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Abstract—Gait disorders in older adults, particularly those
associated with neurodegenerative diseases such as Parkinson’s
Disease, Huntington’s Disease, and Amyotrophic Lateral Sclerosis
, present significant diagnostic challenges. Since these NDDs
primarily affect older adults, it is crucial to focus on this
population to improve early detection and intervention. This
study aimed to classify these gait disorders in individuals aged
50 and above using vertical ground reaction force (vGRF) data.
A deep learning model was developed, employing Continuous
Wavelet Transform (CWT) for feature extraction, with data
augmentation techniques applied to enhance dataset variability
and improve model performance. ResNet-50, a deep residual
network, was utilized for classification. The model achieved a
validation accuracy of 95.06% overall, with class-wise accuracies
of 97.14% for ALS vs CO, 92.11% for HD vs CO, and 93.48% for
PD vs CO. These findings underscore the potential of combining
vGRF data with advanced deep-learning techniques, specifically
ResNet-50, to classify gait disorders in older adults accurately, a
demographic critically affected by these diseases.
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I. INTRODUCTION

Gait, the manner of walking, is a fundamental human
activity involving the intricate coordination of the brain,
nerves, and muscles. Globally, gait problems have significantly
increased, leading to approximately 646,000 fatal falls annu-
ally, particularly among individuals aged 50 years and above
[1]. These disorders are the second most common cause of
accidental deaths worldwide and contribute substantially to
healthcare costs. For instance, Norton et al. [2] estimated
that gait disorders account for approximately 0.85% to 1.5%
of global healthcare expenses. Jia et al. [3] highlighted the
rising prevalence of gait-related falls, emphasizing the need
for early detection and intervention to mitigate these issues.
Particularly among older adults, gait problems significantly
impact mobility, quality of life, and mortality [4].

Neurodegenerative diseases (NDDs) are one of the most
significant contributors to gait disorders. These diseases result
from the progressive loss of neurons, leading to impaired
communication between the brain and muscles. Parkinson’s
disease (PD), Huntington’s disease (HD), and Amyotrophic
Lateral Sclerosis (ALS) are among the most prevalent NDDs,

each profoundly affecting gait patterns in distinct ways. For
instance, Hoff et al. [5] observed that ALS patients typically
exhibit slower walking speeds and longer stride durations,
while Hausdorff et al. [6] reported increased gait variability in
individuals with HD and PD. These conditions impair patients’
motor functions, further complicating their management.

Advanced research techniques have illuminated the com-
plex dynamics of gait in NDDs. For example, detrended
fluctuation analysis has been used to identify specific gait
patterns in neurodegenerative conditions [7], while multi-
resolution entropy analysis has revealed disorder-specific gait
dynamics [8]. Additionally, platforms like PhysioNet have
been instrumental in providing benchmark datasets for study-
ing these disorders [9]. Despite these advancements, Setiawan
et al. [10] noted that accurately diagnosing specific NDDs
through gait analysis remains challenging due to overlapping
symptoms across conditions. Ye et al. [11] and Zhao et al. [12]
emphasized the need for more robust multi-class classification
techniques to distinguish PD, HD, and ALS effectively.

Existing methods have achieved varying levels of suc-
cess. For instance, Baratin et al. [13] reported 85% accuracy
using Discrete Wavelet Transform (DWT) with entropy and
coherence features. Similarly, Zhao et al. [12] achieved 95.6%
accuracy with dual-channel LSTM networks. However, many
studies, such as those by Faisal et al. [14], have struggled
to distinguish closely related gait disorders in mixed cohorts.
Approaches employing convolutional neural networks (CNNs)
have shown higher classification rates than traditional methods
[15], but Fraiwan et al. [16] noted that ensemble classifiers
can significantly enhance accuracy. Nevertheless, methods like
these often face overfitting challenges due to limited data
variability [17].

Hybrid approaches combining CNNs with Long Short-
Term Memory (LSTM) networks have also shown promise.
For example, Elziaat et al. [18] achieved 92.4% accuracy
in predicting freezing of gait in PD patients by integrating
spatial and temporal features. Deterministic learning theory
with radial basis function (RBF) neural networks demonstrated
93.75% accuracy in classifying ALS, PD, and HD [19]. Amin
and Singhal [20] emphasized the importance of dimensionality
reduction techniques, achieving 93% accuracy for HD and
89% for PD. Furthermore, Mehra et al. [21] utilized IoT-based
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sensors to achieve an accuracy of 98.8% in early PD detection.
Ensemble methods like AdaBoost, which analyze features such
as vertical ground reaction force (vGRF), have also proven
effective, achieving 99.17 percent.

Recent studies have explored novel methods for improving
classification accuracy. For instance, Penage et al. [22] trans-
formed vGRF signals into recurrence plots, achieving high
accuracy in multi-class classifications using CNNs. Erdas et
al. [23] utilized convolutional LSTM networks combined with
3D CNNs, reaching a detection accuracy of 96.33% for NDDs,
with specific accuracies of 97.68% for ALS, 94.69% for HD,
and 95.05% for PD. These methods demonstrate the potential
of advanced deep learning techniques but also highlight gaps
in addressing the unique challenges faced by older adults [24].

Despite these advancements, most studies have fo-
cused on binary classifications or younger populations,
leaving older adults—who are particularly susceptible to
NDDs—understudied. To address this gap, this study employs
Continuous Wavelet Transform (CWT) to transform vGRF sig-
nals into time-frequency spectrograms, enabling the extraction
of both temporal and frequency-domain features. Unlike DWT,
which may overlook transient signal features, CWT captures
subtle gait abnormalities crucial for diagnosis. The ResNet-50
deep learning model, known for its robust feature extraction
capabilities, is employed for classification. Data augmentation
techniques are applied to enhance model generalizability and
mitigate overfitting [25]. These advancements make the pro-
posed method uniquely suited to addressing the challenges of
accurately diagnosing neurodegenerative gait disorders in older
adults.

The remainder of this article is organized as follows. Sec-
tion II details the materials and methods, Section III presents
the results, and Section IV discusses the findings. Finally,
Section V concludes the study, summarizing key contributions
and future research directions.

II. METHODOLOGY

The methodology of this study is summarised in Fig. 1.
The study aimed to develop a machine-learning model for
classifying gait disorders in older adults. The process involved
three main steps: Data Collection, Data Preprocessing, Feature
Extraction, ML Model Training and testing

A. Dataset

In this study, the “Gait in Neurodegenerative Diseases Dataset”
provided by Hausdorff et al.[26] was employed. Fig. 2 il-
lustrates the gait data collection procedure. Raw data were
collected from vGRF sensors using force-sensitive resistors
placed under the foot inside the shoes. During the experiment,
each subject walked along a 77-meter-long hallway for five
minutes at their normal pace.

The dataset includes recordings from 64 subjects, compris-
ing 13 patients with ALS, 15 patients with PD, 20 patients
with HD, and 16 CO. Since this study focuses on older adults,
only data from subjects aged 50 and above were selected for
analysis.

The gait parameters recorded for each subject include
stance, swing, double support interval, and stride for both

TABLE I. INFORMATION OF GAIT DATA PARTICIPANTS

Statistical
Parameter CO HUNT PARK ALS

Age (Year) 62.6 ± 8.63 57.2 ± 6.24 66.5 ± 9.06 61.75 ± 7.07
Height (m) 1.84 ± 0.10 1.78 ± 0.14 1.99 ± 0.12 1.797 ± 0.34
Weight (kg) 74.6 ± 13.02 64 ± 10.8 87.38 ± 13.68 89.04 ± 13.91
Gait Speed
(m/s) 1.29 ± 0.21 1.10 ± 0.14 1.34 ± 0.27 1.23 ± 0.19

the left and right foot. For this study, only the right foot
force data were analysed. On average, each subject contributed
approximately 277 gait cycles, depending on their walking
speed during the 5-minute data recording period [27].

The final dataset used in the model includes data from five
healthy controls (average age: 62.6 years), seven patients with
PD (average age: 66.5 years), five patients with HD (average
age: 57.2 years), and four patients with ALS is (average age:
61.75 years). The breakdown of the dataset is shown in Table
I. Detailed information about the participants, including their
age, height, weight, and gait speed, is presented. The dataset
was split for training and validation purposes, the dataset was
split, with 70% of the data used for training and 30%.

B. Data Pre-processing

A five-minute gait force signal was captured and filtered using
a digital band-pass filter, with the filtered signal y(t) computed
as the convolution of the raw signal x(t) and the filter’s
impulse response h(t), as shown in Eq. (1).

y(t) = h(t)× x(t) (1)

Wavelet denoising was then applied to further clean the
signal, transforming y(t) into the wavelet domain, thresholding
the coefficients, and reconstructing the denoised signal z(t), as
expressed in Eq. (2).

z(t) = W−1 (T (W (y(t)))) (2)

To optimize temporal and frequency resolution, wavelet
transforms were applied using window durations of 10, 30,
and 60 seconds. The 10-second window was selected for the
final analysis, providing the best balance for capturing relevant
gait features [28].

C. Data Augmentation

To enhance model performance and prevent overfitting,
various data augmentation techniques were applied to the
gait signals, which were transformed into the frequency-time
domain for analysis by the ResNet-50 model. Horizontal
flipping, mathematically represented as f(x, y) → f(−x, y),
and random rotations between -10 and 10 degrees [Eq. (1)]
were used to introduce variability.(

cos θ − sin θ
sin θ cos θ

)
(1)

Random translations along the x and y axes [Eq. (2)] were
applied to simulate different positions.
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Fig. 1. Diagram of the proposed method.

Fig. 2. Data collecting procedure.

(x, y) → (x+∆x, y +∆y) (2)

Brightness and contrast adjustments [Eq. (3)], scaling [Eq.
(4)], and Gaussian blur [Eq. (5)] were also implemented to
increase dataset diversity.

I ′ = αI + β (3)

(x, y) → (sx, sy) (4)

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(5)

Each transformation introduced new variations in the
dataset, improving model robustness by simulating different
object sizes, perspectives, and noise levels, which helped the
model generalize better in classification tasks.

D. Classification Model: ResNet-50

The proposed ResNet-50 model was employed to classify
gait disorders using gait data transformed into the frequency-
time domain via Continuous Wavelet Transform (CWT). The
model architecture and data preprocessing steps are depicted
in Fig. 3. The architecture consists of several key components
aimed at extracting hierarchical features and classifying the
four target gait disorder classes: CO, HD, PD, and ALS.

Fig. 3. Overview of the ResNet-50 architecture.

1) Model Architecture Overview: The architecture begins
with the input image, processed through several convolutional
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layers [Fig. (3b)], each followed by batch normalization and
ReLU activation to capture local patterns. The convolutional
layers are organized into residual blocks, as shown in Fig.
3(c) and 3(d), where identity and convolutional shortcuts allow
the network to retain information and mitigate the vanishing
gradient problem, enabling the training of deeper networks.

The convolutional operation for any layer l is mathemati-
cally expressed as:

Ol = f(Wl ∗ Il−1 + bl) (6)

where Ol is the output feature map, Wl is the convolutional
filter applied to the input Il−1, and f(x) = max(0, x) is
the ReLU activation function. After each convolutional block,
pooling layers reduce the spatial dimensions of the feature
maps to prevent overfitting and reduce computational load, as
described by:

Pl = pool(Ol) (7)

As the network deepens, feature complexity increases
through the five stages of the network, eventually resulting in
global average pooling, which reduces the spatial dimensions
of each feature map to a single value:

yk =
1

H ×W

H∑
i=1

W∑
j=1

Ok
i,j (8)

Finally, the pooled features are passed through a fully
connected layer, followed by the softmax activation function
to produce a probability distribution across the gait disorder
classes. The softmax is expressed as:

P (y = k|x) = exp(zk)∑K
j=1 exp(zj)

(9)

2) Training and Optimization: The model was trained
using the Adam optimizer, with an initial learning rate of 0.001
and a mini-batch size of 32. Training was conducted over 30
epochs, with 70% of the dataset used for training and 30%
for validation. The network minimized the categorical cross-
entropy loss function:

L = −
K∑

k=1

yk log(P (y = k|x)) (10)

The architecture was fine-tuned by replacing the fully
connected and classification layers of the pre-trained ResNet-
50 model to adapt it for the specific task of gait disorder
classification. The training showed consistent improvement in
accuracy, with a final validation accuracy of 95.06%.

This architecture, shown in Fig. 3, highlights the model’s
ability to learn intricate gait features effectively, addressing
the reviewer’s request for details on the number of layers,
optimization method, and training parameters.

E. Performance Evaluation

To evaluate the effectiveness of the Gait Neurodegenerative
Disorders classification model, key performance metrics in-
cluding accuracy, sensitivity, specificity, precision, recall, and
F1 score were calculated. These metrics were derived from
the confusion matrix, which tracks the true positives (TPs),
false positives (FPs), false negatives (FNs), and true negatives
(TNs) for each class. Specificity, defined as the proportion of
true negatives out of the total actual negatives, is calculated
using Eq. (9). Sensitivity, also known as recall, measures the
proportion of true positives out of the total actual positives
and is given by Eq. (10). Accuracy, indicating the overall cor-
rectness of the model, is computed as per Eq. (11). Precision,
reflecting the proportion of true positive predictions among the
total predicted positives, is calculated in Eq. (12).Lastly, the F1
score, which balances precision and recall, is provided by Eq.
(13). Together, these metrics offer a comprehensive assessment
of the model’s performance in classifying neurodegenerative
disorders based on gait data.

Specificity =

∑n

i=1
TNi∑n

i=1
(TNi + FPi)

(9)

Sensitivity =

∑n

i=1
TPi∑n

i=1
(TPi + FNi)

(10)

Accuracy =

∑n

i=1
(TPi + TNi)∑n

i=1
(TPi + TNi + FPi + FNi)

(11)

Precision =

∑
TP∑

(TP + FP)
(12)

F1 score =
2× (Precision × Sensitivity)

Precision + Sensitivity
(13)

III. RESULT

In this study, MATLAB 2022b was used for data pre-
processing, augmenting data, and training the Deep learning
model for classification.

A. Statistical Analysis

Fig. 4 illustrates the time-domain frequency plots for the
gait data of Control (CO) subjects and patients with Hunt-
ington’s disease (HD), Parkinson’s disease (PD), and Amy-
otrophic Lateral Sclerosis (ALS). The CO group (A) displays
stable and consistent gait frequencies, while HD (B) shows
erratic patterns, indicative of severe gait disturbances. PD (C)
presents a mix of stable and fluctuating frequencies, whereas
ALS (D) shows moderate variability in step frequency.

Fig. 5 provides the time-frequency spectrograms generated
using Continuous Wavelet Transform (CWT) for each group.
ALS (D) shows stable walking patterns with tightly packed
contours, while HD (B) reflects irregular and erratic gait
frequencies. PD (C) exhibits mixed contours, and the control
group (A) maintains consistent patterns.

These findings are consistent with [29], offering further
insight into the distinct gait characteristics of each condition.

Fig. 6 presents box plots that compare key gait features
across ALS, PD, HD, and control groups. The mean gait
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Fig. 4. Gait Time-Domain Patterns: (A) Control, (B) Huntington Disease,
(C) Parkinson Disease, (D) ALS.

Fig. 5. Gait Time-Frequency Patterns (CWT): (A) Control, (B) Huntington
Disease, (C) Parkinson Disease, (D) ALS.

values show that ALS patients have a lower median, reflecting
their slower gait. The interquartile range (IQR) is wider for
HD, indicating more variable gait patterns, characteristic of
Huntington’s disease.

The standard deviation and variance for PD suggest mod-
erate variability, indicating motor fluctuations, while RMS and
instantaneous RMS reveal greater dispersion in the neurode-
generative groups compared to controls, highlighting reduced
gait control.

The gait speed box plot shows a significant decrease
in ALS patients, emphasizing their slower walking patterns.
These features will be key inputs for training deep learning
models to accurately classify gait disorders, facilitating early
detection and intervention. By integrating these insights with
machine learning techniques, we can effectively monitor and
classify gait abnormalities associated with neurodegenerative
diseases.

B. ResNet-50 Model Training Progress

Fig. 7 shows the training and validation accuracy, as well
as the training and validation loss, across iterations. The

accuracy plot indicates steady improvement, with validation
accuracy peaking around 95% and training accuracy reaching
near 100%, demonstrating the model’s effective learning of the
data patterns.

The loss plot reveals a consistent decrease in both training
and validation losses over time, with the training loss sta-
bilizing at a low value. Although the validation loss shows
some fluctuations, the overall trend suggests that the model
generalizes well to unseen data.

C. Confusion Matrix for the ResNet-50 Model

Fig. 8 illustrates the confusion matrix for the ResNet-50
model, demonstrating its performance in classifying the four
gait disorder classes. The model exhibits high classification
accuracy, particularly for the CO and PARK classes, with
minimal misclassification across classes. The ALS and HUNT
classes show strong sensitivity and specificity, indicating ef-
fective distinction among the different gait disorders.

D. Classification Results

The performance of the ResNet-50 model in classifying
gait disorders was evaluated using key metrics such as Valida-
tion Accuracy, Precision, Sensitivity, Specificity, and F1 Score,
as shown in Table II. The model achieved a high validation
accuracy of 95.06% for distinguishing between neurodegener-
ative diseases and healthy controls, indicating strong overall
performance across all classifications.

TABLE II. VALIDATION PERFORMANCE METRICS FOR THE RESNET-50
MODEL

Evaluation Parameter ALS vs CO HD vs CO PD vs CO NDD vs CO

Validation Accuracy 97.14% 92.11% 93.48% 95.06%

Precision 96.88% 94.50% 92.88% 94.04%

Sensitivity 89.50% 98.90% 93.65% 91.68%

Specificity 96.30% 98.40% 92.90% 98.85%

F1 Score 97.11% 98.70% 93.22% 92.94%

Precision scores were also robust, with ALS vs CO achiev-
ing 96.88%, HD vs CO at 94.50%, PD vs CO at 92.88%,
and NDD vs CO at 94.04%, reflecting the model’s capacity to
correctly identify relevant instances. Sensitivity varied across
the conditions, with HD vs CO attaining the highest sensitivity
at 98.90%, followed by PD vs CO at 93.65%, NDD vs CO at
91.68%, and ALS vs CO at 89.50%.

Specificity, a measure of the model’s ability to correctly
identify negative cases, was consistently high across all clas-
sifications: ALS vs CO at 96.30%, HD vs CO at 98.40%, PD
vs CO at 92.90%, and NDD vs CO at 98.85%. These values
demonstrate the model’s strong ability to distinguish between
diseased and control cases effectively.

The F1 Score, which balances precision and sensitivity, also
confirmed the model’s robust classification performance. ALS
vs CO achieved an F1 Score of 97.11%, HD vs CO at 98.70%,
PD vs CO at 93.22%, and NDD vs CO at 92.94%, highlighting
the model’s consistency in both detecting true positives and
avoiding false positives.
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Fig. 6. Box plot analysis of gait features.

Fig. 7. Training and validation accuracy and loss over iterations.

IV. DISCUSSION AND COMPARISON

This study specifically focused on classifying gait disorders
in older adults, a demographic that is critically understudied
despite being highly susceptible to neurodegenerative diseases
(NDDs) such as Parkinson’s Disease (PD), Huntington’s Dis-
ease (HD), and Amyotrophic Lateral Sclerosis (ALS). Utilizing
vertical Ground Reaction Force (vGRF) data and advanced

Fig. 8. Validation confusion matrix for the ResNet-50 model.

deep learning techniques (ResNet-50), this research provides
a more targeted approach, focusing on individuals aged 50 and
above, whereas previous studies often included a broader age
range or did not account for the unique characteristics of older
adults.

Table III compares the classification accuracy of various
models across studies. Our model, using ResNet-50 and vGRF
data, achieved a high validation accuracy of 95.06% for distin-
guishing between different neurodegenerative conditions. This
performance is competitive with previous efforts that utilized
a variety of techniques and features. For example, Hong et al.
[30] used a combination of stride, swing, and stance intervals
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TABLE III. CLASSIFICATION ACCURACY OF DIFFERENT MODELS

Study Signal Methodology ALS vs CO PD vs CO HD vs CO NDD vs CO

[30] Str. Int, Sw. Int, Sta. Int, DS. Int Statistical Features (Min, Max, Avg, Std) 96.79% 89.33% 90.28% 90.63%

[19] Sw. Int, Sta. Int Deterministic Learning, RBF Neural Networks 93.1% 100% 100% 93.75%

[20] Str. Int, Sw. Int, Sta. Int, DS. Int Statistical Features (Mean, Std, Variance, Skewness, Kurtosis) 85% 89% 93% 85%

[31] VGRF Statistical Features (RMS, Variance, Kurtosis) - - - 99.17%

[10] VGRF Time-Frequency Spectrogram 100% 97.42% 100% 98.44%

[24] VGRF, Str. Int, Sw. Int, Sta. Int Classical Nonlinear Features 95.72% 91.68% 91.71% 92.87%

[23] VGRF Recurrence Plot 100% 100% 97.56% 98.93%

[22] VGRF Raw VGRF 92% 81% 79% 78%

This Study VGRF Time-Frequency Spectrogram,ResNet-50 97.14% 92.11% 93.48% 95.06%

along with statistical features, achieving 96.79% accuracy for
ALS vs CO, which is comparable to our study’s 97.14%.
However, their study did not focus specifically on older adults,
making the results of our study particularly significant for this
vulnerable population.

Other studies such as Zeng et al. [19] employed deter-
ministic learning theory and RBF neural networks, achieving
93.1% for ALS vs CO. While this is a strong result, our study
surpassed it by integrating Time-Frequency Spectrograms with
ResNet-50, reflecting the effectiveness of deep learning models
in capturing complex gait patterns, particularly in an older
demographic. Furthermore, Zeng’s study targeted a broader
population, while our focus on older adults emphasizes the
applicability of our model to clinical settings where early
detection is critical.Similarly, the approach by Amin et al.
[20] used stride and swing intervals with statistical features
such as mean, standard deviation, and kurtosis, achieving lower
accuracy rates (85% for ALS vs CO). This indicates that
traditional machine learning techniques, even when combined
with well-known gait metrics, may not be as effective as deep
learning-based models in identifying subtle gait differences in
older adults.

In contrast, Fraiwan et al. [31] achieved an impressive
accuracy of 99.17% using ensemble decision tree classifiers
with vGRF data. While their accuracy is slightly higher than
ours, their study focused on a general population, whereas our
model’s 95.06% accuracy for older adults demonstrates strong
performance in a more challenging demographic. The use of
ensemble methods can be further explored in future studies
for enhanced model performance in older populations.Setiawan
et al. [10] reported a similar performance using vGRF data
and time-frequency spectrograms, achieving 97.42% for PD
vs CO and 100% for HD vs CO. Our model’s results for these
two conditions (93.48% and 92.11%, respectively) are slightly
lower, which could be attributed to the increased complexity
of gait patterns in older adults, especially those aged 50 and
above. However, the overall performance of our model across
all NDDs remains strong and consistent.

Moreover, studies such as Zhao et al. [24] and Lin et al.
[23] utilized recurrence plot features and classical nonlinear
analysis methods to classify gait disorders. They achieved high
accuracies for individual tasks (100% for ALS and HD), but
their methodologies did not specifically target the older pop-

ulation. Our study not only achieved comparable performance
but also focused on older adults, where gait variability and
complexity are more pronounced.

V. CONCLUSION

This study utilized Continuous Wavelet Transform (CWT)
for feature extraction and ResNet-50 for classification, yielding
a competitive validation accuracy of 95.06%, which aligns with
or exceeds results from previous studies. The model achieved
class-wise accuracies of 97.14% for ALS vs CO, 92.11% for
HD vs CO, and 93.48% for PD vs CO. A key distinction of our
work is the focus on older adults aged 50 and above, which,
combined with data augmentation techniques, enhances model
generalization. This differentiates our study from prior research
that typically focused on younger populations or broader age
ranges. The integration of vGRF data with advanced deep
learning techniques provides a robust framework for accurately
classifying gait disorders, particularly in the context of early
diagnosis for older adults. Future studies could expand upon
these findings by incorporating additional data modalities, such
as medical history or multimodal sensor inputs, to further
improve diagnostic accuracy and enable comprehensive moni-
toring of neurodegenerative disease progression in older adults.
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