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Abstract—To maintain efficiency and continuity in Industry
4.0, intelligent manufacturing systems use enhanced problem de-
tection and condition monitoring. Existing models typically miss
uncommon and essential errors, causing expensive downtimes
and lost production. ResXEffNet-Transformer (RXET), a hybrid
deep learning model, improves defect identification and pre-
dictive maintenance by integrating ResNet, Xception, Efficient-
Net, and Transformer-based attention processes. The algorithm
was trained on a five-year Texas industrial dataset using IoT-
enabled gear and digital twins. To manage data imbalances and
temporal irregularities, a strong preprocessing pipeline included
Dynamic Skew Correction, Temporal Outlier Normalization, and
Harmonic Temporal Encoding. The Adaptive Statistical Evolu-
tionary Selector (ASES) optimized feature selection using the
Stochastic Feature Evaluator (SFE) and Evolutionary Divergence
Minimizer (EDM) to increase prediction accuracy. The RXET
model beat traditional methods with 98.9% accuracy and 99.2%
AUC. Two new performance metrics, Temporal Fault Detection
Index (TFDI) and Fault Detection Variability Coefficient (FDVC),
assessed the model’s capacity to identify problems early and
consistently across fault kinds. Simulation findings showed the
RXET’s superiority in anticipating uncommon but essential
errors. Pearson correlation (0.93) and ANOVA (F-statistic: 8.52)
validated the model’s robustness. The sensitivity study showed
the best performance with moderate learning rates and batch
sizes. RXET provides a complete, real-time problem detection
solution for intelligent industrial systems, improving predictive
maintenance and addressing challenges in Industry 4.0, digital
twin technology, IoT, and machine learning. The proposed RXET
model enhances operational reliability in intelligent manufactur-
ing and sets a foundation for future advancements in predictive
analytics and large-scale industrial automation.

Keywords—RXET; fault diagnosis; intelligent manufacturing;
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I. INTRODUCTION

Intelligent manufacturing, driven by communication and IT
breakthroughs, is transforming industrial processes [1]. Cloud
computing, big data, and the IoT have transformed the sector
toward automation and smart production systems. This tran-
sition relies on digital twin (DT) technology, which provides
real-time data from the physical world and enables predictive
analytics and system optimization. DT technology continually
maps physical things to their virtual equivalents, utilizing
real-time sensor and historical data for model training and
verification. This constant data flow allows the virtual model
to identify possible problems and transmit feedback to the

physical system for remedial measures, improving production
line efficiency and fault detection. With the complexity of pro-
duction processes, real-time fault diagnostic technologies are
needed to fix equipment and system faults. Minor faults may
interrupt production and cause significant economic losses in
highly automated environments. Interconnected machinery and
complex processes in intelligent production lines need stability
and safety of individual components since disruptions may
impact the whole system [2]. Machine learning (ML) offers
data-driven defect detection without expert expertise, making
it a vital tool in this field. Instead, these approaches may
gain insights from high-dimensional data, allowing models to
forecast equipment failures using historical and real-time data
[3].

Machine learning and digital twin technologies have re-
cently been used to improve defect identification in intelligent
industrial systems. Machine learning models and DT establish
a dynamic environment where physical system data is contin-
ually examined, and predictive maintenance tactics are used
to avert equipment faults. Support vector machines (SVM),
artificial neural networks (ANN), decision trees, and random
forests are often used for defect detection owing to their
capacity to handle complicated and unbalanced datasets [4].
Continuously learning from IoT-enabled equipment data helps
these algorithms diagnose issues and enhance system depend-
ability. Ensemble learning is a breakthrough in this discipline.
Ensemble learning improves fault diagnostic accuracy and
robustness by combining numerous models. Ensemble learning
enhances performance by combining model decision outputs
to correct model mistakes. Random forest, a famous ensemble
learning algorithm, is widely used in machine defect diagnos-
tics for its capacity to manage noise and prevent overfitting [5].
Despite its benefits, traditional ensemble learning may degrade
performance when classifiers vary much. Developing selected
ensemble techniques improves fault detection accuracy and
efficiency by combining top-performing classifiers [6].

Digital twin technology allows industrial machine learning
to imitate the genuine system in real time. Data transfer,
VMware, and the actual thing make a digital twin. Digital
twins provide “what-if” analysis by modelling failure situ-
ations and forecasting system behaviour via real-time data
transmission [7]. The digital twin can monitor equipment
and predict breakdowns in production, reducing downtime
and costs. Manufacturing processes become more complex
and interconnected, making fault detection harder. Traditional
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machine-level fault detection identifies motor and sensor is-
sues. Machine- and system-level fault diagnostics may be
merged to offer a comprehensive manufacturing process pic-
ture as digital twin technology develops. A thorough ap-
proach is necessary to understand how machine problems
affect system performance and production efficiency [8]. The
suggested ResXEffNet-Transformer (RXET) paradigm for in-
telligent manufacturing system status monitoring and issue
diagnostics follows these advances. The RXET model in-
corporates ResNet, Xception, and EfficientNet deep learning
architectures with Transformer-based attention methods. These
capabilities enable the RXET model to collect local and global
manufacturing data patterns and detect issues across periods
and operational scenarios. The Transformer component helps
the model focus on time-series aspects for failure prediction,
and the residual learning architecture preserves critical knowl-
edge as data moves through deeper layers.

Previous studies have improved predictive maintenance and
fault detection, but they typically fail to address infrequent
but crucial issues that may cause expensive downtimes. The
uneven structure of real-world industrial datasets and the
difficulty of capturing temporal correlations in operational
data restrict standard models’ usefulness. Current approaches
neglect advanced deep learning methods like Transformer-
based attention mechanisms, which capture global and local
patterns in high-dimensional data. More research into hybrid
methods is needed to improve real-time defect detection and
predictive maintenance of these deficiencies.

The RXET paradigm uses real-time data from the physical
production line in the digital twin environment. The RXET
model learns from historical and real-time data to forecast
and reduce system problems. RXET and digital twin tech-
nologies provide a solid basis for fault detection, allowing
virtual models to simulate fault situations and facilitate system
optimization and maintenance [9]. Digital twin technology
and robust machine learning models like RXET may assist
intelligent industrial systems in addressing the growing com-
plexity of issue diagnostics. Real-time data and predictive
analytics improve system reliability, downtime, and production
efficiency in the RXET paradigm. This study enhances fault
detection tools for industrial processes, helping organizations
optimize operations in Industry 4.0.

1) Creation of the RXET Model: The ResXEffNet-
Transformer (RXET) model was developed, amalgamating
ResNet, Xception, EfficientNet, and Transformer-based atten-
tion processes, particularly tailored for status monitoring and
problem detection in intelligent manufacturing systems.

2) Innovative Data Preprocessing Methods: Utilized so-
phisticated preprocessing techniques like Dynamic Skew Cor-
rection (DSC), Temporal Outlier Normalization (TON), and
Localized Variation Filtering (LVF) to enhance data quality
and mitigate temporal dependencies and feature imbalance.

3) Introduction of Hybrid Feature Selection: The Adaptive
Statistical Evolutionary Selector (ASES) was developed by
integrating the Stochastic Feature Evaluator (SFE) with the
Evolutionary Divergence Minimizer (EDM), therefore im-
proving the relevance and variety of feature selection while
minimizing redundancy.

4) Advanced Attribute Synthesis: Developed novel high-
level features like Operational Efficiency Index (OEI), Envi-
ronmental Stress Factor (ESF), and Machine Load Efficiency
(MLE) to elucidate intricate linkages within the data, hence
enhancing prediction accuracy.

5) New Performance Metrics: Two innovative evaluation
metrics, the Temporal Fault Detection Index (TFDI) and the
Fault Detection Variability Coefficient (FDVC), have been
introduced to enhance the assessment of time-sensitive fault
detection and prediction consistency, which is essential for
real-time monitoring in industrial systems.

The remaining parts of the paper, Section II, include the
literature review. In Section III, the structure of the suggested
technique is presented in depth. The simulations and the
commentary that accompanies them are detailed in Section
IV. Discussion is given in Section V and finally, the paper is
concluded in Section VI.

II. RELATED WORK

Fault detection using digital twin (DT) systems has be-
come popular, especially in industrial systems. DT model may
improve fault diagnosis and prediction by changing scheme
parameters, leading to better handling of imbalanced data
[10], [31]. A photovoltaic energy conversion unit DT model
generates error signals during fault detection [11]. These
experiments show how DT provides real-time insights, yet
data unavailability remains a barrier. Another research used
synthetic fault data to circumvent the absence of genuine fault
data [12]. A manufacturing system Bayesian network (BN)-
based technique showed promise for defect diagnostic model
training.

Machine learning (ML) is another hot topic in defect
detection. Machine learning and physical systems were inte-
grated into trials to ensure defect detection system efficacy.
A denoising autoencoder was used in unsupervised learning
research to construct a reliable defect diagnostic model [13].
Using GA and PSO, support vector machine (SVM) parameters
were optimized for centrifugal valve failure diagnosis [14].
Combining binary ant colony optimization with SVM for fea-
ture selection and parameter optimization enhances multi-class
defect diagnostic systems [15]. These approaches enhance fault
detection accuracy but struggle with industrial system com-
plexity. Also improving is DT-based predictive maintenance.
Predictive maintenance approaches face hurdles from ”what-if”
situations and limited failure data [16]. Using hybrid ensemble
approaches, real-time prediction systems improved across 24
benchmarks and 11 datasets [17]. Combining numerous models
enhances system performance, as seen below. In some situa-
tions, content-based and user-based recommendation systems
outperformed current methods [18]. Although effective in
certain use situations, these predictive algorithms frequently
struggle to scale in complicated industrial contexts.

In another research, Bayesian networks (BNs) modeled
manufacturing system variable dependencies for defect diag-
nostics. Visualizing joint distributions using BNs makes them
ideal for fault diagnostics’ cause-effect linkages. Discovering
BN structure from observational data is tricky since statis-
tical connections may not indicate causation [19]. Different
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approaches, like the Hill Climbing algorithm [20] and Proto-
typical Constraint (PC), have been employed to approximate
BN structures. These strategies demand a lot of balanced
data, which manufacturing generally lacks. Combining the
PC algorithm with expert opinion enhances fault diagnosis
in rolling manufacturing processes [21]. Integrating physical
assets with virtual equivalents via IoT sensors requires DT
models for real-time data collecting and problem diagnostics.
Recent work has expanded DT in predictive maintenance. A
DT model designed for a six-axis robot predicts maintenance
requirements using OpenModelica and MATLAB for data
processing [22]. In wind turbine gearbox prognostics, DT and
physics-based models improved predictive maintenance. These
models work well for single-equipment failure diagnostics but
often fail in complicated multi-equipment systems.

They limited DT applications in multi-equipment systems.
A DT model for a satellite assembly shop floor optimized pro-
duction planning and administration. Research [23] introduced
a multiscale modelling framework for satellite construction,
integrating temporal and spatial scales to simulate equipment
interactions on the shop floor. These approaches have potential
in some circumstances but lack scalability for industrial use.
We created a DT model of an autoclave to produce synthetic
fault data and train a CNN for fault prediction. DT may
improve machine learning models by generating artificial data.
Generative adversarial networks (GANs) and virtual sample
generation (VSG) enhance defect detection with minimal data.
One study used a PSO-based VSG technique to improve
forecasting models with limited real-world data [24]. Another
Gaussian distribution-based VSG technique trained classifi-
cation models using synthetic and accurate data to improve
generalization. Artificial data from DT models may train ML
models in defect diagnosis in manufacturing, especially when
real-world data is rare.

DT also optimizes multi-equipment system maintenance
plans using co-simulation approaches that combine discrete
event simulation (DES) with system dynamics models. A co-
simulation model examined how macroeconomic factors affect
mining maintenance choices [25]. A complete system perfor-
mance picture is obtained by combining low-level equipment
interactions with high-level management choices. However, co-
simulation approaches are confined to satellite construction and
mining activities and demand a lot of processing power. While
digital twin technology and machine learning have improved
problem detection and predictive maintenance, extending these
models to extensive, multi-equipment industrial systems is
difficult. Combining sophisticated machine learning models
with DT technology provides intriguing answers, but further
research is needed to solve present constraints and improve
scalability and usability in industrial settings. The literature is
presented in a summarized way in Table I.

Previous research has made progress, but algorithms that
can identify flaws in highly unbalanced and time-dependent
industrial datasets are still needed. Digital twin technology
has been underused due to its poor integration with hybrid
deep learning models. Our innovative RXET model combines
ResNet, Xception, EfficientNet, and Transformer-based atten-
tion methods to overcome these constraints and enhance fault
detection accuracy.

III. PROPOSED METHOD

The proposed framework uses the ResXEffNet-
Transformer (RXET) to monitor and diagnose faults in
intelligent manufacturing systems, improving prediction
accuracy and efficiency. Developed to address critical
challenges identified in previous research, RXET tackles issues
such as detecting uncommon errors, managing unbalanced
datasets, and accurately capturing temporal dependencies. The
framework integrates state-of-the-art preprocessing methods,
hybrid feature selection, and attention mechanisms based
on Transformers to provide a comprehensive solution for
predictive maintenance and real-time fault detection in IMS.
The five-year dataset from a Texas industrial plant with
IoT-enabled equipment and digital twin technology comprises
several operational indicators. Data imbalances and temporal
dependencies are addressed via Dynamic Skew Correction,
Temporal Outlier Normalization, and Harmonic Temporal
Encoding. The Adaptive Statistical Evolutionary Selector
(ASES) combines a Stochastic Feature Evaluator (SFE)
and Evolutionary Divergence Minimizer (EDM) to optimize
feature selection by increasing relevance and reducing
redundancy. Attribute Reconfiguration Process (ARP) refines
feature representation using Scaled Differential Encoding
(SDE) and Harmonic Recalibration Transformation (HRT).
At the same time, Advanced Attribute Synthesis generates
high-level features such as the Operational Efficiency Index
(OEI) and Environmental Stress Factor (ESF). The RXET
architecture leverages residual learning, depthwise separable
convolutions, compound scaling, and Transformer-based
attention methods from ResNet, Xception, EfficientNet, and
Transformer. Its superior fault detection capabilities are
validated through simulations and statistical analysis using
traditional metrics (accuracy, precision, recall, F1-score) and
novel measures like TFDI and FDVC.

A. Dataset Description

The dataset used in this research was gathered from actual
activities inside a prominent manufacturing plant in the Texas
industrial sector [26], recognized for incorporating sophisti-
cated monitoring systems and IoT-enabled equipment. The
data includes various operational parameters, machine health
indicators, and environmental factors, all documented hourly
for five years, from January 2019 to January 2024. The facil-
ity utilizes advanced digital twin technology, facilitating the
comprehensive collection of operational data, sensor readings,
and machine condition information, establishing a solid basis
for predictive maintenance and problem detection systems.
Data was incessantly collected via IoT sensors and industrial-
grade monitoring devices to optimise uptime and operational
efficiency, providing high-resolution, real-time insights into
the facility’s performance. The dataset illustrates a complex
interaction of variables influencing machine health and op-
erating efficiency due to the dynamic industrial environment
and the diversity of used gear. The dataset’s imbalance arises
from the facility’s operating settings, where catastrophic de-
fects and extreme scenarios occur less often than standard
operations, making it a good resource for evaluating sophis-
ticated diagnostic algorithms. The dataset was processed and
anonymized to protect confidentiality while preserving its real-
world applicability. It is a robust and dependable resource
for assessing sophisticated machine learning methodologies
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TABLE I. LITERATURE REVIEW SUMMARY

Ref Technique Used Objective Achieved Limitations
[10] Digital Twin (DT) model with

scheme parameter update
Improved fault diagnosis and prediction by han-
dling imbalanced data

Data unavailability remains a challenge

[11] DT model for photovoltaic
energy conversion unit
(PVECU)

Real-time fault detection with error generation
during fault conditions

Limited applicability to energy systems

[12] Simulated data generation for
fault conditions using syn-
thetic fault data

Circumvented the absence of real fault data in
industrial systems

Simulation accuracy relies on the quality of gen-
erated data

[13] Denoising autoencoder for un-
supervised learning in ML

Developed a robust fault diagnosis model using
unsupervised learning

Lacks labeled data for validation, which can affect
results

[14] Genetic Algorithm (GA) and
Particle Swarm Optimization
(PSO) with SVM

Optimized SVM parameters for centrifugal valve
fault diagnosis

Complex parameter tuning in industrial systems

[15] Binary ant colony optimiza-
tion with SVM

Enhanced multi-class defect diagnosis systems by
optimizing feature selection

Computational complexity for large-scale systems

[16] Hybrid ensemble techniques
for predictive maintenance

Improved performance across 24 benchmarks and
11 datasets

Scalability issues in complex industrial environ-
ments

[18] Content-based and user-based
recommendation systems

Outperformed traditional methods in specific use
cases

Struggles with scalability in large-scale industrial
environments

[19] Bayesian Networks (BN) in
manufacturing systems

Modeled variable dependencies for effective de-
fect diagnostics

Complexity in discovering BN structure from ob-
servational data

[22] DT model for six-axis robot
using OpenModelica and
MATLAB

Improved predictive maintenance in single-
equipment systems

Difficult to scale to multi-equipment systems

[24] Virtual Sample Generation
(VSG) with PSO

Enhanced model forecasting performance with
limited data

Performance depends on the quality of synthetic
data

[25] Co-simulation (DES and sys-
tem dynamics) for mainte-
nance optimization

Examined how macroeconomic factors affect
multi-equipment maintenance decisions

Requires significant computational resources and
is limited to specific industries

in status monitoring and problem detection. Fig. 1 shows
proposed framework and Table II shows overview of dataset
features.

B. Data Preprocessing Steps

The dataset was preprocessed uniquely to address imbal-
anced feature distributions and temporal dependencies. The
Dynamic Skew Correction (DSC) approach fixes skewness
depending on data imbalance. The equation for correction is:

Y ′ =
Y − η

(δk)
(1)

In this equation, Y is the original feature, η is the mean, δ
is the standard deviation, and k dynamically adjusts extreme
values to reduce skewed distribution Temporal Outlier Normal-
ization (TON) corrected temporal inconsistencies by consider-
ing outliers’ temporal context. Determine this normalization:

Z ′
r =

Zr

Z̄r−m:r+m + β · θr−m:r+m
(2)

Zr represents the feature value at time r, Z̄r−m:r+m and
θr−m:r+m represent the mean and standard deviation across
m time steps, and β controls outlier sensitivity. Anomalies
are adjusted by temporal context. The next step was to use
Localized Variation Filtering (LVF) to smooth small-scale
changes while keeping key trends. This was done with:

W ′
j =Wj ·

(
1− λ · |Wj −Wj−1|

|Wj |

)
(3)

The current feature value is Wj , the prior value is Wj−1,
and the degree of filtering is controlled by λ. This approach
smooths slight swings while maintaining data trends. Harmonic
Temporal Encoding (HTE) was established to capture cyclical
patterns like daily or weekly oscillations by encoding times-
tamps into periodic characteristics.

HTEs = sin

(
2π · s
T

)
, cos

(
2π · s
T

)
(4)

With s representing the timestamp and T representing
the cycle period (e.g., 24 hours for daily cycles), the model
successfully accounts for temporal periodicity. Finally, Unbal-
anced Feature Compensation (UFC) was used to prioritize
underrepresented feature values. The procedure is explained
by:

Q′
v = Qv ·

(
1 + γ · 1

hv

)
(5)

Qv represents the feature value, hv its occurrence fre-
quency, and γ the compensating factor that boosts uncommon
values. Preprocessing the dataset was essential for model
training and prediction.
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TABLE II. DATASET FEATURES OVERVIEW

S.No Features Short Description S.No Features Short Description
1 Vibration Level Sensor readings for machine

vibrations
19 Machine Health Index Overall machine health status

2 Temperature Readings Recorded temperature values
from machines

20 Failure Mode Indicators Binary indicators of potential
failure modes

3 Pressure Data Pressure readings captured
from machines

21 Maintenance Logs Maintenance events logged

4 Acoustic Signals Sound level data captured
from machines

22 Previous Fault Occurrences Historical fault occurrences in
the machine

5 Humidity Levels Humidity data near machinery 23 Predictive Maintenance
Scores

Predictive metrics for required
maintenance

6 Motor Speed Rotational speed of motors 24 Component Degradation In-
dex

Index representing component
wear and degradation

7 Torque Data Torque readings from ma-
chine motors

25 Real-time Performance Index Performance level of machin-
ery in real-time

8 Energy Consumption Energy usage of machinery 26 Machine Start/Stop Events Binary log of machine start or
stop events

9 Production Rate Rate of production during op-
eration

27 Downtime Incidents Logs of machine downtime
occurrences

10 Tool Wear Rate Wear and tear rate of machine
tools

28 Fault Trigger Timestamps Timestamps for triggered
faults

11 Machine Utilization Rate Utilization percentage of ma-
chine capacity

29 Controller Setpoints Target values set by the ma-
chine controller

12 Cycle Time per Operation Time taken per operational cy-
cle

30 Actual vs Setpoint Values Difference between target and
actual values

13 Idle Time Time when machine is idle 31 Alarm Trigger Data Binary indication of alarms
triggered

14 Machine Load Percentage Percentage of machine load
during operations

32 Repair Logs Logs of machine repairs con-
ducted

15 Ambient Temperature Ambient temperature around
the machine

33 Spare Part Usage Amount of spare parts used in
maintenance

16 Humidity Humidity levels in the facility 34 Anomaly Scores Score indicating deviation
from normal operation

17 Air Quality Index Air quality measurements in
the facility

35 Fault Probability Probability score of potential
faults

18 Machine Health Index Overall health status of the
machine

36 Operator Shift Data Data of operator shifts during
operations

C. Feature Selection Process

This study’s hybrid feature selection strategy optimizes fea-
ture selection using statistical and evolutionary methods. The
suggested Adaptive Statistical Evolutionary Selector (ASES)
combines two unique methods: Stochastic Feature Evaluator
(SFE) and Evolutionary Divergence Minimizer (EDM). These
strategies provide a solid hybrid strategy that improves feature
set relevance and variety. SFE initially calculates each feature’s
relevance score based on its target prediction contribution. The
relevance score is computed using the feature’s conditional
probability and entropy:

Rx =
P (T |X) · ψ(X)

τ(X) + δ
(6)

P(T—X) is the conditional probability of the target T given
the feature X , ψ(X) is the entropy, τ(X) is its standard
deviation, and δ is a tiny constant to avoid division by zero.
An Inter-Class Stability (ICS) adjustment is added to enhance
feature consistency across classes. The expression is:

ICSx =
1

1 +
∑C

c=1
νc(X)
X̄c

(7)

The standard deviation of feature X within class c is
νc(X), the mean of feature X for class c is X̄c, and the number
of classes is C The final relevance score after this change is:

R′
x = Rx · ICSx (8)

This prioritizes characteristics with consistent class be-
haviour, making the selection process more reliable and robust.
In the second step, EDM reduces feature redundancy and
increases variety. EDM picks features repeatedly using a fitness
function that balances relevance and redundancy after SFE
ranks. Definition of fitness score:

Gy = R′
y − γ ·

n∑
z=1

ρ(Yy, Yz) (9)

Gy represents feature fitness, R′
y represents adjusted rele-

vance from SFE, ρ(Yy, Yz) represents the correlation between
feature y and previously selected feature z, and γ regulates
relevance-correlation trade-off. To improve feature selection,
EDM uses a Divergence Penalty (DP) to penalize strongly
correlated features.
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Fig. 1. Proposed framework.

DP = ζ ·

(
n∑

z=1

ρ(Yy, Yz)
2

)
(10)

where ζ represents a penalty factor. The ultimate fitness
score for feature y, including the penalty, is:

G′
y = Gy −DP (11)

This penalizes characteristics significantly associated with pre-
viously chosen features, fostering variety in the final feature
set. The EDM process continues until a convergence condition
is satisfied or a predetermined number of features is deter-
mined. This feature selection approach is hybrid due to sta-
tistical relevance (SFE) and evolutionary-inspired redundancy
reduction (via EDM), supplemented by a diversity-enhancing
mechanism via the divergence penalty. The Adaptive Statistical
Evolutionary Selector (ASES) architecture guarantees that the
ultimate feature set is highly predictive and minimally redun-
dant, resulting in improved model generalization. Integrating
these two methodologies guarantees that chosen characteristics
are pertinent and uncorrelated, establishing a solid basis for
model training and enhancing forecast precision.

D. Advanced Attribute Synthesis

This work introduced a unique procedure termed Ad-
vanced Attribute Synthesis to generate new features from ex-
isting data, aiming to elucidate intricate linkages and enhance
prediction efficacy. Multiple advanced features were produced.
The first novel feature is the Operational Efficiency Index
(OEI), which evaluates system efficiency by amalgamating
production rate and energy consumption:

OEI =
Prate

Econs + α
(12)

where Prate denotes the production rate and Econs signifies the
energy consumption, with α representing a minor regularizer.
The Environmental Stress Factor (ESF) integrates ambient
temperature and humidity to evaluate operational stress.

ESF = Tambient ·Henv (13)

where Tambient represents ambient temperature and Henv

humidity. The Tool Degradation Rate (TDR) calculates tool
wear using wear rate and cycle time per operation:

TDR =Wtool · Ccycle (14)

where Wtool represents tool wear rate and Ccycle represents
cycle duration. Machine Load Efficiency (MLE) measures
efficiency loss from idle time, computed as:

MLE =
Lmachine

1 + Itime
(15)

where Lmachine is the machine load percentage and Itime

is idle time. Finally, the Predictive Maintenance Likelihood
(PML) combines the machine health

E. Attribute Reconfiguration Process

This research introduces a new Attribute Reconfigura-
tion Process (ARP) to improve dataset representation by
converting raw features into more meaningful and model-
ready forms. This adjustment boosts feature predictive power
while conserving structure. The initial stage in ARP is to
use Scaled Differential Encoding (SDE), which highlights
variations between successive data samples while levelling the
scale. The definition is:

SDEt =
At −At−1

1 + |At−1|
(16)

where At is the current feature value and At−1 is the prior
value. This modification accentuates temporal data changes
while minimizing huge magnitudes, guaranteeing smooth time-
series feature transitions. Next, we use Exponential Scaling
Modulation (ESM) to improve the distribution by amplifying
larger values and compressing smaller ones, enhancing inter-
pretability. We define ESM as:

ESM(B) = sign(B) · log(1 + γ|B|) (17)
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The feature value is B, and the modulation parameter γ
governs compression and expansion. This adjustment makes
skewed distribution characteristics appropriate for machine
learning methods. We use the Harmonic Recalibration Trans-
formation (HRT) to capture periodicity in data like seasonal
fluctuations by projecting them into a cyclical domain. The
transition is:

HRT (Ct) = sin

(
2πCt

Tc

)
, cos

(
2πCt

Tc

)
(18)

where Tc represents the cyclical behavior period and Ct

represents the feature value at time t. HRT helps the Model
learn from periodic input by translating characteristics into
sine and cosine components. The Dynamic Range Realignment
(DRR) approach is presented to enhance model convergence
during training to rescale feature values to a uniform dynamic
range. The DRR formula is:

DRR(D) =
D −min(D)

max(D)−min(D)
(19)

min(D) and max(D) represent the least and maximum
values of the feature D. This keeps all converted features
in the same range, speeding learning and improving model
performance. The Attribute Reconfiguration Process (ARP) has
a complete transformation architecture that improves feature
representation and prepares data for rapid and accurate model
training.

F. Classification Model: ResXEffNet-Transformer (RXET)

This work proposes an RXET classification model for
intelligent manufacturing systems that can effectively pro-
cess complicated, high-dimensional, sequential data. Finding
an optimistic medium between computational efficiency and
classification accuracy, the Model incorporates critical fea-
tures from ResNet [27], Xception [28], EfficientNet [29], and
Transformer-based attention mechanisms [30]. Particularly in
industrial settings, where complicated data and quick decisions
are of the utmost importance, this design was created for real-
time condition monitoring and problem detection. Fig. 2 is the
RXET layered design.

Fig. 2. Proposed framework.

At the core of RXET is the residual learning framework,
inspired by ResNet, which addresses the vanishing gradient

problem using identity mappings that allow gradients to prop-
agate through deeper layers without degradation. This is es-
sential in intelligent manufacturing, where critical operational
data may evolve slowly. The residual block is formulated as
follows:

M = H(V, {Rk}) + V (20)

H(V, {Rk}) is the residual function that the network learns
with parameters {Rk , and M is the output, where V is the
input to the residual block. Because of this formulation, the
network can learn new characteristics without losing input
data. Here is the updated gradient for this block:

∂J
∂V

=
∂J
∂M

(
1 +

∂H(V, {Rk})
∂V

)
(21)

where J is the loss function. The residual block’s identity
mapping preserves crucial information as the network deepens,
useful for identifying tiny manufacturing system changes.
Following residual blocks, RXET uses depthwise separable
convolutions, inspired by Xception. Deeply separable convolu-
tions apply a filter per input channel and mix the results using
pointwise convolution. A mathematical representation is:

N = D(Zq ∗ V ) + Zp ∗ V (22)

where Zq is the depthwise filter, Zp is the pointwise filter,
∗ is the convolution operation, and N is the output. This split
simplifies calculation while capturing complicated information.
Computing efficiency advantage is measured by:

Cdepthwise

Cstandard
=

1

Lf + Lc
(23)

where Cdepthwise represents depthwise convolution cost,
Cstandard represents standard convolution cost, Lf represents
filters, and Lc represents input channels. Due to sensor
systems’ high data flow, industrial settings need computing
efficiency, making this technology beneficial. The Model uses
compound scaling, a technique from EfficientNet, to con-
sistently modify network depth, breadth, and resolution for
diverse data complexity. We define scaling as:

d′ = λu · d0, l′ = µu · l0, s′ = νu · s0 (24)

where d′, l′, s′ denote scaled depth, width, and resolution, λ,
µ, and ν are scaling coefficients, and u is the scaling factor.
The initial depth, width, and resolution parameters are d0, l0,
and s0. Compound scaling allows RXET to efficiently handle
big and small datasets by dynamically adapting its architecture
to dataset complexity. Results in resource usage:

Cscaled = C0 · λu1 · µu2 · νu3 (25)

Where C0 is the initial computing cost, and u1 u2 andu3 are
the scaling factors for depth, width, and resolution. Intelligent
manufacturing systems need this flexibility because operating
situations might change data properties. A Transformer-based

www.ijacsa.thesai.org 1270 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

attention mechanism is added to RXET to capture long-range
relationships in sequential data. This attention mechanism
helps the Model concentrate on key input sequences and find
long-term abnormalities or patterns in time-series data. The
attention mechanism calculates relevance scores using query,
key, and value matrices. Calculating attention scores:

P = softmax
(
QRT

√
dr

)
R (26)

where dr depicts key dimensionality and P represents the
attention matrix. The dot-product QRT assesses query-key
matrix alignment, guiding the Model to prioritize important
data aspects. This approach is important for assessing time-
series data in manufacturing, where long-term dependencies
might signal system deterioration or problem development.

Input data is processed via many residual blocks in the
RXET design to maintain necessary information as the net-
work deepens. Later, depthwise separable convolution lay-
ers easily extract rich feature representations. The Model
adapts to dataset complexity using compound scaling. Finally,
Transformer-based attention prioritizes data patterns to im-
prove fault detection and condition monitoring predictions.
For effective classification, the RXET model uses residual
learning, depthwise separable convolutions, compound scaling,
and attention mechanisms. Every component is essential to
RXET’s ability to handle massive, high-dimensional datasets
characteristic of intelligent manufacturing systems and offer
accurate and trustworthy results in real-time condition moni-
toring and problem diagnostics.

G. Performance Evaluation Metrics

Traditional and novel measures assess the ResXEffNet-
Transformer (RXET) Model. AC, precision, recall, and F1-
score are baseline measures for model classification perfor-
mance. Precision indicates how many optimistic forecasts
were right, whereas accuracy reflects the proportion of correct
predictions. Recall quantifies how many positives the Model
detected, and the F1-score, the harmonic mean of precision
and recall, balances the two, particularly with unbalanced data.
Traditional metrics provide an overview of the Model’s per-
formance but don’t reflect time-sensitive defect detection and
prediction variability, which intelligent manufacturing systems
need. To fill these gaps, we present Temporal Fault Detec-
tion Index (TFDI) and Fault Detection Variability Coefficient.
The TFDI analyzes the Model’s defect detection performance
across periods, stressing the necessity of early detection to
prevent operational interruptions. We define TFDI as:

TFDI =
1

T

T∑
k=1

(
TPk

TPk + FNk + η

)
· exp (−ρ · k) (27)

T represents the number of time windows, TPk and FNk

represent true positives and false negatives, and ρ is a decay
factor that prioritizes early detections. Division by zero is
prevented by the constant η. The exponential decay term
(exp(−ρ·k) prioritizes earlier fault identification, emphasizing
its relevance. The second new statistic, the Fault Detection

Variability Coefficient (FDVC), evaluates the Model’s con-
sistency in detecting fault types and fault pattern variability.
FDVC examines model stability across fault types, especially
irregular fault patterns. We define FDVC as:

FDV C =

∑M
m=1

(
1

nm

∑nm

i=1

∣∣Qim − Q̄m

∣∣)
M

(28)

In the equation, M represents the number of fault types,
n m represents the occurrences of fault type m, Q im rep-
resents the prediction score for the i-th instance, and Q̄ m
represents the mean prediction score. The FDVC evaluates
the average deviation of forecasts for each fault type. Lower
values indicate more consistent and trustworthy predictions.
Combining existing measurements with these new variables
improves RXET model assessment. Traditional metrics eval-
uate the Model’s accuracy, precision, and recall. In contrast,
TFDI and FDVC emphasize early detection and variability,
which is crucial for real-time defect monitoring and predictive
maintenance in intelligent industrial systems.

IV. SIMULATION RESULTS

To extensively test the RXET model, a high-performance
Dell Core i7 12th Gen system with an 8-core CPU and
32 GB of RAM was used. Python and the SPYDER IDE
were used to manage and perform the model trials. Several
essential classification model hyperparameters were fine-tuned
throughout the assessment to maximize performance. Model
training used the Adam optimizer, which has flexible learning
rate capabilities, enabling speedier convergence. The learning
rate was chosen at 0.001 0.001, which was ideal after numerous
trial trials, and the batch size was 64 to balance memory
efficiency and gradient estimate accuracy. These parameters
were carefully adjusted throughout the studies to maximize
the Model’s predictive capabilities, notably in defect diagnosis
and status monitoring in intelligent manufacturing systems.

Fig. 3. Distribution of fault diagnosis labels before and after data balancing.

Fig. 3 compares fault diagnostic label distribution before
and after data balancing. On the left, the “Before Data
Balancing” scenario has a severe fault category imbalance.
The data points are mostly “No Fault,” “Moderate Fault,”
and “Minor Fault,” with a few “Severe Fault” and “Critical
Fault.” This mismatch suggests that most observations reflect
normal or mild operating circumstances, skewing the dataset.
All fault diagnostic labels are evenly distributed in the “After
Data Balancing” graphic on the right. Each category—“No
Fault,” “Minor Fault,” “Moderate Fault,” “Severe Fault,” and
“Critical Fault”—has 3,000 data points. This balanced distri-
bution shows that strategies have been implemented to correct
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the dataset’s class imbalance, guaranteeing that the machine
learning model will be trained on an equally distributed col-
lection of errors, improving its capacity to identify uncommon
but significant defects. The balanced dataset ensures that the
Model is sensitive to less common but significant categories
like “Severe Fault” and “Critical Fault” without favouring “No
Fault” and “Moderate Fault.” Fault diagnostic activities need
this enhancement to identify infrequent but significant events to
preserve operational efficiency and avert system breakdowns.

Fig. 4. Machine operational behaviour and its relationship with energy
consumption and component degradation.

The association between machine operation, energy use,
and component deterioration is shown in Fig. 4. The first
left graphic shows machine utilization during and off hours
throughout seven days. Use peaks at work (9 AM–6 PM).
Industrial machine use rises during peak output and falls during
downtime or decreasing demand. Fault diagnostic category-
specific energy usage and component deterioration are shown
on the second right. Energy usage often degrades components
for predictive maintenance. Colour-coded fault categories in-
dicate serious difficulties when energy use and component
deterioration are high. Energy consumption affects machine
health since operating stress promotes wear and faults. Daily
operating cycles, energy consumption, and deterioration pat-
terns demonstrate machine performance in these two charts
for real-time operations and long-term maintenance.

Fig. 5. Machine utilization rate over a week.

Fig. 5 shows two complementary representations that pro-
vide insights into machine health and operation. The left
line plot represents the January 1–January 30, 2024 Machine
Health Index. The Machine Health Index indicates machine
status over 60–100 days. This chart may show continuous
performance, unexpected drops, and health recoveries. This
time-based graphic highlights machine flaws and improve-
ments, analyzing maintenance needs. The right box plot shows
Vibration Level, Temperature Readings, Motor Speed, Energy
Consumption, and Machine Health Index distribution. Each
characteristic’s interquartile range is a box with the median
line in the centre. Whiskers show data distribution, whereas

outliers are points. Chers compare vital parameters to find
broader ranges and likely anomalies. Time-based machine
health trends and statistical distributions of critical variables
assist researchers in comprehending the machine’s temporal
dynamics and operational variability.

Fig. 6. Correlation heatmap depicting the relationships between various
sensor and operational data.

The heatmap in Fig. 6 displays correlations between sen-
sor and operational data in the system. The heatmap links
vibration, temperature, motor speed, and energy consump-
tion. A 0.1–0.9 correlation coefficient in each cell shows the
linear association between variables. Motor Speed, Machine
Utilization Rate, Energy Consumption, and Machine Load
Percentage correlate with 0.8 or 0.9. Increasing these traits
may improve operational metrics. Smaller correlations (0.3
or 0.4) show linear relationships between attributes. Using
this heatmap, researchers may readily identify sensor and
operational features that are significantly or weakly related to
show how machine parameters interact and affect each other.
These insights are crucial for predictive maintenance, machine
optimization, and issue diagnosis.

Fig. 7. Feature importance of features.

Fig. 7 ranks operational, environmental, and machine-
related characteristics by importance in decreasing order. En-
ergy Consumption, Motor Speed, and Temperature Readings
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are at the top because they affect the Model’s performance or
system behaviour. Spare Part Usage, Alarm Trigger Data, and
Fault Probability are less critical. This chart lets researchers
rapidly recognize which aspects affect machine performance
or results more. Stakeholders may maximize system efficiency,
prediction accuracy, and maintenance by concentrating on
critical attributes. Ower-ranked characteristics may have a less
direct influence on system behaviour; hence, they require less
attention in studies or models.

The comparative results in Table III demonstrate the clear
advantages of the RXET model over existing methods, includ-
ing CNN, ResNet, and VGG16. The RXET model achieved
the highest accuracy (98.9%), AUC (99.2%), and F1-Score
(98.5%), significantly outperforming other approaches. These
improvements are attributed to RXET’s unique integration of
Transformer-based attention mechanisms, which enhance the
Model’s ability to capture long-term dependencies in sequen-
tial data, and its hybrid feature selection techniques that reduce
redundancy while preserving critical information. Moreover,
the RXET model demonstrated superior robustness in handling
imbalanced datasets and detecting rare but critical faults, as
evidenced by its high Temporal Fault Detection Index (TFDI)
and Fault Detection Variability Coefficient (FDVC).

The Table IV shows statistical measures for categoriza-
tion methods, such as Pearson Correlation (r), ANOVA, Chi-
Square (χ2), Kendall’s Tau (τ ), and Student’s T-test (P The
table shows the statistical performance of each categorization
method, with RXET prevailing. The proposed RXET has
the best Pearson correlation (0.93) and ANOVA F-statistic
(8.52) for model fit. The RXET has the highest Chi-Square
score (9.95), indicating varied differences. High Kendall’s Tau
(τ = 0.80) implies a strong rank correlation, while the Model’s
P-value (0.007) suggests statistical significance. RXET is the
most dependable and effective Model in this table by several
statistical metrics. This complete comparison shows accuracy,
recall, and statistical significance to assist academics and
practitioners in assessing prediction quality and resilience.

Fig. 8. Kodel’s learning process.

Fig. 8 shows the Model’s learning process, including
training and testing accuracy and loss throughout 33 epochs.
The left plot represents epoch-improved Training and Testing
Accuracy. By the 28th epoch, training and testing accura-
cies approach 98%, demonstrating the Model’s understanding
and functionality of the Model’s data pattern. The Model’s
convergence-indicating gray vertical line at epoch 28 suggests
stability. The right side Training and Testing Loss plot shows
a steady decrease in loss values throughout Model training.

Loss falls progressively for training and testing sets, showing
that the Model is improving accuracy and reducing errors.
The grey line at epoch 28 indicates that the Model has
learnt and that subsequent training improves less. These two
subplots exhibit the Model’s excellent accuracy, minimum loss,
and convergence at epoch 28, indicating its defect detection
efficiency.

Fig. 9. Model’s sensitivity analysis.

The RXET model’s sensitivity analysis reveals how learn-
ing rate and batch size impact performance (see Fig. 9).
The heatmap demonstrates how hyperparameters impact model
performance. Lower learning rates (0.001 0.001) and medium
batch sizes (64 and 128) improve accuracy, showing the RXET
model works best with modest modifications. Learning rates
over 0.1 diminish accuracy, especially with smaller or larger
batch sizes. Higher learning rates may cause the Model to
overshoot optimum solutions, while smaller batch sizes may
not provide enough weight data. Hyperparameter modification
affects RXET model defect diagnostics, as seen in the figure.
Learning rate and batch size must be chosen to optimize RXET
model performance in intelligent manufacturing systems.

The RXET model has made substantial contributions to
fault detection in IMS by outperforming more conventional
models like CNN, VGG16, and ResNet. Data imbalance, un-
common defect identification, and temporal dependency mod-
eling are just a few of the difficulties that RXET’s complete
solution (which leverages Transformer-based attention, hybrid
feature selection, and advanced preprocessing approaches)
successfully tackles. Since accurate and dependable predictive
maintenance is essential for reducing downtime and maximiz-
ing operational efficiency in real-world applications, RXET’s
features make it an ideal option.

V. DISCUSSION

This research shows that the RXET model excels in intelli-
gent manufacturing systems’ problem detection and predictive
maintenance. The RXET model outperformed CNN, ResNet,
and VGG16 with 98.9% accuracy, 99.2% AUC, and 98.5%
F1-Score. RXET’s real-time fault detection and operational
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TABLE III. PERFORMANCE EVALUATION OF RXET AND EXISTING MODELS

Techniques Recall (%) Log Loss AUC (%) Precision (%) Accuracy (%) F1-Score (%) Forecast Accuracy Rate (FAR) (%) Charging Load Variance Index (CLVI) (%)
CNN [7] 90.4 0.203 91.9 91.2 92.7 91.0 81.9 76.8
VGG16 [17] 92.3 0.189 93.1 92.8 93.6 92.6 83.5 77.1
KNN [13] 86.7 0.277 86.5 87.1 88.2 87.0 77.5 71.4
Decision Trees [9] 85.4 0.287 86.2 86.5 87.5 86.3 78.2 72.5
SVM [11] 88.2 0.243 89.4 88.5 89.8 88.4 79.9 73.8
DBN [19] 88.9 0.235 89.8 89.0 90.4 89.4 79.1 74.2
ResNet [21] 89.9 0.215 91.0 90.2 91.5 90.1 80.5 75.3
Proposed RXET 98.4 0.066 99.2 98.7 98.9 98.5 96.8 95.4

TABLE IV. STATISTICAL ANALYSIS ((F-STATISTIC) & P-VALUE)

Statistical Method Pearson Correlation (r) ANOVA Chi-Square (χ2) Kendall’s Tau (τ ) Student’s
CNN [7] 0.87 6.92 7.85 0.74 0.021
VGG16 [17] 0.90 7.93 9.30 0.77 0.011
Deep Belief Network [19] 0.76 6.38 7.38 0.70 0.016
SVM [11] 0.68 5.60 6.92 0.63 0.028
ResNet [21] 0.82 7.48 8.55 0.71 0.013
KNN [13] 0.64 5.07 6.40 0.57 0.034
Decision Trees [9] 0.63 4.95 6.25 0.56 0.041
Proposed RXET 0.93 8.52 9.95 0.80 0.007

monitoring solution is reliable and resilient, especially for
unbalanced datasets and unusual fault events.

The RXET model has broad applications. Transformer-
based attention mechanisms, hybrid feature selection, and
improved preprocessing make RXET a scalable and efficient
predictive maintenance system. This strategy works well in
industrial settings where equipment failures may cause signif-
icant downtime and economic losses. Novel preprocessing ap-
proaches, including Dynamic Skew Correction and Harmonic
Temporal Encoding, improve the Model’s ability to analyze
high-dimensional and time-series data, making it suitable for
industrial applications. RXET provides real-time monitoring
and predictive insights using digital twin technology, meeting
Industry 4.0 objectives.

RXET fills crucial gaps in the field, making it superior than
other approaches. Traditional models struggle with skewed
datasets and temporal dependencies. Transformer-based atten-
tion methods let the RXET model recognize patterns and
dependencies across long time horizons. Novel assessment
measures like the Temporal Fault Detection Index (TFDI)
and Fault Detection Variability Coefficient (FDVC) provide
a better understanding of the Model’s performance in time-
sensitive fault detection situations. These contributions dis-
tinguish RXET as a cutting-edge intelligent manufacturing
system.

Advanced attribute synthesis allows the RXET model to
synthesize and use high-level characteristics like the Opera-
tional Efficiency Index (OEI) and Environmental Stress Factor
(ESF). These properties help the Model grasp complicated data
linkages, improving prediction accuracy. Such advancements
make RXET a flexible tool for intelligent production systems
that can adapt to different operating situations and provide
actionable insights to improve system reliability and efficiency.
The RXET model performs well, although it has limits. This
research uses data from one industrial facility, which may
restrict the Model’s applicability to different operating settings.
RXET’s scalability to bigger and more varied datasets needs

additional study. Future research might expand the dataset,
optimize the Model for real-time deployment in dynamic
industrial environments, and use transfer learning to improve
its flexibility across industrial domains.

Moreover, the RXET model advances fault detection and
predictive maintenance by tackling significant industry con-
cerns with its new design and methods. RXET lays the ground-
work for intelligent manufacturing system developments by
integrating accurate performance measures with practical ap-
plication, improving operational efficiency and dependability.

VI. CONCLUSION

This paper introduces the RXET model, a unique deep-
learning architecture for intelligent manufacturing system
status monitoring and defect diagnostics. Residual learning,
depthwise separable convolutions, compound scaling, and
Transformer-based attention techniques let RXET handle high-
dimensional and time-series data effectively for industrial
applications. Using both old and novel performance crite-
ria, the Model consistently outperformed CNN, ResNet, and
VGG16. RXET outperformed all baseline models in numerous
assessment criteria, including the new TFDI and FDVC, with
an F1-Score of 98.5% and an AUC of 99.2%. Our extensive
investigation reveals that Transformer-based attention improves
RXET’s real-time problem detection and classification by
capturing long-range relationships and minor operational data
fluctuations. Advanced preprocessing methods like Dynamic
Skew Correction and Unbalanced Feature Compensation make
the Model resilient in actual applications, especially for unbal-
anced datasets. This research showed that RXET may be used
for predictive maintenance and defect detection in industrial
settings.

The research acknowledges limitations despite its impor-
tance. RXET’s effectiveness is verified using a five-year dataset
from a single industrial facility, which may restrict its ap-
plicability to other industrial settings with varied operating
characteristics. Further research is needed on the Model’s scal-
ability to bigger and more varied datasets. Optimizing RXET’s
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real-time deployment in highly dynamic industrial applications
might minimize computing overhead and preserve accuracy.
Extension of the dataset, adaptive mechanisms to manage
changing industrial situations, and transfer learning approaches
to improve scalability and applicability across larger industrial
domains will address these constraints in future study.
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