TRI stands for tricycle, ATRI stands for awning-
tricycle, and MO stands for motor.

From Table I, ATG-Net achieves consistent performance
improvements across all the detection networks with which
it is combined. For Faster R-CNN, this paper uses three
backbone architectures for comparative experiments. Notably,
the R50 backbone yields the most significant performance
boost, enhancing the AP50:95 from 21.7% to 28.9%, repre-
senting a 7.2% improvement. When compared to the Retina
model, there was an AP improvement from 13.9% to 18.4%,
marking a 4.5% enhancement. The optimal detection model,
Cascade R-CNN, likewise exhibits performance enhancement,
with the AP advancing 23.2% to 24.4%. Upon incorporating
our proposed ATG-Net module, all three baseline models
experienced a significant improvement in detection accuracy
across all categories. Notably, in categories like ‘bicycle’ and
‘bus’, which are underrepresented in the training data and typi-
cally appear very small, our method—employing FRCNN with
the R50 backbone—achieves remarkable AP50:95 increases of
7.1% and 15.7%, respectively. This highlights the ATG-Net’s
capability to excel at detecting small objects even when trained
on limited data, affirming its robustness in such challenging
scenarios.

Table I also presents the detection results of various ad-
vanced FPN networks improved upon FRCNN. ATG-Net also
achieved the highest average detection precision, surpassing
other detectors. In the detection of ten categories, ATG-Net
has achieved good results, especially in the category of the

bicycle and bus, where it outperforms DSHNet by 3.7% and
7.6%, respectively.

To further demonstrate the effectiveness of the ATG-Net
model in detecting small objects, Table II is provided. A
comparative analysis of various advanced object detection al-
gorithms on the VisDrone2020 test set is presented. Combining
ATG-Net with FRCNN and utilizing R50 as the backbone
network, the optimal result was achieved on AP50, with 38.4%.
As shown in Table II, categories with a higher proportion of
small targets, such as bicycles and buses, exhibit a substantial
improvement, with the AP50 increasing to 18.2% and 64.4%,
respectively.

B. Ablation Experiments

To validate the individual contributions of ATG-Net’s fea-
ture pyramid components—ATW, TFE, and GAM—to the
detection performance, ablation experiments were conducted.
Experiments were conducted on the VisDrone2020 validation
set using FRCNN as the baseline model and R18 as the back-
bone network. Table III shows the effect of each component
of the ATG-Net on the detection performance.

1) Impact of TFE module: As shown in Table III, the
addition of the TFE module increases AP50 from 39.0% to
42.4%. The APs increases from 14.1% to 16.6%, indicating
that the TFE module can effectively improve the precision of
small objects. This indicates that the TFE module can well
fuse different levels of feature maps, which in turn enhances
the model’s ability to deal with multi-scale features, enabling
the model to obtain better performance in the recognition of
small and large objects.

2) Impact of the ATW module: The adaptive triple feature
weighting module is able to adaptively predict a set of weights
based on the importance of the triple features. ATW and TFE
need to be used together. From Table III, when ATW and TFE
are fused, APs increases from 14.1% to 17.3%. Combining
the two modules enhances the model’s robustness in detecting
small targets. This also demonstrates that the ATW module
effectively predicts weights from features of different scales.

3) Impact of GAM module: Although the use of GAM
alone did not significantly improve detection performance,
combining it with the other two modules enhanced the model’s
overall object detection capabilities. Compared to the baseline
model, AP50 improves from 39.0% to 44.8%, an increase of
5.8%. For small objects, the AP increased from 14.1% to
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TABLE II. COMPARISON OF EXPERIMENT RESULTS WITH OTHER POPULAR ALGORITHMS ON THE VISDRONE2020 TEST SET

Method Backbone AP50 PED PER BC Car Van Truck TRI ATRI Bus MO
CenterNet [40] R50 26.6 22.6 20.6 14.6 59.7 24.0 21.3 20.1 17.4 37.9 23.7
YOLOv4 [41] CSPDarknet53 32.5 28.2 15.9 5.8 65.7 25.2 26.1 13.8 8.1 40.2 26.1

YOLOv3-LITE [42] DarkNet-53 28.5 34.5 23.4 7.9 70.8 31.3 21.9 15.3 6.2 40.9 32.7
MSA-YOLO [26] CSPDarknet53 34.7 33.4 17.3 11.2 76.8 41.5 41.4 14.8 18.4 60.9 31.0

DINO [43] Transformer 24.8 15.6 9.4 10.0 47.7 31.1 30.1 17.3 16.8 45.0 17.6
FRCNN+ATG-Net R18 34.9 26.8 14.4 16.9 72.4 47.8 46.5 24.5 22.3 63.6 31.5
FRCNN+ATG-Net R50 38.4 27.9 15.9 18.2 73.7 50.4 49.1 24.8 25.0 64.4 34.8

TABLE III. ABLATION STUDY RESULTS OF THE THREE COMPONENTS OF
THE ATG-NET ON VISDRONE2020 VALIDATION SET. ✓ INDICATES THE

USE OF THE MODULE

TFE ATW GAW AP50 APs APl param(M)
× × × 39.0 14.1 29.0 121
✓ × × 42.4 16.6 33.9 110
× × ✓ 36.1 13.5 30.8 146
✓ ✓ × 42.8 17.3 36.1 114
✓ ✓ ✓ 44.8 18.5 37.2 162

18.5%, indicating that the model has excellent small object
detection capability.

C. Visualization

In order to more intuitively demonstrate the effectiveness
of the proposed method in practical application, some repre-
sentative images from the Visdrone2020 test challenge dataset
were selected for testing. All experiments were conducted
by comparing the baseline FRCNN model, using R18 as the
backbone network, with the model that combines our proposed
ATG-Net with FRCNN.

Fig. 5 compares the visualization results of the highest-
resolution feature map generated by the neck network. From
left to right, the first column represents the original images, the
second column shows the visualization results of the baseline
model, and the third column displays the visualization results
of our proposed ATG-Net. From the visualization results, it
is evident that the feature maps produced by the baseline
Faster R-CNN have a limited receptive field. This limitation
suggests that the baseline model may struggle to capture
detailed information or context over larger areas, leading to
inaccuracies in detection. In contrast, the feature maps obtained
by our ATG-Net have a global receptive field and focus on
relatively smaller regions of interest compared to features
of the same level. This characteristic allows our model to
capture more detailed information and maintain context across
different scales, thereby improving detection precision.

Fig. 6 shows the detect results on representative and more
difficult images from the Visdrone2020 test challenge dataset.
In this figure, the different categories are represented by differ-
ent colored boxes, and the numbers on the rectangles indicate
the confidence scores. The left column shows the results
from the baseline FRCNN model with an R18 backbone.
The right column shows the results from both FRCNN and
ATG-Net models utilizing the same R18 backbone. Different
categories in the detection results are identified using different

colored detection boxes. Yellow boxes are used to highlight
the detection of small objects, and zoomed-in effects are
shown alongside for a more intuitive comparison. From the
detection results, it can be seen that the baseline model has
misdetections and misses small objects in the presence of
occlusion, whereas the proposed model shows no misses and
detects more small objects even in the presence of occlusion. In
the detection effect image taken from high altitude, the vehicles
and pedestrians on the road are very small. In this situation, the
model in this paper can also detect them well. In the images
of different lighting scenes, the model still has good detection
ability in the dim scene.

V. CONCLUSION

In this paper, we proposed ATG-Net, an improved feature
pyramid network for boosting UAV aerial image object detec-
tion. Firstly, we propose an Adaptive Triple Weighting (ATW)
module, which intelligently assigns weights to predictions
across diverse scales—large, medium, and small—dynamically
emphasizing the significance of each size category. Secondly,
we introduce a Triple Feature Encoding (TFE) module to
utilize more efficiently on multi-scale contextual information.
By applying the derived weights to features across various
scales, this module amplifies and integrates multi-resolution
features, thereby enhancing the representational capability of
small object features. Due to the global attention mechanism
(GAM) taking into account global information, it is crucial
for enhancing the detection performance of small objects.
Extensive experimental results on the VisDrone2020 have
demonstrated that ATG-Net can effectively replace existing
FPN networks and integrate with various popular detectors.
Meanwhile, the proposed model can significantly enhance fea-
ture fusion capabilities, thus improving the detection precision
of small objects. To enhance ATG-Net’s detection capabilities
even further, our next goal is to reduce model complexity and
build lightweight detection models that can be deployed into
edge devices.
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