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Abstract—Many university networks use IoT devices, which
increases vulnerability and malware threats. The complex, multi-
dimensional structure of IoT network traffic and the imbalance
between benign and dangerous data make traditional malware
detection techniques ineffective. The Adaptive Hybrid Convolu-
tional Transformer Network (AHCTN) is a novel model that uses
CNNs for spatial feature extraction and Transformer networks for
global temporal dependencies in IoT data. Unique preprocessing
methods like Category Importance Scaling and Logarithmic
Skew Compensation handle unbalanced data and severely skewed
numerical characteristics. The Unified Feature Selector combines
statistical and model-based feature selection methods and guar-
antees that only the most relevant characteristics are utilized
for classification. DWS and LRW handle data imbalance. Our
feature engineering approaches, such as Flow Efficiency and
Packet Interarrival Consistency, improve prediction accuracy by
capturing essential data correlations. The integration of advanced
machine learning techniques ensures precise malware classifica-
tion and enhances cybersecurity by addressing vulnerabilities in
IoT-driven academic networks. The AHCTN model was carefully
tested using the IoEd-Net dataset, which contains a variety of IoT
devices and network activity. The AHCTN outperforms previous
models with 98.9% accuracy. It also performs well in Log Loss
(0.064), AUC (99.1%), Weighted Temporal Sensitivity (97.1%),
and Anomaly Detection Score (96.8%), recognizing uncommon
but essential abnormalities in academic network data. These
findings demonstrate AHCTN’s robustness and scalability for
academic IoT malware detection.
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I. INTRODUCTION

Artificial Intelligence (AI), Big Data Analytics, Immersive
Virtual Environments (IVE), and IoT have improved various
fields due to their rapid growth. These technologies have driven
The Fourth Industrial Revolution, transforming industries and
our lifestyles [1]. In particular, IoT has changed device con-
nection and data exchange. Connectivity boosts efficiency,
automation, and convenience. Malware now threatens IoT
installations. Malware is software that steals data, disrupts
services, or ruins systems, harming individuals, businesses,
and critical infrastructures [2]. The IoT connects billions of
sensors, smart appliances, and industrial equipment and is in-
creasing rapidly. However, IoT’s numerous networked devices
pose concerns. Attackers may exploit security weaknesses in
increasingly connected devices. This industry faces a severe
threat from malware, which steals, damages, or infiltrates data.
Due to their complexity and insufficient security, IoT devices
are susceptible to malware attacks [3]. Cybercriminals use IoT

vulnerabilities for DDoS and crypto-mining. Cyberattacks on
IoT devices are rising due to increasingly complicated and
undetectable malware. Kaspersky Lab identified the amount of
IoT malware types from 2017 to 2018, indicating ecosystem
malware threat. Signature-based detection is less effective for
modern malware due to its rapid code and behavior modi-
fications [4]. Thus, researchers improved malware detection
and classification using ML and DL. These new tools may
detect known and unknown viruses by scanning vast amounts
of data and finding patterns that current approaches miss. A
global statistical study of cyber attacks from 2015 to 2023 [4],
[5], indicating a rising tendency. The increasing number of
instances highlights worldwide cybersecurity issues.

Machine learning’s adaptability and improvement make
it a promise for IoT malware detection. Training models
on benign and dangerous software may help ML systems
spot hazards. Random Forest (RFst), Support Vector Machine
(SVM), and Decision Trees (DTrs) have performed well in
malware identification. Effective machine learning detection
is challenging due to the impact of training factors on model
performance [5]. Deep learning methods like CNNs and RNNs
may automatically extract essential data properties, boosting
detection. Deep learning systems like CNNs and transformers
can better detect malware because they can capture spatial and
temporal patterns in data. IoT environments are complicated;
thus, hybrid methods that capture local and global data patterns
are essential to detect malware. In recent years, transformer
networks have become valuable sequential data modeling
techniques. Developed for natural language processing, trans-
formers capture long-range relationships and sequence context
well. They can identify network traffic anomalies and IoT
malware using attention approaches [6].

Due to the limitations of traditional and novel approaches,
this study provides an Enhanced Adaptive Hybrid Convo-
lutional Transformer Network (AHCTN) for IoT malware
detection. AHCTN uses CNNs and transformers to identify
malware. CNNs excel at local spatial patterns like network
traffic flows and packet distributions, whereas transformers
excel at global dependencies like network event temporal
correlations. These robust structures allow the AHCTN model
to examine micro and macro-level IoT traffic data patterns
for a more thorough malware detection solution. AHCTN
addresses IoT concerns, including massive data dimensionality
and evolving malware. Deep learning automatically extracts
valuable characteristics from traffic data, reducing feature
engineering. The AHCTN’s transformer part employs attention
techniques to dynamically evaluate various features, allowing
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the model to zero in on the most critical malware detection pat-
terns. This technique significantly allows the AHCTN to beat
machine learning methods when malware variants frequently
change their behavior to escape detection. AHCTN parameters
are optimized for performance in this study. These optimization
methods let the model analyze vast IoT data and swiftly detect
malware risks. The Jaya Algorithm improves machine learning
model accuracy and computational efficiency, making it ideal
for resource-constrained IoT. Key contributions of this work:

1) Designed the Adaptive Hybrid Convolutional Trans-
former Network (AHCTN), tackling geographical and
temporal correlations in IoT-driven academic network
traffic by combining convolutional neural networks
(CNNs) with transformer-based global context mod-
eling.

2) To address unbalanced categorical data, normalize
skewed data, and lower noise in spatial features,
unique preprocessing techniques, including Category
Importance Scaling (CIS), Logarithmic Skew Com-
pensation (LSC), and Geolocation Zoning (GZ), are
presented.

3) Dynamic Weighted Sampling (DWS) and Label
Reweighting (LRW) are the proposed creative data
balancing methods that guarantee balanced data dis-
tribution without compromising the dataset’s natural
structure.

4) Present the Unified Feature Selector (UFS), which
guarantees the most relevant and synergistic features
are kept by combining statistical significance, model-
based selection, and interaction-aware approaches for
robust feature selection.

5) Designed novel feature engineering approaches, Flow
Efficiency (Fe), Packet Interarrival Consistency (Pi),
and Data Imbalance (Da), to capture complicated
interactions within network data, thereby improving
the predictive capability of the model.

6) Three new performance evaluation metrics are de-
veloped, which are Weighted Temporal Sensitiv-
ity (WTS), Feature Interaction Impact (FII), and
Anomaly Detection Score, to enrich the existing
understanding of model performance in academic
networks powered by the IoT.

7) Through simulations, the AHCTN model is the most
efficient approach for malware detection in IoT-based
academic networks. It exceeds current models with a
remarkable accuracy of 98.9%.

The remaining structure of the paper: Section II discussed
the review of relevant literature. The proposed method struc-
ture is described in detail in Section III. The simulations and
their accompanying discussion are detailed in Section IV. The
last section concludes with a discussion of future work.

II. RELATED WORK

The latest study has shown that common machine learning
and deep learning models can detect malware on the Internet
of Things (IoT). Researchers have developed robust malware
detection and mitigation technologies in response to the grow-
ing complexity of malware attacks and the fast growth of the
IoT.

In study [7], Convolutional Neural Networks were used to
create an excellent malware detection model. They used static
code analysis to detect malicious and benign applications.
CNN model classified malware with 91.01% accuracy. High
false positive rates (FPR) required the model to effectively
distinguish false alarms from malware. This study demon-
strated that malware detection algorithms must be improved
to reduce false positives and raise detection rates in complex
settings. Researcher, a CNN-LSTM model for malware de-
tection, captures geographical and temporal patterns in IoT
traffic data using convolutional and recurrent layers [8]. With
FPR at 0.2%, the model was 99.6% correct. While the hybrid
technique succeeded on a small, normalized sample, more
extensive and diverse datasets were untested. LSTM processing
power limits real-time applications. In [9], the author devel-
oped a malware detection system using machine learning. This
system integrates static and dynamic analysis with signature-
based approaches. The study diagnosed malware with 85%
accuracy using decision trees and random forests. This strategy
used predefined signatures, making zero-day virus detection
difficult. The lack of unexpected threat detection demonstrated
signature-based techniques’ constraints. Researchers in [10]
used Hidden Markov Models (HMMs) to identify dynamic
malware by analyzing API call sequences. Their strategy en-
hanced limited dataset detection accuracy. The high processing
cost made the technique inappropriate for large-scale IoT
devices, according to the study.

Research in [11] compared the effectiveness of hybrid
malware detection algorithms combining static and dynamic
analysis. Their SVM-based hybrid technique outperformed
static and dynamic models with 93.5% accuracy. Obfuscated
malware detection improved with the hybrid technique, but
new threats, particularly those with advanced evasion tactics,
were challenging to identify. Author [12] developed an observ-
able malware classification method using CNNs to analyze
binary malware files as images. Their 94.5% accuracy indi-
cates that visual methods may detect encrypted and packaged
malware. High-entropy malware, particularly those hidden in
complicated packaging, was the study’s worst weakness. The
K-Nearest Neighbours (KNN) approach was utilized to clas-
sify harmful software using GIST texture characteristics from
greyscale malware images [13]. Comparing 87% accuracy to
n-gram-based malware detection, this approach was computa-
tionally efficient. It struggled with comparable binary malware
families. Researchers [14] suggested a novel virus detection
method for IoT devices using entropy graphs. They extracted
characteristics from greyscale viral images using CNNs. The
model showed 92% detection accuracy, although overfitting
was reduced using a bat strategy for data equalization while
processing large datasets. The study did not address real-time
malware detection.

Malware detection via API hooking includes analyzing
behavioral patterns using machine learning methods such as
RFst and SVMs [15]. The program detected malware activity
with 90% accuracy. It battled new malware strains that altered
behavior to prevent detection. A treemap-based technique
was developed by [16] to visualize malware operations by
summarising API calls and thread actions inside processes.
The graphical method detected unusual process activity to
identify malware effectively. Although innovative, the method
failed to identify highly polymorphic malware that changed
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behavior over time. A hybrid model was developed using
machine learning and anomaly detection to identify malware
in IoT networks [17]. Their model achieved 88% accuracy
and significantly reduced false positives. The model could
have performed poorly on substantially imbalanced datasets,
highlighting the necessity for data balancing. Recurrent Neural
Networks (RNNs) assessed IoT network data as evolving se-
quences [18]. Achieving 89% accuracy in time-based anomaly
detection is promising. Due to irregular traffic patterns and
significant network imbalance, RNNs were less resilient. In
[19], the author developed a self-learning anomaly detection
system using DRBM. Using just average traffic data, the model
dynamically evolved the ability to identify aberrant activities
with 92% accuracy. Weak DRBM detection in dynamic IoT
environments with shifting traffic patterns.

Researchers in [20] employed Naive Bayes and Kruskal-
Wallis tests to improve malware detection accuracy by reduc-
ing noise. The investigation revealed that removing unneces-
sary features improved model processing speed and accuracy
to 91%. However, past feature selection methods limited the
model’s adaptability to new threats. A deep learning-based
anomaly detection model for IoT networks was developed
using Residual Networks (ResNet) [21]. To identify malware
attacks with 94% accuracy, the computer learned geographical
patterns in IoT traffic. Although accurate, the model failed to
identify complicated malware variants that changed behavior
often. In [22], authors explore deep learning algorithms for IoT
malware detection and forensic analysis. IoT Security, Mal-
ware Forensics, Deep Learning, and Anti-Forensics are their
four primary literature categories, each with its issues. The
lack of IoT-specific datasets and scalable real-time detection
algorithms is highlighted in the study. The article states that
traditional forensic methods cannot handle advanced IoT mal-
ware threats. Future directions include advanced anti-forensic
countermeasures. Furthermore, it also provides a complete
IoT cybersecurity paradigm by combining data across cate-
gories. This comprehensive research shows that IoT networks
require transdisciplinary techniques and robust AI solutions
to combat growing malware threats. In [23], authors examine
deep learning for malware detection on Windows, MacOS,
Android, and Linux platforms. Their concerns include the
absence of benchmarks, adversarial assaults, and the necessity
for explainable AI. This survey compares pre-trained and
multi-task deep learning methods for high detection accuracy.
It also criticizes overfitting and adversarial assaults that prevent
many models from generalizing successfully to unknown data.
It recommends thorough deep learning model validation on
varied datasets to guarantee resilience. This topic on inter-
pretable machine learning helps improve malware detection
system transparency and confidence.

A thorough evaluation of AI-powered malware detection
strategies [24] examines critical factors such as malware com-
plexity, analytical methodologies, dataset quality, and feature
selection. The paper shows how obfuscation limits static
analysis and anti-analysis tactics hinder dynamic analysis. AI
models need high-quality features and datasets since low-
quality data may lead to misleadingly high accuracy rates. The
paper also examines machine learning vs. deep learning, noting
that complex malware needs advanced feature extraction. The
article suggests building AI-based malware detection models to
identify evasive malware by tackling these problems. The au-

thors of [25] introduce deep learning-based malware detection
approaches and highlight their benefits over older methods.
They examine how signature-based and heuristic strategies fail
to resist sophisticated malware obfuscation. According to the
study, deep learning can quickly identify and anticipate new
malware strains. The paper investigates newly developed DL-
based malware detection systems for mobile, Windows, IoT,
APT, and ransomware. By studying these systems, the authors
reveal the development of DL methods and their usefulness in
tackling malware issues. The study details detection mecha-
nisms, stressing DL’s importance in cybersecurity resilience.

Research shows that machines and deep learning can
detect IoT malware. However, many models suffer from
scalability, real-time application, and sophisticated malware.
The Enhanced Adaptive Hybrid Convolutional Transformer
Network (AHCTN) improves malware detection by identifying
geographical and temporal patterns in IoT data using CNNs
and transformers. Table I shows the summarized view the
above mentioned literature.

III. PROPOSED METHOD

The suggested system classifies IoT-driven academic net-
work traffic using the Adaptive Hybrid Convolutional Trans-
former Network (AHCTN), addressing temporal dependen-
cies, feature interactions, and unbalanced data. The system
preprocesses the dataset using Category Importance Scaling
(CIS) to balance categorical characteristics, Logarithmic Skew
Compensation (LSC) to normalize highly skewed numerical
features, and Geolocation Zoning (GZ) to minimize spatial
data noise. Dynamic Weighted sample (DWS) and Label
Reweighting (LRW) apply sample probabilities and label
weights depending on feature and label frequency to balance
data distribution. The Unified Feature Selector (UFS) selects
the most relevant and informative features using statistical
significance, model-based selection, and interaction-aware al-
gorithms to capture individual and synergistic feature value.
By capturing complicated data interactions, feature engineering
approaches like Flow Efficiency (Fe), Packet Interarrival Con-
sistency (Pi), and Data Imbalance (Da) improve model predic-
tive power. Finally, using standard metrics and new evaluation
measures like Weighted Temporal Sensitivity (WTS), Feature
Interaction Impact (FII), and Anomaly Detection Score (ADS),
the system analyses model performance, especially in iden-
tifying anomalies in real-time academic IoT networks. This
comprehensive approach improves the model’s accuracy and
identification of uncommon but significant academic security
risks. Fig. 1 shows the proposed framework of this study.

A. Dataset Description

This study used the publicly available IoEd-Net dataset
from Kaggle [26]. It covers the IoT environment with 202,085
records. The data from academic network operations at several
university campuses showed excellent and bad IoT activity.
This dataset balances and diversifies IoT device behaviors and
network interactions, making it vital for studying educational
network processes. The 55 core and 3 derived features include
network traffic, device telemetry, and operational data. Tagged
samples of benign and dangerous network activities make the
data perfect for academic network cybersecurity, anomaly de-
tection, and IoT analytics study. The dataset’s variety improves

www.ijacsa.thesai.org 1252 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

TABLE I. LITERATURE REVIEW SUMMARY

Ref Technique Used Objective Achieved Limitations
[7] Convolutional Neural

Networks (CNN)
Developed a CNN model for malware classifica-
tion, achieving 91.01% accuracy.

High false positive rates (FPR), difficulty in sep-
arating false alarms from real malware.

[8] Hybrid CNN-LSTM Achieved 99.6% accuracy with reduced FPR of
0.2% by combining CNN and LSTM layers for
spatial and temporal trends in IoT traffic.

Limited testing on larger and more diverse
datasets, the computational cost of LSTM makes
real-time application difficult.

[9] Decision Trees, Random For-
est

Classified malware using a combination of
signature-based approaches with static and dy-
namic analysis, achieving 85% accuracy.

Limited detection of zero-day malware due to
reliance on predefined signatures.

[10] Hidden Markov Models
(HMM)

Improved malware detection accuracy through
dynamic API call sequence analysis in small
datasets.

Significant computational overhead, less suitable
for large-scale IoT systems.

[11] SVM-based Hybrid Model
(Static + Dynamic)

Enhanced detection of obfuscated malware with
93.5% accuracy by combining static and dynamic
analysis techniques.

Struggled with emerging threats and sophisticated
malware evasion strategies.

[12] CNN (Visual-Based Analysis) Used CNN to classify malware binaries as images,
achieving 94.5% accuracy in identifying packed
and encrypted malware.

Difficulty in detecting high-entropy malware, par-
ticularly with advanced packing techniques.

[13] K-Nearest Neighbors (KNN) Classified malware using GIST texture features
from grayscale images with 87% accuracy.

Lower performance on malware families with sim-
ilar binary structures.

[14] Entropy Graphs + CNN Achieved 92% accuracy by detecting malware in
IoT devices using entropy-based features from
grayscale malware images.

Overfitting on large datasets was mitigated by
a bat algorithm, but real-time detection issues
remained unaddressed.

[15] Random Forest, SVM (API
Hooking)

Detected malware activities by analyzing API
hooking behaviors with 90% accuracy.

Challenges with detecting novel malware variants
that alter their behavior.

[16] Treemap + API Calls Visual-
ization

Visualized malware behavior using API calls and
thread actions, providing insights into malware
detection.

Failed to detect highly polymorphic malware that
changes behavior over time.

[17] Hybrid Machine Learning +
Anomaly Detection

Detected malware in IoT networks with 88% ac-
curacy and reduced false positives.

Struggled with highly imbalanced datasets, requir-
ing better data balancing techniques.

[18] Recurrent Neural Networks
(RNN)

Modeled IoT network traffic as evolving se-
quences for anomaly detection with 89% accuracy.

Difficulty handling unpredictable traffic patterns
and highly imbalanced network traffic.

[19] Discriminative Restricted
Boltzmann Machine (DRBM)

Developed a self-learning anomaly detection sys-
tem trained on normal traffic data with 92% accu-
racy.

Detection accuracy dropped in dynamic IoT envi-
ronments with changing traffic patterns.

[20] Naive Bayes, Kruskal-Wallis
(Feature Selection)

Improved malware detection accuracy to 91% by
eliminating irrelevant features, enhancing process-
ing speed.

Limited adaptability to emerging threats due to
reliance on traditional feature selection methods.

[21] Residual Networks (ResNet) Anomaly detection for IoT networks was built
using deep learning and had a 94% success rate.

Struggled to identify sophisticated malware ver-
sions with frequently updated behavior.

educational IoT system analysis. Table II shows the features
list of the dataset.

B. Data Preprocessing Steps

The IoEd-Net dataset required innovative preprocessing
approaches [27] to address its unique characteristics and
enable successful analysis. Unbalanced categorical variables,
skewed numerical distributions, and temporal data provide
issues. We use these unique preprocessing approaches to
prepare the dataset for academic network anomaly detec-
tion and cybersecurity research. The dataset has large im-
balances in categorical characteristics, including Protocol,
Traffic_Direction, and Device_Type. One-hot and
label encoding sometimes overlook the relevance of under-
represented categories, which might skew model training re-
sults. The Category Importance Scaling (CIS) approach is pro-
posed to overcome this issue. This method weights categories
by dataset frequency to provide rarer categories for proper
analysis. For category Ci, determine the scaling factor:

CIS(Ci) =
1

log(1 + fi)
(1)

where fi is category Ci frequency. This logarithmic scaling
dampens the effect of more frequent categories, enabling less
common but potentially relevant categories to affect model
training. Then, Logarithmic Skew Compensation (LSC) is used
to address highly skewed distributions in numerical variables
like Packet Size, Flow Duration, and Bytes Sent in academic
network traffic data. Log transformations are typically em-
ployed to manage skewed data, although they struggle with
zero or negative values. The LSC approach uses a shift factor
s to preserve changed data. The change is:

LSC(X) = log(1 +X + s) (2)

X is the original feature value, and s is a tiny shift
constant, usually the absolute minimum of X . This ad-
justment normalizes the skewed distribution, decreasing ex-
treme values and making it better for machine learning
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Fig. 1. Proposed malware detection framework.

models. To address the significance of time-based charac-
teristics like Session Duration, Avg Time Between Packets,
and Packet Interarrival Time, the Temporal Anomaly Scaling
(TAS) is created. This technique gives network traffic variances
more weight during peak academic network use hours. Defi-
nition of temporal scaling:

TAS(T ) =
T − µT

σT
× w(T ) (3)

µT and σT represent the mean and standard devia-
tion of the time-based feature. T , and w(T ) is a weight-
ing function that prioritizes particular time frames. This
helps discover abnormalities during significant times, such
as university campus network traffic. We propose a new
approach called Geolocation Zoning (GZ) for geolocation
data, such as Source_Geolocation_Latitude and
Destination_Geolocation_Longitude. Geolocation
characteristics are generally highly variable. Hence, the GZ
technique clusters geolocation data into campus network ac-
tivity density zones to reduce noise and preserve spatial infor-
mation. The formula for geolocation data zone segmentation
is:

GZ(G) = ZoneID(k) (4)

G represents the geographical position, and
textZoneID(k) identifies the cluster zone based on k

clusters. This zoning method simplifies geolocation data
analysis by organizing information into relevant zones of
interest, improving academic anomaly detection. The Entropy-
Guided Compression (EGC) technique is used to compress
payload characteristics like Payload_Size_Bytes
and Payload_Entropy, which may include duplicate
information. This method minimizes payload data
dimensionality by minimizing low-entropy, less informative
material, and focusing on high-information content.
Transformation appears as:

EGC(P ) = P × (1−H(P )) (5)

P is the payload feature and H(P ) is the Shannon entropy,
which measures data uncertainty. This transformation retains
important payload data while compressing unnecessary data.
These preparation approaches were designed for the IoEd-Net
dataset’s particular problems. Implementing Category Impor-
tance Scaling (CIS), Logarithmic Skew Compensation (LSC),
Temporal Anomaly Scaling (TAS), Geolocation Zoning (GZ),
and Entropy-Guided Compression (EGC) prepares the dataset
for advanced machine learning tasks, particularly in IoT-based
academic network cybersecurity analysis. These methods im-
prove model robustness and accuracy, helping academics dis-
cover abnormalities and security concerns.

C. Data Balancing using Dynamic Weighted Sampling

Categorical and numerical characteristics in the IoEd-Net
dataset are very imbalanced, with a few classes or values
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TABLE II. DATASET FEATURES OVERVIEW

S.No Features Short Description S.No Features Short Description
1 Source IP IP address of the source de-

vice
29 CPU Usage CPU usage of the device

2 Destination IP IP address of the destination 30 Memory Usage MB Memory used by the device
(MB)

3 Source Port Network port of the source 31 Energy Consumption Watts Device energy usage in watts
4 Destination Port Network port of the destina-

tion
32 Firmware Version Device firmware version

5 Protocol Type of network protocol
(TCP, UDP, etc.)

33 Device Uptime Hours Total device uptime (hours)

6 Packet Size Size of the network packet 34 Payload Size Bytes Size of payload in bytes
7 Packet Count Total number of packets 35 Payload Entropy Entropy of payload data
8 Flow Duration Duration of the network flow 36 Payload Content Type Content type of payload

(ASCII, Binary)
9 Packet Interarrival Time Time between packet arrivals 37 Signature Match Whether a signature matched

or not
10 TCP Flags Flags set in a TCP packet 38 Compressed Encrypted Flag Flag indicating

compression/encryption
11 Bytes Sent Total bytes sent 39 Content Type File Transferred Type of file transferred
12 Bytes Received Total bytes received 40 Flow Count Per Time Window Count of flows in a time win-

dow
13 Traffic Direction Direction of traffic

(Ingress/Egress)
41 Avg Packet Size Bytes Average packet size in bytes

14 Connection State State of the connection 42 Packet Rate Packets Per Second Rate of packets per second
15 Packet Drop Rate Rate of dropped packets 43 Std Dev Packet Size Standard deviation of packet

size
16 Malformed Packet Count Number of malformed packets 44 Min Packet Size Minimum packet size
17 Avg Time Between Packets Average time between packets 45 Max Packet Size Maximum packet size
18 Total Flow Count Total number of network

flows
46 Protocol Distribution TCP PercentPercentage of TCP traffic

19 Device Type Type of IoT device 47 Protocol Distribution UDP PercentPercentage of UDP traffic
20 Device Manufacturer Manufacturer of the device 48 Protocol Distribution ICMP PercentPercentage of ICMP traffic
21 OS Version Version of the operating sys-

tem
49 Source Geolocation Latitude Latitude of source location

22 DNS Query Count Number of DNS queries 50 Source Geolocation Longitude Longitude of source location
23 Suspicious Domain Query Flag Flag for suspicious domain

query
51 Destination Geolocation LatitudeLatitude of destination loca-

tion
24 File Transfer Occurred Flag indicating file transfer 52 Destination Geolocation LongitudeLongitude of destination loca-

tion
25 File Size Bytes Size of transferred file 53 Anomalous Behavior Flag Flag indicating anomalous be-

havior
26 External IP Accessed Flag Flag for external IP access 54 Session Duration Duration of the session
27 Label Benign or malicious activity 55 Time Of Day Time of day of activity
28 Device Uptime Hours Uptime of the IoT device 56 Day Of Week Day of the week of activity

dominating. A new data balancing mechanism was designed
for this dataset to fix this. Dynamic Weighted Sampling (DWS)
balances datasets without affecting their distribution properties.
Unlike oversampling or undersampling, DWS preserves natural
proportions while enhancing categorical and continuous feature
balance, which distorts data. DWS assigns dynamic sampling
probabilities to each dataset sample inversely proportionate to
its class or value frequency. This increases training sample
frequency for under-represented classes or values without
changing the dataset’s size or structure. DWS uses binning and
weighting to adjust for skewness in continuous features. Let
f(Ci) denote the dataset’s class frequency Ci for categorical
characteristics. The sampling probability for each class is
P (Ci):

P (Ci) =
1

log(1 + f(Ci))
(6)

This equation compensates for training imbalance by assigning
more significant sample probability to classes with lower
frequencies. The logarithmic term balances categories by pre-
venting overcompensation for uncommon classes. DWS em-
ploys adaptive binning for skewed continuous characteristics
like Packet_Size, Flow_Duration, and Bytes_Sent
in academic network traffic. The continuous feature X is
separated into bins of various sizes, with more bins in high-
density locations. Probability of selecting a value from bin Bj ,
P (Bj), is inversely proportional to its frequency:

P (Bj) =
1

f(Bj) + ϵ
(7)

The frequency of values in bin Bj is represented as f(Bj),
with a tiny constant ϵ to prevent division by zero. To correct
continuous feature imbalance, this approach samples values in
under-represented parts of the feature space more often. Adap-
tive binning preserves data distribution and reduces skewness.
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Target labels for the dataset are imbalanced, with 60% benign
and 40% malevolent. We use the Label Reweighting (LRW)
technique to balance labels. LRW changes the loss function
during model training to avoid oversampling or undersampling
benign or malevolent classes. Each label’s weight wi is the
inverse of its frequency:

wi =
1

f(yi)
(8)

where f(yi) is the dataset label frequency. Altering the rele-
vance of each sample during training ensures that the model
pays equal attention to benign and malicious labels, regardless
of dataset imbalance. The reweighted loss function is:

L(y, ŷ) =
∑
i

wi · ℓ(yi, ŷi) (9)

Where ℓ(yi, ŷi) is the original loss (e.g., cross-entropy
loss) between the actual and predicted labels, and wi is the
reweighting factor. Even though the benign class is more
common, the model does not become biased toward predicting
benign samples, allowing for more accurate academic network
harmful activity identification. We suggest using Feature-
Weighted Adjustment (FWA) to apply feature-specific balancing
weights during model training, in addition to balancing labels
and category features. FWA weights features by imbalance de-
gree to prevent extremely unbalanced features from dominating
model predictions. The imbalance degree for each feature Xi,
I(Xi), is the ratio of its highest to lowest frequencies:

I(Xi) =
max(f(Xi))

min(f(Xi)) + ϵ
(10)

ϵ is a tiny constant that prevents division by zero, and
f(Xi) is the frequency of each unique value or bin in feature
Xi. Next, the feature weight wf (Xi) is determined in the
following way:

wf (Xi) =
1

I(Xi)
(11)

During model training, characteristics with greater degrees
of imbalance are given less weight. This way, the model
may concentrate on more balanced features that reflect the
underlying data. With FWA included, the total weighted loss
function is given by:

LFWA(y, ŷ) =
∑

iwf (Xi) · ℓ(yi, ŷi) (12)

This ensures that the model’s conclusions are not unduly
affected by the uneven distribution of features, especially
when dealing with significantly skewed features, such as
Flow Duration or Bytes Sent. A complete balancing approach
developed for the IoEd-Net dataset is comprised of the DWS,
LRW, and Feature-Weighted Adjustment (FWA) techniques.
When dealing with an imbalance in numerical and categorical
variables or target labels, these methods keep the data’s natural
distribution in mind. These methods enhance the robustness
and accuracy of the ML models trained on the dataset with a
focus on underrepresented categories, feature values, and labels
to detect fraudulent activity in academic network systems.

D. Unified Feature Selector

The IoEd-Net dataset comprises many categorical and
numerical variables. Hence, a robust feature selection process
is needed to train machine learning models with the most
relevant and essential features. Unified Feature Selector (UFS)
is an innovative way to accomplish this. The UFS uses statis-
tical and model-based feature selection techniques to generate
a more accurate and efficient pipeline. This technique can
handle category, numerical, and time-based information and
account for feature interactions due to its hybrid nature. The
Statistical Significance Selector (SSS) is the first part of the
Unified Feature Selector, which uses statistical tests to assess
feature relevance. Using correlation-based measurements, SSS
measures linear connections between numerical characteristics
and the target variable. We use a modified test based on
information gained to address nonlinear connections and more
complicated feature-target interactions. This test measures the
uncertainty decreased in the target variable by knowing the
feature value. The Modified Information Gain (MIG) is used
to calculate the relevance score of a numerical feature Zk to
the goal T :

MIG(Zk, T ) = S(T )− S(T | Zk) (13)

Where S(T ) is the target variable’s entropy, and S(T | Zk)
is the target’s conditional entropy given the feature Zk. This
score represents target uncertainty reduction when the feature
is known. Higher MIG values indicate relevance and are picked
for study. We present the Categorical Relevance Score (CRS)
for categorical characteristics, measuring their chi-squared test
dependency on the goal. Calculating the CRS:

CRS(Am, T ) =
∑ (Pim −Qim)2

Qim
(14)

Pim is the observed frequency of class i in feature Am,
and Qim is the predicted frequency assuming independence
between A m and T. Features with high CRS scores are picked
for the next step of the unified selection process due to solid
target variable relationships. The Unified Feature Selector’s
second component, the Model-Based Selector (MBS), uses
machine learning models to evaluate feature significance for
model performance. The MBS ranks features by relevance by
assessing their influence on a trained model rather than statis-
tical significance. The MBS uses a perturbation-based model-
agnostic significance measure for categorical and numerical
characteristics. The model’s accuracy and F1 score are assessed
after perturbing each feature. Let g be the trained model,
and ∆(g(W )) be the performance change when feature W
is disturbed. Definition of the Perturbation Importance Score
(PIS):

PIS(Wk) =
|g(W )− g(W ′

perturbed)|
g(W )

(15)

g(W ) represents the model’s initial performance with all
features, whereas g(W ′

perturbed) represents the performance after
perturbing feature Wk. Prioritize features that reduce model
performance more when disrupted. MBS retains statistically
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important and relevant information that improves model pre-
diction power. An important part of the Unified Feature Se-
lector is the Interaction-Aware Selector (IAS), which reveals
interactions between features that may not be visible when
evaluating features separately. Features that seem unimportant
alone might be quite illuminating when combined. IAS finds
pairs or groups of characteristics that interact to enhance model
performance using a unique interaction detection approach. For
every two features Wp and Wq , the Interaction Score (IS) is the
difference in performance between the model trained with both
features and the sum of the model trained with each feature
separately. Definition of IS:

IS(Wp,Wq) = g(Wp,Wq)− (g(Wp) + g(Wq)) (16)

where g(Wp,Wq) represents model performance with both
features, and g(Wp) and g(Wq) represent performance with
each feature independently. Positive IS implies that the two
characteristics synergistically improve model performance and
should be examined jointly during feature selection. By retain-
ing synergies, the IAS guarantees that feature selection catches
these crucial interactions, improving model performance. The
Unified Feature Selector creates a feature subset from the SSS,
MBS, and IAS outputs. Each feature’s relevance, significance,
and interaction impact determine its composite score. To
calculate the Unified Feature Score (UFS) for each feature Zk,
the weighted sum of its scores from the three components is
used:

UFS(Zk) = λ1 ·MIG(Zk)+λ2 ·PIS(Zk)+λ3 ·
∑
q

IS(Zk,Wq)

(17)

λ1, λ2, and λ3 represent weights for statistical significance,
model-based relevance, and interaction effects. These weights
may be adjusted for the dataset and task. Model training
uses features with the most significant UFS values to ensure
they are relevant and valuable separately and account for
complicated feature relationships. The Unified Feature Selector
(UFS) offers a broad feature selection strategy using sta-
tistical analysis, model-based importance measurements, and
interaction-aware algorithms. These strategies guarantee that
the final feature set is robust and representative and improves
model performance. UFS makes the IoEd-Net dataset more
efficient and informative, enabling machine learning models to
concentrate on the most critical aspects and boosting prediction
tasks like anomaly detection and cybersecurity in academic IoT
networks.

E. Feature Engineering

Preparing the IoEd-Net dataset for machine learning mod-
els requires feature engineering. Creating new features from
existing ones may improve model prediction power by giving
more relevant data representations [28]. New features are
extracted using domain information and mathematical mod-
ifications of existing features in this part, a revolutionary
feature engineering method. These freshly created features
reveal complicated data linkages and patterns that the original
features missed. The first characteristic we offer is Flow

Efficiency (Fe), which measures the link between data transfer
and transfer time. This feature helps discover wasteful flows
when data transmission takes too long for the quantity of the
data. Let Dtx represent the total bytes communicated during a
session, and Tsession represent the session duration. Definition
of Flow Efficiency (Fe):

Fe =
Dtx

Tsession + δ
(18)

a minor constant δ is inserted to prevent division by zero
in very short session durations. Fe measures data throughput
and larger values imply more efficient data transport, whereas
lower values indicate inefficiency. We add the new feature
Packet Interarrival Consistency (Pi) to account for packet
interarrival time fluctuation. This feature identifies flows with
irregular packet timing, which may suggest network congestion
or malicious activities. Let T arrival(j) represent the interarrival
time of the j-th packet in the flow, and Npkts represent the total
number of packets. The standard deviation of interarrival times,
σarrival, is computed as:

σarrival =

√√√√ 1

Npkts

Npkts∑
j=1

(
T

(j)
arrival − µarrival

)2

(19)

where µarrival is the mean interarrival time. The inverse of
the standard deviation is the packet arrival consistency, denoted
as Pi.

Pi =
1

σarrival + δ
(20)

Where δ is a small constant to avoid zero division, a more
significant Pi value suggests more consistent packet arrivals,
whereas a lower value indicates more packet interarrival time
variability. Network sessions often have an imbalance between
data delivered and received. We provide a new feature, Data
Imbalance (Da), to measure the difference between transmitted
and received bytes. Let Drx represent the total bytes received
during a session. The term “Data Imbalance (Da)” means:

Da =
|Dtx −Drx|

Dtx +Drx + δ
(21)

Where δ is a small constant to avoid zero division, numbers
closer to 0 indicate symmetric data flow, whereas numbers
closer to 1 indicate a substantial data imbalance. Payload
data entropy may also reveal network traffic characteristics.
Low entropy indicates data predictability, whereas high entropy
indicates compression or encryption. We provide the Payload
Entropy Density (Ep), which quantifies the average entropy
per payload byte. Define Spayload as the Shannon entropy
and Dpayload as the total bytes of payload data. The “Payload
Entropy Density (Ep)” is defined as:

Ep =
Spayload

Dpayload + δ
(22)

where δ is a small constant to avoid zero division. This prop-
erty distinguishes compressed or encrypted data flows from
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organized, predictable ones. We use the Anomalous Packet
Ratio (Ar) to identify aberrant traffic patterns by measuring the
frequency of anomalous packets in a network session. Network
faults may cause corrupted or lost packets. Assign P anom
to the number of anomalous packets and Ptotal to the overall
number of packets in the session. The Anomalous Packet Ratio
(Ar) is defined as:

Ar =
Panom

Ptotal + δ
(23)

A greater Ar shows more anomalous packets, which may
signal network instability or malicious activity. The feature
above engineering methods create new features that capture
crucial data linkages and patterns in the IoEd-Net dataset.
Flow Efficiency (Fe), Packet Interarrival Consistency (Pi), Data
Imbalance (Da), Payload Entropy Density (Ep), and Anoma-
lous Packet Ratio (Ar) provide light on traffic dynamics and
enhance machine learning models. These new characteristics
are helpful for anomaly identification and cybersecurity in
academic IoT networks because they reveal hidden patterns
of normal or abnormal activity.

F. Feature Transformation Method

Feature transformation is necessary to prepare the IoEd-Net
dataset for machine learning. Machine learning models learn
and generalize better from characteristics transformed by size,
distribution, or representation [29]. A new feature transforma-
tion approach, Adaptive Distribution Mapping (ADM), is cre-
ated. This approach dynamically adjusts feature distributions
to a uniform or normal distribution based on their attributes.
We want to minimize skewness and boost the feature’s learn-
ing algorithm contribution. ADM is a flexible transformation
approach that modifies feature distribution depending on data
attributes. The main processes are detecting the feature’s skew-
ness and performing a logarithmic transformation or Gaussian
normalization.

Detecting Skewness: Let X be a feature vector with
N observations. Use the following equation to compute the
skewness γ X of a feature to determine its skewness:

γX =
1

N

N∑
i=1

(
Xi − µX

σX

)3

(24)

Xi represents the i-th observation of the feature, µX
represents its mean, and σX represents its standard deviation.
Skewness γX measures data distribution asymmetry around
the mean. A γX = 0 value suggests a symmetric distribution,
whereas positive values imply right skewness, and negative
values indicate left skewness.

Logarithmic Transformation for Highly Skewed Features A
feature is severely skewed if its skewness γX exceeds a preset
threshold τ1 (e.g., γX > t 1 = 1 For such characteristics,
we compress the distribution’s long tail via a logarithmic
modification. The logarithmic transformation:

Xlog = log(1 +X) (25)

This adjustment minimizes outliers and evens out feature
values. The constant 1 is supplied to prevent computing the
logarithm of zero.

Gaussian Normalization for Moderately Skewed Features:
If the skewness γX is within the range τ2 < γX ≤ τ1, where
τ2 denotes a lower threshold (e.g., τ2 = 0.5), the feature is
moderately skewed or unskewed We normalize such charac-
teristics using Gaussian normalization to get a conventional
normal distribution. Definition of Gaussian Normalization:

Xnorm =
X − µX

σX
(26)

The feature is transformed to have a mean of 0 and a
standard deviation of 1 so that learning algorithms can employ
it with the assumption that the data is normally distributed.

To implement the Adaptive Distribution Mapping (ADM),
we dynamically assign the appropriate transformation based
on the skewness of each feature. For a given feature X , the
transformation T (X) is defined as:

T (X) =


log(1 +X) if γX > τ1
X−µX

σX
if τ2 < γX ≤ τ1

X if γX ≤ τ2

(27)

This change, which makes the feature mean 0 and stan-
dard deviation 1, is useful for learning algorithms that use
the assumption of normally distributed data. When it comes
to dynamic adaptive distribution mapping, feature skewness
determines the correct transformation to use. A feature X is
specified by the transformation T (X).

Xscaled =
Xtransformed −min(Xtransformed)

max(Xtransformed)−min(Xtransformed)
(28)

Distance-based algorithms like k-nearest neighbors and
gradient-based algorithms like neural networks use this equa-
tion to scale all attributes between 0 and 1. ADM has
several benefits. It avoids the one-size-fits-all approach of
typical transformations by dynamically applying skewness-
based transformations. This flexibility helps the model learn
from outliers and skewed distributions. Lastly, feature scaling
makes sure that all features are around the same size, which
minimizes the impact of any one feature on learning. To
account for skewness, the novel ADM method adds logarithmic
or Gaussian normalizations to the feature distributions of IoEd-
Net. These adaptive feature transformation methods boost
the feature’s contribution to machine learning models and
data distribution-sensitive algorithms. Therefore, ADM is a
powerful approach to preparing data for many prediction tasks.

G. Classification Using the Adaptive Hybrid Convolutional
Transformer Network (AHCTN)

This work introduces a novel classification architecture
called the Adaptive Hybrid Convolutional Transformer Net-
work (AHCTN). Transformer networks’ global context mod-
elling capacity and the feature extraction skills of convolutional
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neural networks (CNNs) are combined in this design [30]. The
AHCTN was created to classify complex, multi-dimensional
data in IoT-driven academic networks, where local patterns like
geographical correlations and global interactions like temporal
interdependence are essential. Fig. 2 describes the proposed
AHCTN design. AHCTN was created because standard ap-
proaches struggle to capture localized feature hierarchies and
long-range relationships. ResNet’s stacked convolutions extract
hierarchical features well. However, they typically fail to
account for dataset relationships. Transformer models, which
excel with sequential data, may capture global patterns but
need extra processes to understand local feature interactions.
AHCTN integrates both methodologies into one model to solve
these constraints.

Fig. 2. AHCTN proposed architecture.

Its main components are a Convolutional Feature Extractor
(CFE) and a Global Context Transformer. The CFE learns
local spatial patterns in the data, whereas the GCT captures
global relationships across the network’s input characteristics.
Together, these components enable the model to handle spatial
and temporal IoT network data. Convolutional layers extract
spatial information from input data in the Convolutional Fea-
ture Extractor (CFE). Let the input data be represented as
Z ∈ Rp×q , where p is the sample count and q is the sample
dimension (e.g., features per network traffic sequence time
step). The convolutional operation at layer h is defined as

Yh = ReLU(Wh ∗ Z+ bh) (29)

The convolutional filter for layer h, the bias term bh and
the convolution process are shown by ∗. Because it is non-
linear, the model can learn intricate feature correlations due to
the rectified linear unit (ReLU) activation function. Convolu-
tional layer output Yh provides the recovered feature map used
in the following layers to capture deeper spatial patterns. The
final CFE output, FCFE, is a high-level representation of the
input data’s local characteristics, which the GCT will analyze.

The Global Context Transformer (GCT) captures input data
global dependencies. It computes contextual links between
feature space regions using attention. In the GCT, the attention
mechanism uses the feature representation FCFE from the CFE.
Let FCFE ∈ Rp×q be the transformer layer input. The signifi-
cance between sequence places determines the weights of the
input characteristics to be added by the attention mechanism.
The attention score for feature vectors FCFE,i and FCFE,j is
calculated as

αij =
exp (sim(FCFE,i,FCFE,j))∑p
k=1 exp (sim(FCFE,i,FCFE,k))

(30)

where the function sim(FCFE,i,FCFE,j) computes the sim-
ilarity between two feature vectors. In AHCTN, we use a
scaled dot-product attention mechanism, where the similarity
is defined as

sim(FCFE,i,FCFE,j) =
FCFE,i · FCFE,j√

q
(31)

The feature vector dimensionality is q, and the scaling factor
1√
q limits the dot-product values. The attention mechanism

output for each feature vector is calculated as

Zi =

p∑
j=1

αijFCFE,j (32)

This technique lets the model concentrate on the most
critical input data, integrating distant sequence information
as needed. The global contextualization of features (FGCT
combines local patterns and long-range relationships. Final cat-
egorization uses a fully linked layer and a softmax layer on this
feature map. Let WFC and bFC represent the fully connected
layer’s weights and bias. Output logits ŷ are calculated as

ŷ = softmax(WFCFGCT + bFC) (33)

The softmax function produces a probability distribution
across classes. The AHCTN was chosen because it can manage
complicated, multi-modal IoT data in academic networks. Con-
volutional layers and transformer-based attention mechanisms
enable the model to capture localized spatial correlations like
packet flows and device interactions and global patterns like
time-based anomalies and cross-device behavior. Traditional
models like MobileNet and ResNet rely on local feature extrac-
tion, which restricts their efficiency in classification situations
with long-range relationships.

The GCT’s attention mechanism allows the model to dy-
namically concentrate on the most critical input data. It is ideal
for anomaly detection and cybersecurity jobs in academic IoT
networks, where infrequent but essential occurrences must be
discovered. AHCTN outperforms models that ignore spatial
and temporal dynamics by dynamically shifting its focus and
using local and global information. Due to its power and
flexibility, AHCTN is suited for fine-grained feature extraction
and long-range dependency modeling in IoT-driven network
categorization.

H. Performance Evaluation Metrics

Performance metrics are critical for evaluating machine
learning classification models, especially in IoT-driven aca-
demic networks. While traditional measures like accuracy,
precision, recall, and F1-score [31] provide valuable insights
into model performance, they may not capture the subtleties
of complex feature interactions or unbalanced data in IoT
scenarios. We present three new metrics: Weighted Tempo-
ral Sensitivity (WTS), Feature Interaction Impact (FII), and
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Anomaly Detection Score (ADS), designed to solve our work’s
issues. These metrics and typical performance indicators give
a more complete model assessment framework.

1) Existing Performance Metrics: Classification challenges
often utilize accuracy to measure model predictions. It is the
ratio of accurately anticipated occurrences to total instance.
Fig. 3 shows the existing performance metrics.

Fig. 3. Performance evaluation metrics.

While these traditional metrics are valuable, they may not
fully capture the intricacies of IoT-based network classifica-
tion, where temporal patterns, feature interactions, and rare
but critical anomalies need to be emphasized. To address these
gaps, we introduce three new performance metrics.

2) Weighted Temporal Sensitivity (WTS): The Weighted
Temporal Sensitivity (WTS) measures the time-based impor-
tance of categorization findings in academic IoT networks
when peak hours are more important than others. This measure
weights memory scores by temporal significance. Set Ti as
the time-based weight, for instance, i, with greater values for
crucial time frames. Definition of WTS:

WTS =

∑M
j=1 τj × I(αj = α̂j)× I(αj = 1)∑M

j=1 τj × I(αj = 1)
(34)

In this equation, M represents the number of cases, αj

represents the actual label, α̂j represents the label which is
predicted, and I(·) yields 1 if the condition is true and 0
otherwise. This measure facilitates anomaly identification in
time-sensitive contexts by weighting classification mistakes
during critical time frames more heavily, thereby impacting
the evaluation score significantly.

3) Feature Interaction Impact (FII): The Feature Interac-
tion Impact (FII) is introduced to measure how well the model
captures interactions between different features, an essential
aspect of IoT-driven academic networks where correlations
between variables (e.g., device type and traffic patterns) are
critical for accurate classification. The FII quantifies the per-
formance difference between a model trained with interacting
features and a model trained with the features considered inde-
pendently. Let Minteract be the performance of the model trained
with interacting features, and Mindep be the performance with
independent features. The FII is defined as:

FII =
Minteract −Mindep

Mindep
(35)

Feature interactions are crucial to the model’s predictive
power. A higher FII score shows that feature interactions
improve the model’s performance and capture complicated
relationships.

Anomaly Detection Score (ADS): ADS is designed for IoT
networks, optimizing the detection of uncommon but essential
abnormalities. Unlike accuracy or recall, the ADS considers
anomaly detection rate and severity, which may not account
for anomaly rarity and effect. Let Ai represent the severity
of the observed anomaly. For instance, i and Di indicate its
proper detection. Calculating ADS:

ADS =

∑N
i=1 Ai ×Di∑N

i=1 Ai

(36)

When the severity of the irregularities increases, Ai is
given a higher value, guaranteeing that the model’s success
is assessed by counting the number of anomalies found and
the importance of identifying the most noteworthy ones.

IV. SIMULATION RESULTS

Extensive simulations were run on a Dell Core i7 12th
Gen machine with an 8-core CPU and 32 GB of RAM to
assess the proposed Adaptive Hybrid Convolutional Trans-
former Network (AHCTN). Python and SPYDER IDE were
used to construct and evaluate the simulations. Throughout
the experiments, we adjusted the hyperparameters of the clas-
sification model to achieve optimal performance. The Adam
optimizer for model training, a batch size of 64, and a learning
rate of 0.001 are important parameters with optimal values.
The network has four convolutional layers with 64 filters and
a transformer module with four attention heads. To avoid
overfitting, the dropout rate was adjusted to 0.3, and training
lasted up to 100 epochs. Early termination was applied when
validation loss stopped improving. The AHCTN balanced
training speed and model accuracy with these parameter values
while addressing the IoT-driven academic network dataset’s
complexity.

Fig. 4. Traffic distribution and protocol distribution.

Fig. 4 contains two central distribution representations of
the IoEd-Net dataset. The left bar plot shows benign and mali-
cious traffic in the dataset. The bar heights show the frequency
of benign (0) and malicious (1), revealing the dataset’s class
imbalance, where benign traffic marginally surpasses harmful
traffic. This emphasizes the need for model resilience against
this mismatch in classification tasks. On the right, the pie chart
shows network traffic protocol distribution. Traffic percentages
for TCP, UDP, and ICMP are shown. This information helps
identify communication protocols in the dataset that may affect
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network anomaly detection. TCP dominates the pie, followed
by UDP and ICMP. Cybersecurity analysis and anomaly de-
tection need network traffic composition information.

Fig. 5. Network’s connection states and device types.

In the IoEd-Net dataset, Fig. 5 shows two essential visu-
alizations of network connection statuses and device kinds.
The left bar plot illustrates the frequency of connection sta-
tuses like “Established” and “SYN-Sent.” Readers may see
the percentage of active and started network connections.
The “SYN-Sent” state dominates, indicating that numerous
connections are being made, which helps identify network
flaws or incomplete connections, which hackers commonly
exploit. The donut graphic on the right shows how traffic
is distributed among IoT device categories, including Smart
Cameras, Thermostats, and Smart Bulbs. This breakdown
shows the variety of IoT devices on the academic network, with
Smart Cameras accounting for a large percentage of traffic.
Device types may be more vulnerable than others. Therefore,
their distribution might assist in detecting security problems.

Fig. 6. Insightful representations of significant network and device properties.

Fig. 6 shows two insightful representations of significant
network and device properties in the IoEd-Net dataset. On
the left, the histogram shows network traffic average packet
sizes. Having a visible peak, the curve shows the most frequent
packet sizes transported throughout the network. This visual-
ization helps users understand the dataset’s average packet size,
which is crucial for performance optimization and spotting
aberrant traffic, such as unexpectedly big or tiny packets that
may signal network inefficiencies or security risks. On the
right, the scatter plot shows CPU and memory utilization by
device type. Different colors indicate different device kinds,
including Smart Cameras, Thermostats, and Smart Bulbs. This
graphic shows CPU and memory utilization across device
categories, helping discover outliers or devices using too much.
In IoT networks, performance management and anomaly de-
tection depend on device resource allocation variety.

Table III compares machine learning techniques for cate-
gorizing the IoEd-Net dataset. Accuracy, precision, recall, F1-
score, Log Loss, WTS, FII, and ADS are listed in the table.

The table shows that the Proposed AHCTN outperforms all
other methods in almost every metric. High accuracy (98.7%),
precision, recall, and F1-score suggest the balanced ability to
recognize benign and malicious data. The lowest Log Loss
of the new metrics, 0.064 for AHCTN, indicates confident
projections with limited uncertainty. This method distinguishes
positive and negative classes better than CNN, ResNet, and
VGG16, with an AUC score of 99.1%. The AHCTN detects
abnormalities and prioritizes high-severity events, which is
crucial in an IoT-driven academic network (WTS 97.1%)
and ADS (96.8%). Additionally, its FII (92.3%) indicates
enhanced prediction using feature interactions. ResNet, CNN,
and SVM perform poorly across many metrics, particularly
new metrics, showing they may not be able to handle the
data’s intricate linkages and temporal dependencies as effec-
tively as the AHCTN model. Table III compares machine
learning techniques for categorizing the IoEd-Net dataset.
Accuracy, precision, recall, F1-score, Log Loss, WTS, FII,
and ADS are listed in the table. The table shows that the
Proposed AHCTN outperforms all other methods in almost
every metric. High accuracy (98.7%), precision, recall, and
F1-score suggest the balanced ability to recognize benign
and malicious data. The lowest Log Loss of the new met-
rics, 0.064 for AHCTN, indicates confident projections with
limited uncertainty. This method distinguishes positive and
negative classes better than CNN, ResNet, and VGG16, with
an AUC score of 99.1%. The AHCTN detects abnormalities
and prioritizes high-severity events, which is crucial in an IoT-
driven academic network (WTS 97.1%) and ADS (96.8%).
Additionally, its FII (92.3%) indicates enhanced prediction
using feature interactions. ResNet, CNN, and SVM perform
poorly across many metrics, particularly new metrics, showing
they may not be able to handle the data’s intricate linkages and
temporal dependencies as effectively as the AHCTN model.

Fig. 7. Training and validation performance of the model.

Fig. 7 shows 34-epoch model training and validation per-
formance. After learning from the data, the model’s training
and validation accuracy improves in the left subplot. Training
accuracy begins at 70%, validation accuracy at 68%, and
rapidly rises to 99% by the last epoch, indicating effective
model learning. The validation accuracy is 99%, demonstrat-
ing the model’s adaptability to new data without overfitting.
Training and validation losses exhibit error reduction on the
right subplot. While validation loss starts at 0.62 and lowers
to 0.10, training loss begins at 0.60 and drops to 0.06. The
accuracy and reduction of errors in the model’s predictions
are enhanced by convergence and practical training. When the
loss curves for training and validation are the same, the model
isn’t overfitting and can generalize well to new datasets.
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TABLE III. CLASSIFICATION RESULTS OF DIFFERENT TECHNIQUES

Techniques F1-Score (%) Log Loss WTS (%) Accuracy (%) AUC (%) Recall (%) ADS (%) Precision (%) FII (%)
ResNet [21] 89.9 0.213 82.3 91.2 90.8 89.5 85.5 90.4 74.1

CNN [7] 90.8 0.201 83.5 92.5 91.7 90.6 86.7 91.0 76.3
Markov n-gram [10] 87.1 0.264 79.1 88.9 87.4 86.7 82.0 87.5 70.9
Decision Trees [9] 86.0 0.285 77.6 87.3 85.9 85.9 80.5 86.2 68.5

DBN [19] 89.0 0.233 81.0 90.1 89.5 88.8 84.2 89.2 72.5
VGG16 [17] 92.3 0.187 85.0 93.4 92.8 92.1 88.0 92.6 78.4
SVM [11] 88.1 0.241 80.2 89.7 89.2 87.9 83.2 88.3 71.7
KNN [13] 86.7 0.275 78.9 88.1 86.1 86.5 81.5 87.0 69.9

Proposed AHCTN 98.3 0.064 97.1 98.7 99.1 98.2 96.8 98.5 92.3

TABLE IV. STATISTICAL ANALYSIS OF CLASSIFICATION METHODS ((F-STATISTIC) & P-VALUE)

Statistical Method ANOVA Student’s t-test Pearson Correlation (r) Kendall’s Tau (τ ) Chi-Square (χ2)
ResNet [21] 7.56 0.014 0.84 0.72 8.63
CNN [7] 6.98 0.020 0.88 0.75 7.92
Markov n-gram [10] 5.22 0.031 0.65 0.59 6.54
Decision Trees [9] 4.89 0.043 0.61 0.57 6.18
Deep Belief Network [19] 6.45 0.017 0.78 0.71 7.45
VGG16 [17] 7.89 0.012 0.89 0.76 9.23
SVM [11] 5.67 0.029 0.70 0.64 6.88
KNN [13] 5.12 0.036 0.62 0.58 6.33
Proposed AHCTN 8.45 0.008 0.92 0.79 9.88

Table IV compares the proposed AHCTN model to ex-
isting state-of-the-art classification approaches using ANOVA,
Student’s t-test, Pearson Correlation, Kendall’s Tau, and
Chi-Square metrics. These metrics systematically assess the
AHCTN’s IoT-driven academic network da .ta management.
The AHCTN model’s ANOVA (F-statistic) score of 8.45
shows that it classifies better than other techniques. With a
p-value of 0.008, the Student’s t-test verifies the AHCTN’s
improvements’ statistical significance. Pearson Correlation (r)
of 0.92 and Kendall’s Tau (τ ) of 0.79 indicate significant
linear and ordinal connections between AHCTN characteristics
and classification performance, highlighting its capacity to
capture complicated data interactions. Lastly, the Chi-Square
(χ2) value of 9.88 highlights the AHCTN’s features’ consid-
erable impact on classification accuracy, separating it from
ResNet, CNN, and VGG16. This improved statistical reporting
strengthens the AHCTN model and explains its success in
identifying malware in IoT-driven academic networks. These
findings are included into the discussion for paper consistency
and clarity.

Fig. 8. Sensitivity analysis of the proposed AHCTN model.

The sensitivity analysis of the suggested AHCTN model
and the impact of hyperparameters on its performance are
shown in Fig. 8. The graphic illustrates the relationship be-
tween model accuracy and loss as a function of optimizer,
batch size, layers, dropout rate, and learning rate. The graph
shows that learning and dropout rates affect the model more
than the optimizer. This sensitivity study determines which
AHCTN hyperparameters best identify IoT malware.

V. CONCLUSION

This research proposed the AHCTN, a new architecture for
malware detection in IoT-driven academic networks. Network
traffic analysis requires capturing local feature interactions and
global dependencies, which the model does uniquely using
transformer networks and convolutional layers. Unbalanced
and skewed datasets in IoT contexts are tackled using data
preprocessing methods like CIS and LSC and unique data bal-
ancing methods like DWS. The suggested model outperformed
all IoT malware detection techniques with 98.9% accuracy. Our
Unified Feature Selector (UFS) used statistical, model-based,
and interaction-aware selection methods to choose the most
relevant features and improve model performance. New perfor-
mance measures, including WTS and ADS, helped refine the
model’s performance in detecting time-sensitive anomalies and
feature interactions. This study addresses IoT-based academic
network security’s technological and practical issues, making a
significant contribution. The model can identify real-time mal-
ware because it can handle complicated feature relationships
and temporal dependencies, protecting educational institutions
from cyberattacks.

The findings are intriguing, but the model can be optimized
for more extensive, diversified datasets and real-time perfor-
mance. Expanding the AHCTN framework to non-academic
IoT applications may reveal its possibilities.
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