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Abstract—Although several deepfake detection technologies
have achieved great detection accuracy inside the data domain
in recent years, there are still limitations in cross-domain gen-
eralization. This is due to the model’s ease of fitting the data
sample distribution in the training data domain and its tendency
to detect a specific forgery trace in order to reach a judgment
rather than catching generalized forgery traces. In this paper, we
propose to learn Local Reconstruction Errors for face forgery
detection. The local anomaly traces of the fake face are often
mapped using the original real face as a reference; however, the
original real face of the fake face cannot be acquired in the real
scenario. Therefore, this solution designs a local reconstruction
autoencoder trained with real samples. By masking key areas
of the face, the original real face can be reconstructed. Because
the autoencoder only learns how to restore the essential parts
of the real face using local patches of real samples, it cannot
recover the forging traces or target face information in the fake
face. Therefore, the reconstructed image forms a reconstructed
difference with the original image. This solution aids the model
in detecting local differences in fake faces by producing feature-
level local difference attention mappings in the network’s middle
layer. A series of experiments demonstrate that this solution has
good detection and generalization performance.

Keywords—Face forgery; deepfake detection; local anomalies;
generalized detection

I. INTRODUCTION

With the rapid development of deep learning technology,
deepfake technology has found widespread applications. By
manipulating or replacing images or videos of faces, deepfake
technology can alter visual content in subtle ways, posing
significant threats to privacy, public opinion, and information
security[1], [2], [3], [4]. Consequently, effectively detecting
forged faces has become a crucial research topic in the field
of computer vision.

Currently, there have been significant advancements in
deepfake detection, with many methods performing well on
forged data similar to their training datasets [5], [6], [7].
However, these methods often lack generalization when faced
with unknown types of forgeries. Enhancing the generalization
of detection models across various forgery methods is an
urgent challenge. Our primary motivation is that there are
notable differences between forged faces and their authentic
counterparts (in terms of identity, artifacts, etc.). By leveraging
these differences, we can accurately identify key areas of
forgery rather than merely learning a single forgery pattern.
Traditional methods either require reference images of the
original faces or use self-attention mechanisms to predict key
areas, both of which have significant limitations.

With the above considerations in mind, in this paper,
we propose a local reconstruction-based deepfake detection

method. By designing a local reconstruction autoencoder
trained on real samples, we can mask and reconstruct critical
regions of the face. The model generates a reconstruction
difference map between the forged and real faces. Since
the autoencoder cannot reconstruct the forgery traces in the
forged face, this reconstruction difference map provides new
discriminative information for forgery detection. Furthermore,
we introduce a feature-level local difference attention map
within the model to enhance the focus on forged regions. A
series of experimental results demonstrate that this approach
exhibits excellent detection performance and generalization
capability across multiple datasets.In brief, our contributions
are summarized as follows:

• We propose a novel detection framework based on
local reconstruction for restoring genuine faces, which
can eliminate artifacts in forged faces and guide the
model to learn key regions.

• We introduce a local reconstruction autoencoder
framework based on a key region masking algorithm,
capable of restoring the original genuine face from
local genuine patches.

• We present a method that uses local feature attention
maps based on reconstructed image comparison to
guide the detection model to focus on key regions and
learn highly generalizable features.

• Our approach effectively enhances the generalization
ability of the detection model on unknown datasets
and against unknown forgery methods.

II. RELATED WORK

A. Face Forgery Algorithms

Recent face forgery methods benefit from advances in deep
learning. It can be classified into three categories based on
the target of manipulation: face swapping, face editing, and
face generation. In the early stages, researchers [3] viewed
face swapping as a style transfer problem. Guided by facial
landmark points, convolutional neural networks (CNNs) could
transform one facial image into another, adopting the style
of a face with a specific identity. However, with the rapid
advancement of deep learning, several novel face swapping
algorithms have emerged, significantly reducing the difficulty
of face swapping [8], [9]. The progress of Generative Adver-
sarial Networks (GANs) has further enhanced the realism of
forged faces [10], [11], [12].
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B. Face Forgery Detection Algorithms

Deepfake technology often produces noticeable artifacts
when synthesizing or distorting facial features, such as un-
reasonable distortions of facial elements, edge artifacts, and
missing details. Matern et al. [13] observed that certain Deep-
fake and Face2Face forgeries resulted in visual anomalies like
differences in eye color, distorted facial contours, and missing
tooth details. They aimed to detect these inconsistencies, but
such artifacts only appear in lower-quality deepfake products,
lacking universality. Nirkin et al. [14] proposed a method that
segments detection images into internal (eyes, nose, mouth)
and external (ears, hair) facial regions to train separate vectors
for feature extraction. However, this approach does not adapt
well to forgeries affecting external facial areas, resulting in
limited generalization. Liu et al. [15] identified fundamental
statistical differences in texture data between forged and real
faces, leading to the development of a novel architecture for
global texture representation to enhance the robustness of
forgery detection. Chen et al. [16] used facial masking to detect
whether images had undergone interference, reconstructing
affected images to check for artifacts in the cleaned results.
Dong et al.[17] approached this through image matching,
proposing that forged images contain artifacts unrelated to the
features of the original and target images. They designed a
training set of matching images (forged, original, and target) to
implicitly guide model learning, achieving good performance
against compression. Wang et al. [18] developed a deepfake
detection model focused on identifying potential noise traces,
extracting features from both facial and background segments.
They employed a novel multi-head contrastive interaction
method to assess the similarity between facial and background
noise features for image authenticity detection. Huang et al.
[19] highlighted the differences between explicit and implicit
identities in swapped images, introducing explicit identity
contrast loss and implicit identity exploration loss to increase
the distance between the explicit and implicit identities of fake
faces, using this information for authenticity determination.
However, Dong et al. [20] argued that focusing on identity
information hinders the generalization of classification models,
leading to a breakthrough with a method that prioritizes local
features while ignoring overall identity information.

In summary, deepfake detection algorithms are designed
to guide models in capturing specific artifact features, thereby
identifying manipulated images by responding to these arti-
facts. Nevertheless, a common limitation of these methods is
their often inadequate generalization capability when encoun-
tering previously unseen types of forgeries.

III. METHODOLOGY

A. Overview

The distribution of real human faces is consistent and
uniform [21], while it is difficult for forged faces to completely
eliminate all traces of artifacts, leading to a lack of continuity
in the distribution of fake faces. Therefore this paper explores
whether it is possible to design a method that constrains the
model to learn key difference areas. A promising approach
is to use the local differences between forged faces and
their original faces, employing the original face to create an
attention mask for the forged face. However, in most cases, the

detection side cannot obtain the original face corresponding to
the forged face. Thus, this paper attempts to reconstruct the
distribution of the real face from the forged face to assist in
detecting authenticity.

Based on the above concept, this paper proposes a deepfake
detection scheme based on local reconstruction. As shown
in Fig. 1, the scheme consists of two stages: (1) Training
stage based on masked reconstruction of real samples. The
content of a forged face typically originates from a source
image and a target image, corresponding to its internal and
external face, whereas a real image has a unified internal and
external face. Therefore, this scheme pre-trains an encoder and
decoder based on a Vision Transformer (ViT) using real face
images. By randomly masking most facial features during face
reconstruction, the encoder and decoder learn the distribution
of real faces, acquiring the ability to recover the original real
face information from partially masked real faces. (2) Training
stage based on local difference attention map constraints. After
training the encoder and decoder, their weights are fixed, and
the to-be-detected image is masked and reconstructed to obtain
a reconstructed image. Both the reconstructed image and the
to-be-detected image are input into a fixed-weight feature
extraction network to calculate multiple feature-level local
difference attention maps. These attention maps are used to
guide the model to learn key regional features for generalized
detection.

B. Training Stage Based on Masked Reconstruction of Real
Samples

The purpose of the training stage based on masked re-
construction of real samples is to train the encoder and
decoder to learn the distribution of real face data, enabling
the reconstruction of a complete real face image from local
real face regions. Inspired by the MAE method, this scheme
trains a ViT-based encoder and decoder structure using real
faces with masked key facial regions. First, a face image of size
C×H×H is divided into N patches, each of size C×P ×P ,
where N = H2

P 2 , and C, H , and P represent the number of
image channels, the image’s side length, and the patch’s side
length, respectively. Then, the proposed key region masking
algorithm randomly masks patches in key facial regions, and
the model learns to reconstruct the masked patches based on
the remaining parts of the face image. The trained encoder
and decoder learn the ability to recover the original real face
information from local real face regions, allowing for effective
reconstruction of the masked parts of a real face. When the
encoder and decoder, trained solely on real face data, are used
to perform masked reconstruction on a forged face, they can
reconstruct the original real face from the genuine local regions
of the forged face, but they will not restore the local forged
artifacts in the fake face.

1) Key Region Masking Algorithm: Typically, the facial
features, such as the eyes, nose, and mouth, are the key areas
in forged faces. To ensure that the encoder and decoder learn
to reconstruct the original face from real facial regions, and
avoid reconstructing forged areas during fake face testing, this
scheme defines a key region that includes facial features. As
shown in Fig. 2, the proposed method first uses a landmark
algorithm to extract the coordinates of 68 key facial points for
all faces in the dataset. From these, it selects the coordinates
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Fig. 1. Framework of local reconstruction-based deepfake detection algorithm.

Fig. 2. Key area masking algorithm flowchart.

of the left eyebrow, right eyebrow, left jaw, and right jaw that
are closest to the image vertices, denoted as P1 , P2, P3, and
P4. The area enclosed by these points can cover the facial
features of most faces in the dataset. Next, the four coordinates
are expanded outward to form a rectangular region, which is
defined as the key facial region. The face image is then divided
into patches, where each small patch is assigned a number
i, where i ∈ {1, 2, . . . , N} . Based on the pixel coordinates
of the key region, a set of key patch numbers, denoted as
T = {45, 46 . . . } , can be calculated, representing the patches
included in the key region. Finally, random masking is applied
to the image at a proportion of p, ensuring that most patches
in the key patch set are masked. The sequence of unmasked
patches is then fed into the encoder to reconstruct the original
face image.

2) Face Reconstruction via Encoder and Decoder: The
ViT-based encoder first receives the input sequence of un-
masked patches and assigns a positional index to each un-
masked patch. These patches are then passed through a series
of Transformer blocks to learn the deep features of the real
patch regions, which are used for subsequent face reconstruc-
tion. After undergoing a series of encoding processes, the
encoder outputs the features of the unmasked patches. At this
stage, the decoder takes these unmasked patch features as input
and adds mask tokens to the masked areas to form a complete
image, then applies positional encoding to all patch features.
The mask tokens are shared, learnable vectors used to represent
the masked patches that need to be reconstructed. Through a
series of reconstruction processes within the decoder, the final
linear layer of the decoder outputs a linear projection of the
reconstructed image. After adjusting the dimensions and size,
the reconstructed image is obtained. The reconstruction loss
is then calculated only for the masked patches using mean
squared error (MSE), with the loss expression as follows:

Lrec =
1

N

n∑
i=1

(yi − xi)
2 (1)

where x represents the reconstructed masked patches, and
y represents the actual masked patches. By leveraging the
information of masked patch indexes and calculating the recon-
struction loss only for the masked patches, the computation is
reduced, significantly improving the training efficiency of the
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Fig. 3. Feature-Level local difference attention map calculation flowchart.

encoder and decoder.

C. Training Stage Based on Local Difference Attention Map
Constraints

The training stage based on local difference attention
map constraints aims to guide the model to learn the local
differences in forged face images by calculating feature-level
local difference attention maps between the reconstructed and
original images. After the ViT-based encoder and decoder are
trained on real face data, they have only acquired the knowl-
edge of reconstructing local real facial regions. Therefore, this
scheme fixes the parameters of the encoder and decoder and
applies them during the training phase of the detection task.
First, after dividing the face image into patches and masking
the key regions, the unmasked patch sequence is input into
the encoder-decoder framework to obtain the reconstructed
face image. Next, a pre-trained feature extraction network with
fixed parameters is used to extract a series of feature maps from
the middle layers of the network for both the reconstructed face
and the original face. Using similarity calculations, feature-
level local difference attention maps are obtained. To ensure
that the size of the feature-level local difference attention
maps matches the feature maps in the middle layers of the
detection network, both the feature extraction network and the
detection network adopt the Xception architecture. The method
for calculating the local difference attention map is shown
in Fig. 3. This scheme uses cosine similarity to compute the
similarity at each location between the original image features
and the reconstructed image features. After normalizing the
results, by subtracting the feature similarity map M from 1
to emphasize the difference regions, the final local difference
attention map is obtained. The calculation expression is as
follows:

AttentionMapi = 1− 1 + CosineSimilarity(fs
i , f

r
i )

2
(2)

where fs and fr represent the features of the origi-
nal image and the reconstructed image, respectively, and
CosineSimilarity represents the cosine similarity calcula-
tion, which ranges from [−1, 1] . The higher the value, the
more similar the two features are.

In the final classification prediction, this scheme uses
the same network model as the feature extraction network
described above as the basic framework, allowing the local
difference attention map to guide the model in learning the key
regional difference features. As shown in Fig. 1, the proposed
method performs an inner product between the multiple feature
maps of the original face image from the middle layers of
the network and the local difference attention map, thereby
constraining the model’s learning process. Finally, the features

TABLE I. RESULTS OF IN-DATASET EVALUATIONS

Methods FF++(C23) FF++(C40)
Acc AUC Acc AUC

Face-X-ray[22] — 87.4 — 61.6
MesoNet[5] 83.1 84.3 70.47 72.62

Multi-task[6] 85.65 85.43 81.3 75.59
XceptionELA[23] 93.86 94.8 79.63 82.9

SPSL[24] 91.5 95.32 81.57 82.82
CFFs[25] — 97.21 — 86.56
M2TR[26] 91.86 96.75 83.89 87.15

Two-branch[27] 96.43 98.7 86.34 86.59
HFI-Net[28] 91.87 97.07 58.69 88.4

RFM[29] 95.69 98.79 87.06 89.83
Ours 91.78 97.4 80.75 90.12

extracted by the model are input into the classifier for real/fake
classification, and binary cross-entropy (BCE) loss is used to
constrain the training. The loss function is as follows:

Lcls = − 1

N

n∑
k=1

yk log(xk) + (1− yk) log(1− xk) (3)

where x represents the real/fake prediction, and y represents
the real/fake label.

IV. EXPERIMENTS

A. Datasets

The experiments in this study utilize the following three
datasets for testing and evaluation: FaceForensics++[30],
Celeb-DF-v2[31], and the DFD dataset[32]. FaceForensics++
is a large public dataset for facial forgery detection, containing
1,000 real videos and 4,000 forged videos generated using four
manipulation methods: Deepfakes, Face2Face, FaceSwap, and
NeuralTextures. Additionally, FaceForensics++ includes three
compression levels: the original version (C0), a high-quality
version (C23), and a low-quality version (C40). Celeb-DF-
v2 is a challenging dataset composed of 569 real videos and
5,639 forged videos extracted from YouTube. The DFD dataset
is another large-scale dataset containing 363 real videos and
3,068 forged videos across various scenarios.

B. Experimental Setup

The experiments in this study are implemented using the
PyTorch framework, with programming conducted in Python.
The datasets are divided for training, validation, and testing
of the detection model. OpenCV is used to extract a series
of continuous, non-repeating video frames from videos at
fixed intervals. The RetinaFace face recognition algorithm is
employed to locate the face regions in the video frames, align
these regions, and crop them appropriately. All face images
are resized to a uniform dimension of 224×224 pixels. All
experiments utilize the Adam optimizer for training, with
a learning rate set to 0.0001 and a batch size of 32. The
ViT-based encoder and decoder are trained for 300 epochs,
with a masking ratio of 75%. The Xception-based feature
extraction network and classifier are trained for 30 epochs,
with 200 iterations per epoch. The training is conducted on
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TABLE II. RESULTS OF CROSS-MANIPULATION EVALUATIONS ON
FF++C23(AUC)

Methods Train DF F2F FS NT Avg
En-b4[33]

DF

99.65 73.6 40.73 73.94 71.98
SimMIM[34] 99.64 62.43 66.74 62.74 72.89

FDFL[34] 98.91 58.9 66.87 63.61 72.07
Ours 99.85 70 41.38 71.42 70.66

En-b4[33]

F2F

87.15 99.26 51.6 66.85 76.22
SimMIM[34] 84.27 99.28 53.49 53.87 72.73

FDFL[34] 67.55 93.06 55.35 66.66 70.66
Ours 78.99 99.01 55.53 70.45 75.92

En-b4[33]

FS

61.44 68.96 99.57 49.83 69.95
SimMIM[34] 88.12 58.88 99.19 52.55 74.67

FDFL[34] 75.9 54.64 98.37 49.72 69.66
Ours 63.4 70.79 99.53 51.48 71.3

En-b4[33]

NT

83.98 69.08 46.32 97.59 74.24
SimMIM[34] 85.26 64.38 46.62 69.95 73.38

FDFL[34] 79.09 74.21 53.99 88.54 73.96
Ours 84.14 76.4 50.88 96.51 76.98

an NVIDIA GTX GeForce 3090 Ti platform with 24 GB of
VRAM. Additionally, binary classification accuracy (Acc) and
the area under the ROC curve (AUC) are used as performance
evaluation metrics for the model.

C. In-Dataset Evaluation

This section tests the in-dataset detection performance of
the proposed method on the FaceForensics++ (FF++) datasets,
and compares it with other state-of-the-art methods. The pro-
posed method is independently trained on and validated using
the test sets of FF++(C23) and FF++(C40) datasets. The results
are shown in Table I. It can be observed that, the proposed
method achieves high test accuracy on the FF++(C23) datasets.
The lower AUC performance on FF++(C40) may be attributed
to the inconsistent quality of the original compressed images.
During the training phase with real samples, the encoder and
decoder did not incorporate lower-quality images for training,
resulting in deviations and quality issues when reconstructing
low-quality images.

D. Cross-Dataset Evaluation

1) Cross-Manipulation Method Evaluation: Cross-
manipulation method evaluation is a significant approach to
assess the generalization capability of detection methods,
with important practical implications. This section conducts
cross-testing of the proposed method across four different
manipulation methods on the FF++(C23) dataset, with
the results shown in Table II. It can be observed that the
average performance across the four cross-tests exceeds
70%. In comparison with other advanced methods, the
proposed approach, trained on the NT dataset, achieves a
higher average AUC performance of 76.98% across the four
manipulation methods, representing an improvement of 2% in
detection performance. Additionally, the average test results
from training on F2F reach 75.92%, with a gap of less
than 1% compared to the higher performance of En-b4. The
experimental data in the table demonstrate that the proposed
method exhibits effective generalization across single-source
manipulation methods, confirming the feasibility of this
approach.

The aforementioned experiments demonstrate the general-
ization evaluation from a single manipulation domain to other
domains. Additionally, there exists a method for evaluating
generalization in multi-source forgery detection. This experi-
ment utilizes three training sets from FF++ (excluding DF) for
joint training and tests on DF, defined in the table as GID-DF.
Similarly, the experiment trains on three other manipulation
sets (excluding F2F) and tests on F2F. All test results are
presented in Table III. For the DF tests, existing methods
have reached a high performance level, with the proposed
method closely following, showing an AUC performance dif-
ference of less than 7% from the state-of-the-art methods.
Although there is a gap in AUC performance for GID-DF(C23)
compared to the leading methods, the accuracy performance
and results on the C40 version dataset remain outstanding,
surpassing other existing advanced methods. Regarding the
F2F tests, mainstream methods show subpar performance,
while the proposed method achieves the best results, exceeding
current advanced methods by 1% in AUC performance and 2%
in accuracy performance, demonstrating improvements across
different compression levels of F2F images. These experimen-
tal data strongly affirm the superiority of the proposed method
in multi-source forgery detection.

2) Cross-Dataset Evaluation: This section evaluates the
performance of the proposed method across different datasets.
The method was trained on the FF++(C23) dataset and tested
on the FF++(C23) library, Celeb-DF-v2, and DFD. The ex-
perimental results, as shown in Table IV, indicate that the
method achieved the best AUC performance on the DFD
dataset and demonstrated highly competitive performance on
Celeb-DF-v2, surpassing most advanced methods with a gap
of less than 5% compared to the state-of-the-art methods. This
suggests that the proposed method exhibits good generalization
capabilities across unknown datasets.

E. Ablation Study

As the proposed method is an integrated detection frame-
work, it is not possible to conduct an ablation study on
individual components or stages. Here, we present the com-
parative experimental results between the proposed method
and the Xception-based classification baseline model. The
baseline model was trained on FF++(C23) and tested for AUC
performance on Celeb-DF-v2 and DFD. The testing results,
as shown in Table V, indicate that the proposed method
outperforms the baseline model on both Celeb-DF-v2 and
DFD, demonstrating its effectiveness.

F. Visualization of Results

This section further demonstrates the reconstructed images
generated by the autoencoder framework trained on real sam-
ples. As shown in Fig. 4, the similarity between the real image
and the reconstructed image is very high for real face images.
However, for forged images, which contain artifacts not present
in real samples, reconstructing the forged images with masked
key facial regions results in reconstructed images that do not
retain the original forged information, leading to significant
local differences compared to the original forged images.
Additionally, since the encoder and decoder are capable of
reconstructing real samples, the reconstructed facial features
of the forged images tend to resemble those of the original
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TABLE III. RESULTS OF MULTI-SOURCE MANIPULATION EVALUATIONS ON FF++

Methods GID-DF(C23) GID-DF(C40) GID-F2F(C23) GID-F2F(C40)
Acc AUC Acc AUC Acc AUC Acc AUC

EfficientNet[33] 82.4 91.11 67.6 75.3 63.32 80.1 61.41 67.4
Focalloss[35] 81.33 90.31 67.47 74.95 60.8 79.8 64 67.21

ForensicTransfer[36] 72.01 — 68.2 — 64.5 — 55 —
Multi-task[6] 70.3 — 66.76 — 58.74 — 56.5 —
MLDG[37] 84.21 91.82 67.15 73.12 63.46 77.1 58.12 61.7
LTW[38] 85.6 92.7 69.15 75.6 65.6 80.2 65.7 72.4
DCL[39] 87.7 94.9 75.9 83.82 68.4 82.93 67.85 75.07

Ours 79.28 87.9 70.22 78.67 73.62 84.29 69.25 76.5

TABLE IV. RESULTS OF CROSS-DATASET EVALUATIONS ON
FF++C23(AUC)

Methods FF++(C23) Celeb-DF-v2 DFD
TI2Net[40] 99.95 68.22 72.03
FRLM[41] 99.5 70.58 68.17
F3Net[42] 98.1 71.21 86.1

Face-X-ray[22] 87.4 74.2 85.6
MLDG[37] 98.99 74.56 88.14

GFF[43] 98.36 75.31 85.51
SFDG[44] 99.53 75.83 88
SOLA[45] 99.25 76.02 —

MultiAtt[46] 99.27 76.65 87.58
BIG-Arts[47] 99.39 77.04 89.92

LTW[38] 99.17 77.14 88.56
FAAFF[48] 99.27 77.59 —

Local-Relation[49] 99.46 78.26 89.24
DCL[39] 99.3 82.3 91.66

Ours 97.24 77.47 95.23

TABLE V. RESULTS OF ABLATION STUDY

Methods FF++(C23) Celeb-DF-v2 DFD
Baseline 99.09 72.15 87.86

Ours 97.24 77.47 95.23

real faces, which is influenced by the training effect of the
encoder and decoder on large amounts of real face data.

V. CONCLUSION

This paper proposes a deepfake detection algorithm based
on local reconstruction, comprising two stages: the training
stage based on masked reconstruction of real samples and
the training stage based on local difference attention map
constraints. There are local differences between forged faces
and the original real faces, and attention maps generated
from these local differences can guide the model to learn
key forgery regions, shifting the model’s focus from global
to local features to improve detection performance. Previous
methods either require the original real image as a reference
or use self-attention mechanisms to predict key regions, both
of which have significant limitations. In contrast, this method
enhances practical applicability by using a local reconstruction
approach to recover the original real face from local regions
of real faces, aligning better with real-world scenarios. By

Fig. 4. Reconstruction results of real and forged images.

calculating feature-level local difference attention maps be-
tween the reconstructed and original images, the model is
effectively constrained to learn the features of key forgery
regions, further enhancing its ability to extract difference
features. Extensive experiments demonstrate the effectiveness
and reliability of this method in improving generalization
performance. However, our local reconstruction method does
not fully exploit the information available in forged faces
and struggles with reconstructing low-quality faces. In future
research, we aim to develop new algorithms that incorporate
the identity information in forged faces to better recover the
original real faces. In the future, leveraging local masking and
reconstruction to restore real faces holds significant potential
and valuable research implications for both generalized detec-
tion and proactive forensic analysis.
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