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Abstract—The notion of fitness landscape (FL) has shown
promise in terms of optimization. In this paper we propose
a machine learning (ML) prediction approach to quantify FL
ruggedness by computing the entropy. The approach aims to build
a model that could reveal information about the ruggedness of
unseen instances. Its contribution is attractive in many cases like
black-box optimization and in case we can rely on the information
of small instances to discover the features of larger and time-
consuming ones. The experiment consists in evaluating multiple
ML models for the prediction of the ruggedness of the traveling
salesman problem (TSP). The results show that ML can provide,
for instances of a similar problem, acceptable predictions and
that it can help to estimate ruggedness of large instances in that
case. However, the inclusion of several features is necessary to
have a more predictable landscape, especially when dealing with
different TSP instances.
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I. INTRODUCTION

Over the last few decades, work on optimization algorithms
has mainly focused on the algorithmic side, while the analysis
of the problem itself has received relatively little attention.
That is, most of the research published on this topic does not
provide a sufficient analysis of the problem, why the algorithm
works well and under which conditions [34]. Therefore, char-
acterizing a problem should lead to a deeper understanding of it
and better choices of algorithms and, hence, have an increased
chance of producing better solutions. For this purpose, the
concept of fitness landscape (FL) analysis was proposed with
the aim of designing a generic approach that characterizes
optimization problems. The concept was first introduced to
illustrate the dynamics of biological evolutionary optimization
[28], but it has also proved useful in understanding the behav-
ior of optimization algorithms in both binary and continuous
optimization problems. Thus, FL analysis is relevant both to
predict the performance of algorithms and to improve their
design. The interested reader is referred to [19] for more details
on the transition from modeling real processes to modeling
optimization problems. The issue of predictability of the FL
was studied in biology (e.g. [4]) and in this paper, we aim
to show a case in which it can be helpful for combinatorial
optimization.

The integration of machine learning (ML) in operations
research is increasingly crucial in light of recent advances

[12], especially for the study of fitness landscapes in opti-
mization problems such as the traveling salesman problem
(TSP). ML can aid in characterizing ruggedness, thereby
enhancing decision-making with predictive insights. This paper
investigates the ruggedness of TSP landscapes using entropy
as a key measure and introduces a novel ML-based approach
for predictive analysis. The study addresses challenges in
landscape characterization, extending traditional methods to
unseen problem instances.

In general, the aim of FL analysis is to improve knowledge
about the properties of a problem. Malan et al. [4] highlighted
several characteristics of the FL as well as the measurements
used for them. In particular, ruggedness is a property that often
depends on the number and distribution of local optima and
is related to the level of variation in fitness values in a FL.
A number of measurements have been proposed to measure
the landscape ruggedness. These measurements are the subject
of the paper, and our aim is to deepen our understanding
of this property, leveraging the great advances in data-driven
approaches that have been carried out in recent years. More
specifically, our approach consists of proposing a machine
learning (ML)-based approach that extends existing methods
for quantifying landscape ruggedness for unseen instances, in
which its calculation can be time consuming.

This paper has three main objectives: (1) to evaluate
the ability of ML to predict the robustness of TSP fitness
landscapes, (2) to explore the role of entropy as a key metric
in landscape analysis, and (3) to assess the generalization
ability of ML to unseen problem instances. In pursuing these
objectives, the paper makes the following contributions:

e It extends previous work by applying ML techniques
to analyze TSP robustness, leveraging entropy to im-
prove fitness landscape characterization.

e  To the best of our knowledge, this is the first study to
use ML to understand a TSP-specific fitness landscape
feature, providing new insights into its structure and
complexity.

The rest of paper is organized as follows. In Section II,
we present the concept of ruggedness of the landscape and
the measures proposed to quantify it. Section III is devoted to
the description and discussion of the integration of ML in this
problem. Both sections are interleaved with a brief literature
review of the topic. Section IV presents the experiments.
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Finally, the conclusion and the perspectives are depicted in
Section V.

II. BACKGROUND AND LITERATURE REVIEW

The use of machine learning to understand the robustness
of FL in combinatorial optimization problems, such as the
TSP, is gaining increasing attention. A similar goal is explored
in [30], where the authors examine the generalization ability
of a machine learning model for problem reduction on the
classical TSP. This paper shares a similar goal, aiming to
explore the ability of ML to model landscape robustness, but
distinguishes itself by focusing on entropy-based measures and
their predictive potential.

A. Ruggedness of the Fitness Landscape

An important issue that may arise for FL analysis concerns
to which extent we are able to generate generic FL measures.
Although there are a number of independent measures such as
the number of global optima, it is widely accepted that in many
problems it is not possible to fully characterize the landscape
using independent features [19]. Indeed, what is difficult to
solve for a randomized hill climbing is not necessarily difficult
for a genetic algorithm (GA) or when using a GA with different
mutation operators. We can also note that many of the adopted
measures depend on the definition of a neighborhood relation
(e.g. the size of a basin of attraction). Based on this remark,
the most well-known definition of a FL. was proposed in [18]
and consists of the triplet (X, N, ¢), where:

e X is a set of candidate solutions (search space)
e N is a neighborhood relation

e ¢: X — R is the fitness function

We can see from this definition that the FL not only
depends on the problem but is also strongly related to the
choice of an algorithm’s operator. Therefore, as pointed out in
[10], the concept of landscape could only be fully characterized
in the context of an associated neighborhood structure and a
specific operator. In what follows, we are interested in the
ruggedness feature which also depends on the operator.

The issue of fitness ruggedness has been addressed in the
literature from a number of perspectives. For instance, Vassilev
et al. [10] defined three properties to characterize the FL, which
are neutrality, smoothness and ruggedness. Most often the
difficult and problematic case concerns the rugged landscape.
This case is considered the most challenging and several works
have been adopted to treat it (although neutral and smooth FLs
have also been examined in the literature).

Concerning measurements, the auto-correlation function
(ACF) proposed by Weinberger [11] is the most classic one
for measuring it. The idea shown in that paper consists of
performing random walks using a specific operator to study the
correlation structure of a landscape. More precisely, the author,
by considering the case of mutation as an operator, carried out
random walks starting from a point chosen at random; then at
each step, a bit of the vector chosen at random is flipped. We
note that in this case, the ACF could be considered as a time
series [35]. However, the ACF measure has been criticized
in some works, which have pointed out its weakness in the
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characterization of the FL (e.g. [7]). Moreover, [16] pointed out
that the importance of autocorrelation is often overplayed in
fitness landscapes studies. Thus, the measure proposed in [32]
to study ruggedness, which is described below, has become
the most common over the last decade. We refer to [32] for a
detailed description of the approach based on ruggedness.

It should also be noted that ruggedness has been primarily
studied for continuous optimization problems [33], but was
extended to combinatorial optimization [17]. Another measure-
ment of ruggedness has been proposed, which is information
content [23], and is beyond the scope of this paper.

The ruggedness has been studied for some optimization
problems. The study in [16] investigated the similarities and
difference between four combinatorial optimization problems,
including the traveling salesman problem (TSP) and the
quadratic assignment problem (QAP). In particular, their study
showed that the four problems have similar ruggedness. Fur-
thermore, Tayarani and Bennett [31] studied the impact of the
ruggedness among other measures for the graph-coloring prob-
lem. In addition, Kallel et al. [10] reviewed some mathematical
properties of the ruggedness.

Although ML has not been used yet to predict the rugged-
ness; an approach to predict it was proposed using time
series analysis. In fact, Hordijk [35] proposed an extension
of [11] using the Box—Jenkins method [1]. The author’s idea
consists of exploring the landscape structure by studying the
corresponding autoregressive moving average (ARMA) model
[1] which, according to the author, characterizes the landscape
ruggedness much more precisely; its contribution consists in
providing a stochastic model which could be used to make
predictions for fitness values of distant points in the landscape.

We can notice, in this section, that entropy is an important
measure used to characterize landscape ruggedness in certain
works. In this paper, we aim to bridge the gap between them
and advancements in data-driven approaches. Therefore, in
Section III, we highlight works focused on understanding the
TSP landscape and main approaches using ML for FL analysis,
then introduce our approach and the adopted ML algorithms.

B. Understanding of the Traveling Salesman Problem Land-
scape

There are multiple papers which studied the FL of the
TSP. For example, Boese et al. [2] asserted that the search
space of TSP instances (under 2-opt moves) has a big-valley
structure, in which local optima are clustered around one
central global optimum. However, this statement has been
questioned in multiple papers (e.g. [5]) and its generalization
is also an issue of discussion [24]. Indeed, as noted in study
[25], the TSP structure is not yet fully understood. On the
other hand, ML was used for the TSP but not to analyze its
landscape. We refer to study [21] for more information on the
topic. In particular, in study [36], the authors investigated the
generalization error of a ML model when the training and test
instances have different instance characteristics, sizes or are
from different TSP variants. The authors have a goal similar
to our paper, namely to test the generalization capacity of ML
algorithms to large instances, but using a different approach.
Another analysis technique, notably the principal component
analysis, was used in study [35] to analyse several features of
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the TSP FL. The authors provided several conclusions which
can mainly be summarized as follows: the difficulty of the
instance (e.g. the number of local optima, the probability of
reaching a global optimum) increases with the size of the
problem and the level of the increase depends on the type
of problem.

C. Machine Learning for Fitness Landscape Analysis

ML has been adopted in the context of FL in most cases
with the aim of selecting the best algorithm based on the
prediction of its performance, by adopting the information
included in the computed features of the landscape. By ana-
lyzing the literature, we note that one of the first papers which
paved the way for the emergence of such research is [15]. It
introduced the concept of empirical hardness of optimization,
showing how to build empirical hardness models which, given
a new problem instance, predict an algorithm’s runtime. More-
over, awareness of the importance of such approaches were
reinforced with the appearance of the concept of exploratory
landscape analysis (ELA) [13], shifting attention to this topic
over the past decade.

However, we can notice that most of these researches are
empirical-based and try to add features or to compute them
in a less expensive way (e.g. [9]), without clearly contributing
to the improvement of the problem understanding. The aim
of these works is to build automatic tools for the selection or
design of algorithms. Therefore, a number of tools have been
proposed to extract FL features (e.g. Flacco package [14]).

In fact, we can see that such frameworks, even if useful in
practice, cannot help to improve our knowledge on the problem
which is of the utmost importance. That is, in most of these
ML approaches, the authors try to use or define a large number
of features, which could be in the hundreds, that may affect
the performance of the algorithms. For instance, Mirshekarian
et al. [22] proposed 380 features for the job-shop scheduling
problem. But, many of the defined features might not be
appropriate [37]. Hence, a typical phase is feature selection,
which aims to select the most relevant ones. The ultimate goal
of these approaches is to select the most suitable algorithms
without providing an explanation for that selection. We note
that we are aware that with the appearance of deep learning,
the features could be computed automatically as investigated,
for example, in [8]. However, deep learning is also unable to
provide an explanation of the different selections.

The literature review elucidates the challenge of quanti-
fying the ruggedness of fitness landscapes, emphasizing its
dependence on problem characteristics and algorithmic oper-
ators. It surveys various methods for ruggedness characteri-
zation, with a focus on entropic measures, highlighting their
significance in optimization studies. Moreover, it positions
the current study as pioneering in utilizing machine learning
to predict ruggedness, aiming to enhance understanding and
inform algorithmic selection strategies.

Therefore, in this paper, our adoption of ML is different.
In fact, we are interested in predicting the values of a specific
and crucial feature (ruggedness). Although it is necessary to
inclusion of several features for a better FL analysis, this work
can be considered as a first and crucial work in this respect.
To the best of our knowledge, despite its importance, this is
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the first investigation of the use of ML for predicting the
ruggedness of FL. Ruggedness has been considered instead
as a feature for most data-driven approaches for algorithm
selection based on ELA. In the following, we describe our
proposed approach.

III. THE PROPOSED APPROACH

Our approach consists of two steps. The first concerns
TSP optimization. In this step, the data necessary for the
experiments is collected by running an optimization algorithm
which consists of successive random walks. The number of
iterations is fixed at 100. We choose (2-opt) as the neigh-
borhood to implement the random walk for the TSP. Using
this, we can calculate the entropy values of different problem
instances as in Eq. (4). For each instance, we performed 30
executions of the random walk and computed the entropy for
each instance and run. We are then able to obtain a sufficient
sample size for the three experiments, which is 360, 300 and
240, respectively. As described below, in the first experiment,
we generate random instances with different sizes. In the
second, we analyze different TSPLIB instances while the third
one is about a prediction for a specific TSPLIB instance family.

The second step consists of ML prediction. The target
variable to be predicted (y) is the entropy. Two features (X) are
used, which are the number of cities and the execution number,
in addition to the instance family for TSPLIB instances. Based
on the accuracy of predictions on unseen instances, we evaluate
our approach. Below, we highlight the adopted ML algorithms
and define the different steps of our approach.

Algorithm 1: Data Generation for ML Algorithms

Data: TSP instance
Random generation of distances for random instances
for £ =1 to 30 do
for [ =1 to 100 do
| Perform a random walk

[ L7 I S I

=)

Compute the entropy corresponding to execution k

7 Result: Entropy values in addition to TSP
instances-related information

In Algorithm 1, we present the adopted ML algorithm
and outline the key steps of our approach. Additionally, the
flowchart (Fig. 1) provides a visual representation of the
methodology, illustrating the process from data generation to
ruggedness prediction for TSP instances using ML models.

In this paper, we have adopted a number of ML meth-
ods that yield satisfactory results for regression (continuous)
problems such as gradient boosting (GR), random forest (RF)
and support vector machines (SVM). These approaches, which
are among the most adopted ones for regression problems, are
the methods used to predict ruggedness. For more information
about them, we refer to [20], [3] and [29], respectively.

IV. EXPERIMENTS

In this section, a series of numerical experiments are carried
out to evaluate the ML prediction of landscape ruggedness.
The objective is twofold: first, we illustrate how ML can
be adopted for this problem. Second, we seek to see what
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Perform 2-opt random walk,
compute entropy values

Input
TSP instance details

Train ML models

Predict ruggedness for
unseen TSP instances

Output
Ruggedness predictions

Fig. 1. Flowchart illustrating the proposed system for ruggedness prediction
of TSP fitness landscapes.

this prediction can reveal about the structure of landscapes
of unseen instances. More specifically, as mentioned above,
our experiment first consists of running an algorithm, which
is made up of consecutive randomized moves, on instances of
classical combinatorial optimization problems while comput-
ing the ruggedness entropy value and second, of examining
the ML predictive capacity of the entropy on these and other
unseen instances by comparing the predicted values with the
actual ones.

A. Experimentation Setup

In this paper, we consider the TSP, which is one of the
most studied problems in combinatorial optimization. The
Mlrose package [6] is adapted to implement the random walk
with 2-opt neighborhood. First, we start the experiments with
randomly generated TSP instances (the distances are generated
randomly). Then, we experiment the approach on TSPLIB
instances.

As mentioned earlier, the three ML algorithms chosen in
this study are RF', GB and SV M. To implement them, we
utilize the Scikit-learn library [27]. We optimize the parameters
for RF and GB. Specifically, the number of trees in RF
is set to 200, and the loss function to be optimized for
GB is set to ‘least absolute deviation’ for better regression
performance. For the other RF' and GB parameters, we adopt
the default parameters. Regarding SV M, the parameter -y
(kernel coefficient) is automatically trained while the values
of C (regularization factor) and € are set to 1 and 0.01,
respectively. We have chosen these values to enable a balance
between overfitting and underfitting.

All experiments are conducted on a computer equipped
with an Intel i7-9750H and 16GB of RAM. The measures
adopted in this paper are: R? (coefficient of determination),
mean absolute error (M AFE) and mean square error (M SE).

To evaluate ML algorithms, there are two typical methods,
notably training-test split or division and cross validation. In
this paper, we have used the two methods depending on our
objective. First, for random experiments and TSPLIB instances
of a similar problem, we adopted the training-test split. More
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precisely, the first 75% of the data is used for training and 25%
is used as test data. Our goal is to see if we can accurately
predict the ruggedness of large TSP instances without needing
to compute them and simply by examining small instances.
Second, for different TSPLIB instances, we adopted 5-fold
cross validation [36] to have a robust assessment of the
ML predictions. In this case, the testing is performed across
instances.

We have uploaded the used code for more details on our
approach. The corresponding information is available in the
Github repository (blinded for refereeing).

B. Random Instances

As a first experiment, we consider randomly generated TSP
instances.

First, in our experiment, we choose nine instances for
training and three for testing, depending on the number of
cities. For training, we used the values (10, 20, 50, 100, 200,
500, 1000, 2000, 5000) and for testing, we adopted the values
(6500, 8000 and 10000). As we have performed 30 runs for
each instance, the training set size is 270 and the test set size
is 90.

Second, for each of the three ML algorithms (RF' and
GB and SV M), we display in Table I a comparison of the
prediction capabilities of the three algorithms in both training
and test sets. That is, we show in Table I the R%2, M AE and
MSE values obtained by comparing RF, GB and SVM
predictions in training and test sets. The results of the test
sets are those which are really necessary for evaluation but
those of the training are given as additional information on
the structure of the landscape.

TABLE I. COMPARISON OF ENTROPY PREDICTIONS FOR RANDOM TSP

INSTANCES
R2 MAE MSE
RF Test acc. 0.7108  0.0202  0.0006
Training acc.  0.9347  0.0180  0.0005
GB Test acc. 0.6907  0.0214  0.0007
Training acc. ~ 0.7337  0.0190  0.0005
SVM Test acc. 0.2137  0.0380  0.0020
Training acc.  0.0498  0.0322  0.0016
NN Test acc. 0.1641  0.6570  0.1300
Training acc.  0.9630  0.2500  0.1023

Both RF' and GB gave acceptable results on the test set.
SV M, as trained, seems not to be suitable for this case.
The best results are given by RF'. That is, RF' provided the
best results on the test sets, which are the needed for unseen
predictions. We can conclude that RF is the most suitable for
this case study, with the proposed parameters.

Third, to give a better overview of the RF predictions, we
depict in Fig. 2 and Fig. 3 the prediction given by RF' in both
test and training sets along with the real values.

We can notice from the Fig. 2 and Fig. 3 that the entropies
are overall slightly positively correlated with the number of
cities. In other words, the entropy in general increases slightly
with the number of cities. This can be seen as the values in the
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Prediction of landscape ruggedness for TSP using RF (test set)
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Fig. 2. RF prediction on the test set.

Prediction of landscape ruggedness for TSP using RF (train set)

—— Real values

100
— RF predictions

0.90

Entropy value

085

0.80

o 50 100 150 200 250
Sample

Fig. 3. RF prediction on the training set.

test sets are slightly, which corresponds to higher cities, are
slightly higher than of the training set and there is a very weak
increasing trend of the value in function of the sample (and
then of the cities). Although ML prediction is not extremely
accurate, it can detect patterns in the data and provide a fairly
good ruggedness prediction.

C. Instances of Different TSPLIB Problems

After looking at the randomly generated TSP instances
(Table II), we aim to study several TSPLIB instances.! Below
we show the names of the instances with the corresponding
number of cities.

Our goal in this part is to see how well we can predict
ruggedness for problem instances, using the information from

IThe instances can be found in  http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsp/index.html
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TABLE II. TSPLIB INSTANCES

Instance ~ Number of cities

Bays 29
Berlin 52
Brazil 58
Eil 51, 76, 101
Ch 130, 150
TSP 225
Fl 417

other instances, regardless of the instance family. To answer
this issue, cross validation is more appropriate than training-
test split. In this experiment, we conducted the 5-fold cross
validation. In total, we get 300 sample and we use them for
this purpose. In Table III, we display the results of the mean
of the R?, negative M AE? and M SE factors, which are used
in the 5-fold cross validation.

TABLE III. COMPARISON OF ENTROPY PREDICTIONS FOR INSTANCES OF
DIFFERENT TSPLIB PROBLEM INSTANCES

R? Negative MAE ~ Negative MSE

RF -0.8797 -0.0385 -0.1525

GB -0.7478 -0.0352 -0.1422
SVM  -0.7514 -0.0550 -0.2057

NN 0.2660 -15877.1021 -102.0534

It is clear from Table III (e.g. the R? values) that the
results are not good and the algorithms are not able to provide
acceptable predictions. The reason for these unsatisfactory
results compared to the previous case is due to the fact
that ruggedness appears unpredictable if combined with other
factors. It is necessary to combine several features to expect
to have an accurate prediction. We note that the results are
also not satisfactory when adopting the training-test split in
the same way as in the first study.

D. Instances of a Similar TSPLIB Problem

In this section, we focus specifically on instances of a
particular TSPLIB instance family and examine the evolution
of ruggedness as a function of only the number of cities and,
importantly, our ability to predict large unseen instances. More
precisely, we consider the instance studied in [26]. In this case
study, we consider the instances with cities of 76, 107, 124,
136, 144 and 152 as a training test (75%). The instances with
226 and 264 (25%) are the test set. All instances are executed
30 times. As mentioned before, the reason is that we aim to
see if we can predict the ruggedness of instances with higher
cities by simply getting information from lower cities, and
cross validation is not needed in this case.

We can notice from Table IV, that GB gave the best results
in the test set. (We note that the RF’ predictions are better in
the training set but the G B results are more promising in our
context.) In Fig. 4 and Fig. 5, we provide the prediction given
by GB in the test and training sets with the actual values.

We can notice from Fig. 4 and Fig. 5 that entropy does
not globally have a very significant variation in function of the

2For cross validation, scikit-learn uses negative MAE and MSE. More
information about them can be found in https://community.dataquest.io/t/why-
is-scoring-equal-to-neg-mean-squared-error/547283
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TABLE IV. COMPARISON OF ENTROPY PREDICTIONS FOR INSTANCES OF
A SIMILAR TSPLIB PROBLEM

R2 MAE MSE

RF Test acc. 0.3088 0.0220  0.0015

Training acc. 0.7829 0.0100  0.0002

GB Test acc. 0.2102 0.0250  0.0020

Training acc. 0.4651 0.0150  0.0006

SVM Test acc. -0.0078  0.0174  0.0009
Training acc. -0.0092  0.0203  0.0011

NN Test acc. 0.1641 0.1150  0.1314

Training acc. 0.9630 0.9066  0.2023

Prediction of landscape ruggedness for TSP using GB (test set)

050 { — Realvalues
—— GB predictions

0.48 \
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=
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Entropy value
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e W N Lk

o 10 20 30 40 50 60
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Fig. 4. GB prediction on the test set.

number of cities. The G B predictions are in general consistent
with the actual values, and it can then be considered that ML
can be useful in this situation.

The results for the three cases can be summarized as
follows:

Prediction of landscape ruggedness for TSP using GB (train set)

= Real values
—— GB predictions
0.550

0525

0500

0475

Entropy value

0.450

0.425

0.400

[

—_—

=
=

1Py, ey

0 5 50 = 100 125 150 175
Sample

0375

Fig. 5. GB prediction on the training set.

Vol. 15, No. 11, 2024

e  For random TSP instances, the computed ruggedness
factor seems to increase globally. ML can detect this
pattern and then provide satisfactory predictions.

e ML algorithms failed to detect patterns in different
TSPLIB instances. The reason seems that other factors
than size must be included to be able to use ML in
this case.

e  For a specific TSPLIB instance, there is no significant
increase in the factor. ML can also be useful in
this case by giving a satisfactory prediction for the
same unseen instance with a higher number of cities
(although the increase in the size is not the same as
for the first experiment).

V. CONCLUSION

Fitness landscape analysis has shown promise for better
understanding the functionality of optimization algorithms and
reducing their unpredictability. In this paper, we proposed a
new ML design to predict the FL ruggedness of unseen large
instances based on the values of historical small instances.
This work, to the best of our knowledge, is the first attempt to
take advantage of recent advances in data-driven approaches
to analyze and estimate a feature of FL.

This work can be considered as the first step aimed at
predicting the characteristics of problem instances in which
their calculation is time-consuming. A practical exploitation
of any optimization problem is to run the algorithms in the
smallest instances, build the machine learning model, and then
predict the features on the very large instances. Estimating the
characteristics of a very large instance without needing to run
the algorithms can be useful, e.g., to choose the appropriate
algorithm to solve these instances.

In this paper, the experiment consists in evaluating the
predictive capacity of 3 ML algorithms. The data sets in the
three experiments are collected by running the 2-opt random
walk 30 times on several instances. In our case, random
forest was the best suited for the random TSP instances.
For the different TSPLIB instances, no algorithm could find
satisfactory results. When focusing on a specific TSPLIB
problem, the results found by the gradient boosting are the
best. We can conclude that machine learning prediction can
be useful when we have identical or similar problem instances
with difference mainly in number of cities. The contributions
are summarized as follows:

e  Qur study reveals that machine learning models per-
form better on random TSP instances than on specific
TSPLIB instances. This finding suggests that ML can
effectively capture patterns in less complex, more
uniform problem structures.

e The results highlight the importance of incorporat-
ing additional problem-specific features to improve
prediction accuracy for TSP instances of different
families. Our work lays the groundwork for future
studies to explore more sophisticated models and
feature sets, advancing the field’s understanding of
fitness landscape predictability.
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These results are consistent with established findings,
demonstrating the correlation between robustness and perfor-
mance, as well as the difference of ML performance depending
on the nature of TSP instances. This paper builds on this
knowledge by providing significant new findings and results.

As the Concorde solver is able to easily solve many TSP
instances of quite large size to optimality, another approach
that may be investigated in the study of ruggedness is target
analysis, i.e., giving an optimal solution and checking to which
extent, possibly using ML, this can be found from a given
starting solution and allowing to learn from the path between
those solutions. Finally, even if the practical contribution is
not well apparent in the above-mentioned data instances, this
work can be considered as a first step that can be extended to
much larger instances and problems in which the calculation
of the factor can be very time-consuming. The exploitation of
information of small instances can be much helpful. Further
research should then focus on this issue. Indeed, it is of
utmost importance to concretely show the practical impact of
our approach (e.g. in black-box optimization). Moreover, it is
important to further study the practical application of ML by
finding the needed sample (number of instances) to have an
accurate prediction on the different problem instances. Further
research can also focus on applying the approach to other sim-
ilar problems such as the family TSP or to integrate into other
types of metaheuristics. The reason for the poor results seems
to be that the three ruggedness prediction models considered
are known to yield satisfactory results in continuous domains.
In fact, the advancement in ML prediction is an outstanding
area of research that could hold promise in estimating the FL.
features of unresolved instances and studying the links between
these features.

The results of this study highlight the significant impact of
robustness and landscape structure on algorithm performance.
Building on these insights, future research could focus on
designing ML-based adaptive optimization algorithms that can
dynamically adjust strategies based on landscape features.
Furthermore, leveraging ML to efficiently manage large-scale
TSP instances could advance the field, especially in real-world
applications requiring scalable solutions.
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