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Abstract—Virtual Assistants (VAs) are widely used in many
fields. Recently, VAs have been effectively applied in technical
drawing tasks, such as in Photoshop and Microsoft Word.
Understanding multi-intent commands in VAs poses a signifi-
cant challenge, especially when the language in query is low-
resource, like Vietnamese (no training dataset available for
technical drawing domain), which features complex grammar
and a limited domain of usage. In this work, we proposing
a three-step process to develop a voice assistant capable of
understanding multi-intent commands in VAs for low-resource
languages, particularly in responding to the SCADA Framework
(SF) for performing drawing tasks: (1) for the training dataset,
we developed a semi-automatic method for building a labeled
command corpus; applying this method to Vietnamese, we built
a corpus that includes 3,240 labeled commands; (2) for the multi-
intent command processing phase, we introduced a method for
splitting multi-intent commands into single-intent commands to
enable VAs to perform them more efficiently. By experimenting
with the proposed method in Vietnamese, we developed a VA that
supports drawing on SF with an accuracy of over 96%. With the
results of this study, we can completely apply them to SCADA
system products to support the automatic control of techinical
drawing operations in them as VAs.

Keywords—Vietnamese command corpus; chatbot; virtual as-
sistants; multi-intent command; artificial intelligence; technical
drawing; SCADA framework; build semi-automatic data; low-
resource languages

I. INTRODUCTION

Nowadays, virtual assistants (VAs) are widely used in daily
life, and the number of people using VAs has significantly
increased [11] for a few decades. This is because of its ability
to support organizations and individuals in doing their tasks in
various aspects and scopes, such as Google Assistant, Apple’s
Siri, Samsung’s Bixby and Microsoft’s Cortana. They can
operate on mobile phones and use sensors of the device to
better react to specific contextual information. Besides, VAs
such as Amazon Echo and Google Home can operate in smart
homes and help users fulfill various daily tasks [14].

Thanks to the rapid development of AI and information
technology areas, VAs will soon become increasingly intelli-
gent [12]. VAs have come a long way. In the past, VA only
focused on helping functions in textual form, but personal

*Corresponding authors.

assistants on mobile phones can now process natural language
and react in a human-like way. One challenge of the VA
problem is to develop their drawing capabilities, which means
that the user interacts with the VA to draw pictures in natural
language. This problem is difficult when implemented on rich-
resource languages because: (1) technical drawing field usually
has no training data and how to build a dataset that fully covers
common commands in the technical drawing domain; (2)
command utterances are often abbreviated and have incorrect
grammar, spoken. It is even more difficult when implemented
on languages with low resources and complex grammar, such
as Vietnamese.

In this work, we focus on solving the VA problem in two
aspects: the first studying how to build a high-quality training
data. The second is to efficiently handle multi-intent commands
in low-resource languages.

There are two approaches for solving the VA problem:
using Large Language Modles (LLMs) and the traditional
method (such as the Rasa* platform). We chose Rasa platform
for our proposed method because: (1) it could be controlling
and explaining when using the Rasa framework, this is an
important feature in technical drawing; (2) RASA has the
advantage of execution speed, so it is suitable for limited
hardware platforms, such as deploying on CPUs (but LLMs
need run on GPUs).

Our contribution is as follows:

1) Proposing a three-step process to develop a voice assistant
capable of understanding multi-intent commands in the
field of technical drawing.

2) Proposing the method of semi-automatic data building
and building the labeled Vietnamese command corpus,
which includes 3,240 commands. This corpus is shared
with the community.†

3) Proposing the method for splitting a multi-intent
command into single-intent commands so that the VA
can perform them more efficiently.

To the best of our knowledge, this is the first
comprehensive study of understanding intent-command

*https://rasa.com/
†https://github.com/HaHVU/VAVietnam
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for the drawing virtual assistant with Vietnamese
language.

The remainder of this paper is structured as follows: Sec-
tion II reviews related works on voice assistant architectures
and their advancements. Section III presents our proposed
method for addressing challenges in low-resource language
VAs. Section IV details our experimental setup, datasets, and
results, highlighting the effectiveness of our approach. Finally,
Section V concludes the paper and outlines future research
directions.

II. RELATED WORKS

VAs have become increasingly popular and have been
widely integrated into our daily lives. They respond to voice
commands and offer various functionalities, like scheduling
appointments, controlling smart home devices, and performing
web searches. Most VAs follow a common architecture. Firstly,
Speech Recognition module converts spoken commands to
text. Natural Language Understanding (NLU) module extracts
necessary information from the text. After that, Dialog man-
agement (DM) module determines the response action based
on the the information obtained from previous steps. Finally,
Natural Language Generation (NLG) module formulates a
response [9]. In recent years, the design of VAs has attracted
the attention of many researchers.

Matthew B. et al. [10] have introduced to readers the
concept of voice assistants and their growing presence in daily
life. It aims to provide a basic understanding of these virtual
helpers, including:

• What they are: Software agents that can understand spo-
ken language and respond through synthesized voices.

• How they work: Briefly explain the technology behind
speech recognition and response generation.

• What they can do: Common functionalities like setting
alarms, playing music, controlling smart home devices,
and answering questions.

By introducing these key points, the work ideally empow-
ers readers with foundational knowledge of voice assistants
and their potential applications.

Timo Strohmann et al. [26] provided guidelines for design-
ing in-vehicle VAs that offer a clear and structured overview
of what designers have to consider when designing an in-
vehicle VA for a convincing user experience. They designed
guidelines based on the existing literature on the requirements
of assistant systems and on the interviewing results of experts.
In order to demonstrate the applicability of the guidelines, they
developed a virtual reality prototype that considered the design
guidelines. In a user experience test with 19 participants,
they found that the prototype was easy to use, allowed good
interaction, and increased the users’ overall comfort.

Anxo Pérez et al. [18] presented the design of an assistant
that is developed with open-source and widely used compo-
nents. They proposed an end-to-end process, from information
gathering and processing to visual and speech-based interac-
tion.

Marco Brambilla et al. [5] proposed a VA that allows
model building using voice commands. They describe three

alternative strategies that apply voice-based assistance at three
levels: a fully guided strategy; a template-based strategy; and
an element-based strategy to demonstrate the generality of
the approach. They describe their implementation experience
with developing a design assistant that incorporates the three
strategies described above for OMG’s IFML (Interaction Flow
Modeling Language) in the context of user interaction design,
including integration with the Amazon and Alexa VA.

Sanju Ahuja et al. [1] made arguments in which designers
and policymakers need to be aware of the ethical side of
the future of VAs and systematic frameworks are required to
aid their moral imagination. They proposed a framework that
helps designers imagine potential ethical concerns pertaining
to users’ autonomy. They demonstrated the usefulness of
the framework that they proposed by showing how existing
ethical concerns can be situated within the framework. They
also used the framework to imagine ethical concerns with
emerging VA technologies. This framework can aid in the
systematic identification of autonomy-related ethical concerns
within human-computer interactions.

Piñeiro-Martı́n et al. [17] presented an extension of their
previous work. They analyze the current regulatory framework
for AI-based VAs in Europe and delve into ethical issues,
examining the potential benefits and drawbacks of integrat-
ing large language models (LLMs) into VAs. Based on the
analysis, their paper argues that the development and use
of VAs powered by LLMs should be guided by a set of
ethical principles that prioritize transparency, fairness, and
harm prevention. It presents specific guidelines for the ethical
use and development of this technology, including recommen-
dations for data privacy, bias mitigation, and user control.
By implementing these guidelines, the potential benefits of
visual assistants powered by LLMs can be fully explored
while minimizing the risks of harm and ensuring that ethical
considerations are at the forefront of the development process.

For the technical drawing field: Dries Van Daele et al. [29]
presented a software tool that is able to interpret different parts
of a drawing and translate this information to allow automated
reasoning and machine learning on a huge database of tech-
nical drawings. To achieve that, the proposed the method that
automatically learns a parser capable of interpreting technical
drawings with Using limited interaction from the expert. Their
method uses both neural networking and symbolic methods.
Neural network methods to interpret visual images and recog-
nize parts of two-dimensional drawings. Symbolic methods to
process relational structures and understand data encapsulated
in complex tables contained in technical drawings.

Rodrigo Pereira et al. [15] systematically reviewed the
applications of VAs in the context of Industry I4.0, discussed
the design principles of technical assistants, and identified the
characteristics, services, and limitations associated with the use
of VAs in production environments.They found that Virtual
Assistants offer Physical and Virtual Assistance. Virtual As-
sistance provides real-time contextualized information mainly
for support, while Physical Assistance is oriented toward task
execution. In terms of services, applications include integration
with legacy systems and static information processing. Limi-
tations of the application include concerns about information
security and adaptation to noisy and unstable environments.
They argue that the future should focus on expanding the
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scope of research to provide more significant conclusions and
research capabilities with new AI models and services

Published works have focused on reviewing and address-
ing various aspects of the VA problem to make VAs more
user-friendly and functional. However, these approaches face
significant limitations when applied to low-resource languages
due to the lack of training data. Additionally, little attention
has been given to handling multi-intent commands, and studies
on VAs in the field of technical drawing are particularly
scarce. This paper seeks to address these gaps by tackling the
challenges of limited training data, enabling VAs to perform
technical drawing tasks, and facilitating interaction with users
in low-resource languages. Notably, this is the first study
to explore multi-intent command recognition for technical
drawing in Vietnamese.

III.OUR PROPOSED METHOD

The challenge of the VA problem in low-resource lan-
guages is the lack of training data and an efficient solution
in handling multi-intent commands. To overcome these chal-
lenges, we propose a three-step process, as follows:

• Phase 1: Build semi-automatic data for training and
testing.

• Phase 2: Choose the good model for training VA. This
phase will make a VA that takes single-intent commands
from the user in the input and outputs the JSON file that
contains information about their requirements.

• Phase 3: Generate the JSON file. In this phase, the multi-
intent command from the user is split into single-intent
commands before being fed into the VA to get a JSON
file and send it to SF to do the drawing task.

Our proposed method is illustrated in Fig. 1.

Fig. 1. Our proposed method

A. Build Semi-automatic Data

Being built specifically for providing SF users with tech-
nical support, the VA is designed to have two main functions.
The first function, called automatic answering, is the ability of
a VA to answer the questions given by the user. The questions

that are within the domain of this function are related to SF,
particularly about the instruction manual, the main functions of
the software, and frequent bugs and difficulties that users may
encounter when coding in the script and interacting with the
working interface of the software. The second main function
of the VA is user-task assistance, in which the assistant does
some tasks directly in the software working interface when
asked by the user. The supported tasks are tasks that most
users usually do at the interface of the software.

To have a dataset for training this VA. The first thing we do
is design and define intent and entity labels that are presented
in Section III-A1. then generate types of commands, and finally
use the built label set to label them. The last two processes
are presented in Section III-A2.

1) Designing intent and entity labels

Firstly, we have to define the intent and entity label set that
match the domain of the SF. The intents are used to define the
overall requirement in a user command. The dataset is split
into 3 groups. The first intent group contains intents in which
the user wants to choose objects in the software interface.
The second intent group is involved in changing attributes of
objects, and the last one is about drawing objects directly on
the SF interface. The intent and entity label list for Vietnamese
is shown in Tables X and XI in Appendix.

2) Semi-automatic data construction

a) Manual Data Construction

Initially, raw data generation and annotation are carried
out manually by humans. Particularly, data builders role-play
as platform users and give orders indicating the content of
a specific intent. Each intent requires one or several specific
pieces of information to appear in the command, and these
pieces of information are dedicated in various ways and appear
in different orders in different commands.The semi-automatic
data construction method requires a few data to initialize, so
we will build them manually. The more and better the quality
of the initial data, the higher the efficiency of the method
achieved. For Vietnamese, we have built 540 commands in
total manually.

After it is annotated following the format of Rasa chatbot
framework [20]. Rasa is an open-sourced framework used
to build conversational chatbots. One of its advantages over
other chatbot frameworks is its various number of integrated
machine learning and deep learning models used to solve intent
classification (IC) and entity extraction (EE) which are the two
main tasks of a VA. That makes building an efficient VA much
faster than building from scratch.

In the Rasa framework, the data is stored in a .yml file
and the commands are grouped by intent. In a command, each
labeled phrase is included in a couple of square brackets, and
the entity label used to label that phrase is included in the
couple of braces that are next to the square bracket couple.

Semi-automatic data construction methods require some
data to train the model, so we have to build them manually.
The more and better quality data, the higher the efficiency of
the method.
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b) Semi-automatic data construction

In this process, we propose to use an NLU model trained
on the manual-built data as a core component of the semi-
automatic data construction process. Our proposed method is
illustrated in the Fig. 2.

Fig. 2. Data building pipeline.

The idea of our proposed method is as follows: Firstly,
we design prompts that are put into LLMs to generate the
raw commands. Then, in these commands, we remove ones
that have cosine similarity to existing commands in the dataset
greater than the α threshold. Next, the remaining commands
from the previous step are put into the NLU model (which
is trained on manual building data) to get the labeled data.
Finally, we use instructed annotators to manually check and
correct the automatically labeled data. The dataset obtained
after the last step is the expected high-quality dataset. It is
also combined with existing data to retrain the NLU model in
order to make that model better at labeling raw data.

Raw data generation: In this stage, the data samples built
in the manual data construction process will be used as
reference examples to guide Large Language Models (LLMs)
to generate high-quality raw commands for a specific intent
in larger quantity and faster speed compared to manual data
construction. The guidance includes three main parts:

• Description of the main requirements of the task indicated
by intent.

• Description of auxiliary requirements.
• Reference examples (few-shot).

Fig. 3 shows an example of guidance for raw data gener-
ation sent to LLM.

In the example guidance in Fig. 3, the description of
the main requirement includes the content of the intent in
which the user wants to do and the types of information that
should appear in the user’s command. Furthermore, the last
two sentences in this section also require LLMs to generate
more diverse and realistic commands because, in reality, users
of popular VAs barely provide the assistant with all of the
information needed for completing the task. The description
of auxiliary requirements in the guidance is mainly about the
quantity and writing style of data, which makes the generated
data more diverse and the generating process faster. Lastly,
the reference examples contain commands created manually in
the previous process. These commands are supposed to teach
LLMs such things as:

Fig. 3. Example of raw data generation for intent “change length” indicating
that user wants to change the length of an object.

• The way information appears in the command.
• The order in which information appears in the command.

This is necessary because if only 1 or a few commands
are given, LLMs have the tendency to generate commands
with the same order of information, similar to fixed words
or phrases filled in an available pattern.

Raw data similarity checking: As the dataset grows, new
raw data generated by LLMs is likely to have great similarity
with the available one in the dataset. If this kind of raw data is
added to the dataset, it will make the dataset reduce diversity
and coverage, thus making the training process less effective.
To prevent this phenomenon, each new command (called new
raw command set) generated by LLMs for one specific intent
is compared with commands that already exist in the dataset
of the same intent (called old raw command set) in terms of
consine similarity [6]. Particularly, after the new raw command
set and the old raw command set are encoded into vectors using
pre-trained models specialized in sentence encoding, these two
vector sets are used to compute the cosine similarity matrix
by Eq. (1) shown below.

cosine simij =
Mi ·Nj

∥Mi∥∥Nj∥
(1)

Where cosine simij is the cosine similarity value between
ith command in the new raw command set and jth command
in the old raw command set. Mi and Nj are vectors obtained
by encoding the ith and jth commands in the new and old raw
command sets, respectively.

Finally, the commands in the new set will be removed if
their similarity with any commands in the old set is over a
threshold.
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Data labeling: The NLU model trained on manual-built
data is integrated into Label-Studio, which is an automated
data labeling tool, and its predicted results for raw commands
are displayed and corrected in this tool. This is a robust
and powerful open-sourced labeling tool that supports both
manual and automatic labeling processes. Built on the Web-
UI platform, this tool provides flexibility and convenience
for users, allowing them to customize and personalize their
experience.

However, due to the nature of the dataset, which is used
to train a model to solve two tasks, which are IC and EE
simultaneously, while the labeling tool only supports labeling
for datasets used for one task, the raw data needs to be
preprocessed before being fed into the integrated NLU model
of the automatic labeling tool. Particularly, all raw commands
are normalized by Underthesea‡ and added a special token
“¡i¿” at the beginning. This token is used to store the in-
tent of the command and is labeled with a special entity
label that has the following format: “intent—¡intent name¿”.
Other normal entity labels have the following format: “¡group
name¿—¡entity name¿” and are used to label phases and words
indicating the information used to complete the task in the
user’s command.

After being labeled automatically by the NLU model,
the data is checked and corrected manually. The accurately
checked data is then stored in the overall dataset. This dataset,
after a specific time of building, is used to retrain the NLU
model to make it better at labeling data.

Applying this method to Vietnamese, we have built a
dataset of 2700 samples in total. This dataset is combined with
the manually built dataset to create the overall dataset that is
used to train and evaluate the VA.

B. Train the VA

In our proposed method, the mission of a VA is to extract
valuable information to complete the required task given the
user command. To obtain this information, our VA is modeled
to solve two tasks simultaneously. The first task is IC which
is used to identify the task required by the user. The second
task is EE which is used to extract valuable information to
complete the required task in the user’s command. The existing
state-of-the-art (SOTA) models of the two tasks are built from
variants of Transformers [27] which are pretrained on a unified
language dataset (BERT, GPT, ...). Although making SOTA
results in a variety of NLU datasets, most of them have some
disadvantages. Firstly, they need high training and computation
costs to produce good results. Furthermore, due to their large
size and long inference time, it is very difficult to deploy them
on various platforms. Therefore, choosing a suitable model for
each language is important.

For Vietnamese, we suggest to use the DIETClassifier
[4] with components pretrained on Vietnamese datasets in
training VA. In the paper publishing this model, it is shown
to overcome SOTA models on varius NLU datasets, including
NLU-Benchmark [13], ATIS [2] and SNIP [24] while being
about six times faster to train. We also have used phoBERT
[16] which is a language model pretrained on Vietnamese

‡https://pypi.org/project/underthesea/

as the dense featurizer of DIETClassifier. The reason we
choose this model is because it is the first public large-scaled
monolingual language model pretrained for Vietnamese and
has archived SOTA results in many Vietnamese-specific NLP
tasks. Its performance when integrated into the architecture of
the DIETClassifier model on our test data is shown in Tables
IV and V in the Section IV-C. In the training process, the
weight of the dense featurizer is frozen, which makes it much
faster to train the model.

C. Generate the JSON File for Foundation Software

In this phase, the commands of the user are recorded and
saved as an audio file. Then, it is converted to a text file. Next,
the command in text that is a multi-intent command is split into
single-intent commands based on our proposed method. Next,
we feed single-intent commands into the VA to get information
about the required task, which is then post-processed to store
in a JSON file. Finally, the JSON file is sent to the SF to do
the drawing requests of the user.

1) Convert speech to text

To convert the voice input of the user into text, we suggest
using Whisper [30]. This is a speech-to-text multilingual
model. In practical usage, it has proven to be suitable for the
functional requirements of the VA. Particularly, it can catch
the voice input fractions that represent numbers and convert
them into Arabic numbers instead of plain text, which makes
the transcribed text more similar to the normal text inputs of
the user.

2) Split multi-intent commands

In practical usage, users often give commands that contain
multiple tasks (compound command), also known as multi-
intent or complex commands, to VAs in order that the whole
work process is completed quickly. For users, giving com-
mands for single tasks and waiting for them to finish are
inconvenient and time-consuming. Attempting to build VAs
capable of handling complex commands by directly training
the assistant on labeled complex commands is a simple and
straightforward approach. The author in [21] proposed the first
work to handle multi-intent commands, which has hierarchical
structures to identify multiple intents in the user’s command.
In 2020, [19] proposed a model named AGIF which uses an
adaptive graph attention network to model joint intent-model
interaction. However, these existing works have some draw-
backs. Firstly, the data collection cost for complex commands
is very high because of the uncontrollable variety of this kind
of command, especially in the case of a large number of
single intents. Particularly, with a dataset of n single intents,
the number of bi-intents (a mutli-intent containing 2 single
intents) is n∗(n−1)

2 and the number of tri-intents (a multi-
intent containing three single intents) is also very big, which
is the polynomial value of n, making collecting data for
all combinations of intents nearly impossible. Furthermore,
the labeling process for multi-intent commands is also very
challenging. To effectively annotate entities of a multi-intent
command, the entity labels have to indicate both the role of
labeled phrases and which intent in the command that phrases
belong to, instead of just indicating the role of the phrases like
in normal single-intent commands. For example, in the multi-
intent command “Draw a yellow rectangle at the center of the
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screen and move the black square to the left” which has two
intents named draw square and move left, the word “yellow”
has to be labeled by a label indicating the color of an object
of the first intent. Lastly, this approach potentially reduces the
effectiveness of modules of VAs when they have to extract too
much information (multiple intents and entities aligned to each
intent) in a single command.

Another approach for handling multi-intent commands
used in recent studies is to build a module specified for
detecting and splitting a multi-intent command into a list of
single-intent commands for a VA and feed these commands
into the remaining modules. This approach overcomes the
limitations of the previous approach when it does not need to
label multi-intent commands. The author in [28] have proposed
DialogUSR, a module built as a sequence-to-sequence model
so that from a multi-intent command, it can generate a list of
single-intent commands in the form of a text string with each
single-intent commands separated by a special token “¡SEP¿”.
One year later, [25] proposed a module built as a NER model
with entities used to bound the single-intent commands in a
multi-intent command. However, the two studies above have
their own limits. Firstly, the module proposed by [28] heavily
relies on training data, thus poorly performs when confronted
with inputs that are highly different from training data, i.e. it
rarely can split a triple-intent command accurately when being
trained only with single and bi-intent commands. On the other
hand, the SPM module of [25] is likely to split commands
with more intents than ones in the training data accurately
because of its building strategy to model multi-intent command
splitting as a NER task to bound single-intent commands.
Nonetheless, this modeling approach absolutely cannot split
a multi-intent command whose information of each intent is
interleaved due to its modeling strategy. For example, the
commands “Draw a square and a circle whose sizes are 50x50
pixels and 60x60 pixels, respectively, in random positions” has
two intents named “draw square” and “draw cirle” but the
information of each intent is mentioned separately throughout
the command instead of standing next to each other.
To overcome these limitations, we proposed to build a mod-
ule specified for splitting these multi-intent commands into
sequences of single-intent commands based on in-context
learning using LLMs with a context database of multi-intent
commands built from single-intent commands.

Our proposed approach has three main processes:

• Context database construction: This process involves us-
ing LLMs to merge single-intent commands chosen from
the previously built training data into a multi-intent com-
mand.

• Context retrieval model construction: In this process, we
build a model that is able to choose contexts that are
semantically similar to the user’s input from the context
database.

• LLMs input construction: This process involves building a
complete input from the user’s input and contexts chosen
by the context retrieval model.

The overall architecture of the multi-intent command split-
ting module is illustrated in Fig. 4.

Fig. 4. Overall architecture of the multi-intent utterance splitting module.

a) Context database construction

To build the context dataset, two single-intent commands
with different intents are chosen from the VA training dataset
and then fed into LLMs to construct a multi-intent command.
Along with single-intent commands, a merging instruction
snippet is also added into the input of the LLMs to make good
multi-intent commands. The example input built for LLMs to
create multi-intent commands is shown in Fig. 5.

Fig. 5. Example guidance of input for LLMs to create multi-intent
commands.

As Fig. 5 shows, it can be seen that the LLMs are required
to merge pieces of information extracted from single-intent
commands to create multi-intent commands instead of just
concatenating single-intent commands by linking words or
punctuation. That can make resulting multi-intent commands
more diverse and complicated to segment with pieces of infor-
mation being interleaved, or even become tricky. For example,
from the above input and two single-intent commands “Choose
all objects on the screen” with intent “select all objects”
and “Give up choosing all cirles” with intent “exit select”,
the LLMs can generate a multi-intent command “Choose all
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objects on the screen, except for circles”. At first glance, this
multi-intent command has only one intent, but to complete the
required task, the visual assistant has to select all objects, then
give up selecting all circles. However, this kind of input can
make LLMs potentially align information incorrectly, or even
get rid of some of the information of single-intent utterances.
Furthermore, due to the lack of reference examples of inputs
and expected outputs, the output in reality of LLMs is usually
unstable, making post-processing challenging.

To overcome these drawbacks, some reference examples
are added to the input for LLM to stabilize its inference
process. Two types of reference examples we used are basic
examples (normal few-shot) and advanced examples (Chain-
of-thought few-shot, also known as CoT few-shot) which are
listed in Fig. 6 and 7, respectively.

Fig. 6. Basic examples added into input of LLM as references to make its
inference process more stable.

While basic examples just contain input (a list of single-
intent utterances) and corresponding output (multi-intent utter-
ance), advanced examples contain interpretation for the output,
apart from input and output. With the two types of examples,
the resulting multi-intent commands generated by LLMs are
more stable and can contain all the information of single-intent
commands, but seem to be monotonic in term of information
presentation. As a result, we have used all three types of inputs
to build context database in the experiment. Particularly, the
basic input with no example is called “zero-shot merging”, the
input with simple examples is called “few-shot merging” and
the input with analyzing examples is called “few-shot CoT
merging”.

In the work, we build multi-intent commands by combining
two single-intent commands with different intents. Further-
more, five single-intent commands of each intent are also
randomly chosen from training data in order that module can
detect single-intent command.

Context retrieval model construction

The target of context retrieval is to provide LLMs with
informative examples to refer to, thus allowing LLMs to
process users’s input accurately and give the correct output for

Fig. 7. Advanced examples added into input of LLM as references to make
its inference process more stable.

other modules of VAs. As a result, retrieved contexts need to be
greatly similar to the user’s input. To be able to retrieve these
contexts, the model is designed to solve the Semantic Textual
Similarity (STS) task. The input of this task contains two text
sequences, and the output is the similarity score between the
two sequences. The model instruction process consists of two
parts: STS dataset building and model training on the STS
dataset.

STS dataset building: To build a STS dataset, the two
inputs of each sample in this dataset are chosen arbitrarily from
the previously built context dataset, and the output (similarity
score of two input sentences) is identified by the intents
included in each input sentence. The equation used to compute
the similarity score is below:

sim score =



1.0 if a1 = b1 and a2 = b2
0.75 if a1 = b2 and a2 = b1

0.5 if
a1 = b1 and a2 ̸= b2 or
a1 ̸= b1 and a2 = b2

0.25 if
a1 = b2 and a2 ̸= b1 or
a1 ̸= b2 and a2 = b1

0.0 otherwise

(2)
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Where a1, a2 are the first and the second intent of the
first multi-intent command and and b1 and b2 are the first
and the second intent of the second multi-intent command.
This equation is applied in the case that both input sentences
are bi-intent commands, which make up the majority of the
context dataset. In the case that both input sentences are single-
intent commands, the assigned similarity value is 1.0 if the
intents of both sentences are the same and 0.0 in the other
case. If one of the input sentences is single-intent and the
other is bi-intent, the assigned value is 0.25 if the intent of
the single-intent command is the same as one of the intents
of the bi-intent command and 0.0 in other cases. The reason
why the maximum similarity value between two sentences with
different numbers of intents (1 intent compared to 2 intents)
is just 0.25 is that in some cases, multi-intent commands and
single-intent commands can be greatly similar to each other.
e.g. “Let’s move the red square to the left for 10 pixels, then
flip it horizontally” and “Let’s move the red square to the left
for 10 pixels.” If the user’s input is the same as the example
multi-intent command and the result of the retrieval model is
the same as the example single-intent sentence, the module
is likely to segment the user’s input incorrectly. As a result,
by setting a low similarity value for couples of sentences
with different numbers of intents, especially between single-
intent commands and multi-intent commands, being trained
on that dataset can allow the retrieval model to be capable of
clearly discriminating between single-intent and multi-intent
commands.

Context retrieval model building and training: The module
trained on the previously built STS dataset is a variant of
the sentence-BERT [23]. In this model, we use MEANpooling

pooling layer to get the sentence vector from the hidden state
matrix encoded from the input sentence by BERT model. The
loss function used to optimize the retrieval model is Mean
Square Error (MSE) loss.

LLMs input construction: To build a complete input for
LLMs, contexts with great similarity with the user’s input need
to be retrieved. To get these contexts, all contexts in the context
dataset are encoded by the context retrieval model, which
has been trained in the previous stage to get their semantic
representative vectors. This collection of vectors, along with
raw contexts, is then stored in a database. The vector obtained
by encoding the user’s input is used to compute the similarity
value between it and other contexts to get the most suitable
context.

3) Generate the JSON file for SF

After the multi-intent command handling module separates
the user’s command into a list of single-intent commands, that
list of commands is fed into the VA one by one. After each
command is processed, the intent and entity values extracted
from that command are obtained and postprocessed. After
post-processing, intent and entity values are filled into a pre-
defined form whose keys are intent and entity names. For entity
names with no corresponding entity values extracted from the
user’s utterance, their value is assigned NULL value. Finally,
this form is stored in a JSON file and sent to the SF by
calling its API. The Fig. 8 shows the content of the JSON file
obtained from the Vietnamese user’s input, which is a multi-
intent command, and how the required tasks are done directly
on the user interface of the SF.

IV.EXPERIMENTS

In this section, we conduct the experiment of our proposed
method on Vietnamese, which is a low-resource language.
The first describes the training and testing datasets for VA,
then presents the configuration settings and evaluation metrics.
Next, we show the archived results, and finally, we present
some discussions related to the results of the experiment.

A. Experimental Datasets

1) Experiment datasets for evaluating the quality of semi-
automatically built data and the performance of VA

Our dataset includes 3240 labeled commands (or 3240 sam-
ples). It is made up of a manually built dataset of 540 samples
and a semi-automatically built dataset of 2700 samples. We
split this dataset into two subsets: the training dataset and the
testing dataset.

a) Testing dataset

It is denoted NLUtest including 360 samples that are
randomly taken from the manually built dataset, such that 10
samples of each intent type.

b) Training dataset

It includes 2880 remaining samples (denote NLUtrain)
divided into six different training datasets. Dataset are denoted
as NLUn means we take the n first samples of each intent
type in NLUtrain for making it. Statistics of these datasets
are shown in Table I.

TABLE I. STATISTICS OF THE COMMAND NUMBERS IN EACH DATASET

Datasets Number of samples
NLUtest 360
NLU40 1440
NLU50 1800
NLU60 2160
NLU70 2520

NLUtrain 2880

2) Experiment datasets for evaluating the performance of
multi-intent handling module

The multiple context datasets are made by choosing data
from NLUtrain dataset by different context-building methods.
Particularly, the context datasets made by Zero-Shot Merging,
Few-Shot Merging and Few-Shot CoT Merging methods are
called Contextzero−shot, Contextfew−shot and
Contextfew−shotCoT respectively. Each of these context
datasets contains 2696 samples, including 180 single-intent
commands and 2516 multi-intent commands.

a) Testing dataset

Our context testing dataset, called Contexttest, contains
1754 samples, including 1662 multi-intent commands and 92
single-intent commands. It is built based on all three merging
methods with single-intent commands taken from NLUtest

dataset. After that, all incorrect and duplicated samples are
removed.
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Fig. 8. The user’s command which has the English translation text : “draw a circle with radius of 100 pixels at the center of the screen, then draw a square with
size of 50 x 50 pixels at the coordinates (20, 40)” and the content of the obtained JSON file after VA handles the command are shown in the box 1 (surrounded

by the thick blue border). The result after sending the JSON file to the SF by calling its API are shown in the box 2 (surrounded by the thin green line).

b) Training dataset

The STS datasets used to train context retrieval models
is built by choosing two samples randomly from the corre-
sponding context datasets. However, if all combinations of two
samples are chosen, the STS training datasets will become very
large and imbalanced in term of similarity value. Particularly,
each of STS training datasets will have over 3,632,860 samples
in total, including over three million samples with Intent Label
Similarity Value of 0 (ILSV0). As a result, only a specific
number of samples with ILSV0 chosen randomly. Particularly,
each of the three training datasets contains 770,926 samples in
total. Table II shows the statistics of each STS training dataset
in terms of Intent Label Similarity Value.

TABLE II. STATISTICS OF STS TRAINING DATASET

Similarity value Number of samples
1 1618

0.75 2516
0.5 170816
0.25 195976
0.0 400000

Based on three context datasets, namely Contextzero−shot,
Contextfew−shot and Contextzero−shotCoT , we have
built three STS training datasets, namely STSzero−shot,
STSfew−shot and STSfew−shotCoT . Similarly, Sentence-
BERT model trained on these datasets is called
SBERTzero−shot, SBERTfew−shot and SBERTfew−shotCoT .

c) STS Validation dataset

To evaluate the training process of each Sentence-BERT
model, a STS validation dataset, called STSvalid, is also
created based on Contexttest dataset. Its samples are created
by all three merging methods, then filtered manually to get rid
of incorrect and duplicated ones. This dataset contains 31,763
samples in total. The below Table III shows the statistics of
the STSvalid in terms of Intent Label Similarity Value.

TABLE III. STATISTICS OF THE STS VALIDATION DATASET

Similarity values Number of samples
1 638

0.75 1125
0.5 5000

0.25 5000
0.0 20000

B. Experimental Setup

1) Configuration setup

a) Hardware configuration

Both the NLU module and multi-intent handling module
are trained on GTX 3090 GPUs (24GB VRAM). The training
processes of the two models can take up to 20 GB of VRAM.

b) Model configuration

In the VA, we have used DIETClassifier model [4] with
some customization on its components. Particularly, we use
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Bag-Of-Word (BOW) method with vocabulary built by n-
grams whose length is from 1 to 5 characters as the main
sparse featurizer for the model.

For dense featurizer, we use two methods. First, we use
phoBERT pretrained model [16] to get dense features from
input tokens and its vector output from the special token “¡s¿”
acts as the sentence feature of the model. The DIETClassifier
model using this dense featurizer is called DIETpB+BOW . The
second method, inspired by an existing work of [7], uses the
Fasttext model [8] pretrained on the Vietnamese dataset§ as
the main dense featurizer and the sentence feature is computed
by averaging all dense features obtained from input tokens.
The DIETClassifier model with that dense featurizer is called
DIETFt+BOW . In the last model configuration, we do not use
any dense featurizer, thus is called DIETBOW . The number of
Transformer layers and the number of attention heads in each
Transformers layer used in all configurations are two and four,
respectively.

Furthemore, in order to evaluate the effectiveness of using
Vietnamese pretrained language models as dense featurizers,
we have also used a DIETClassifier model with no dense
featurizer and compared its performance with the above two
DIETClassifier models.

c) Training configuration

In experiments evaluating VA, we have trained DIETClas-
sifier model on training dataset for 100 epochs with batch size
of 16 and the learning rate of 0.001. The loss function we used
to optimize the model is Cross Entropy and the optimizer used
to adjust the learning process is AdamW optimizer.

In experiments evaluating the multi-intent handling mod-
ule, we have trained Sentence-BERT model on training dataset
for 20 epochs with batch size of 16 and the learning rate of
0.25×10−4. The loss function we used to optimize the model
is Mean Square Error and the optimizer used to adjust the
learning process is AdamW optimizer. Furthermore, to evaluate
the contribution of the context retrieval model, we have also
used a LLM (called Baseline) with static contexts, containing
three single-intent commands and four multi-intent commands,
and compared it with LLMs using the above context retrieval
model.

2) Evaluation metrics

a) VA evaluation metrics

The two tasks used to evaluate performance of NLU
module are IC and EE. Two main metric used in two tasks
are Accuracy and F1.

b) Multi-intent handling evaluation metrics

Firstly, to evaluate the training process of context retrieval
model when being trained on different STS training datasets,
we have used Spearman’s rank correlation coefficient. Sec-
ondly, in the experiment evaluating the overall performance of
multi-intent handling module, we have used various metrics.

Secondly, to evaluate the output single-intent commands
of the module, we have concatenated the two lists of output

§https://huggingface.co/facebook/fasttext-vi-vectors

single-intent commands and ground-truth single-intent com-
mands with the special token “¡SEP¿” into two single strings
and used BLEU [3] and ROUGE [22]. Furthermore, we have
also used 2 metrics named Split Accuracy (SACC) and Exact
Match (EM) proposed by [28]. In the original paper, SACC
is used to measure the ratio of correct command splitting and
computed the following Eq. (3):

SACC =
1

n

∑
1≤i≤n

I
(len(Q(i)

pred)=len(Q(i)
ref ))

(3)

Where n is the number of samples, Q
(i)
pred and Q

(i)
ref are

the ith predicted and references single-intent command list,
respectively. As for EM, [28] considered the correct result if
the predicted command is exactly the same as the reference
one:

EM =

∑
i

∑
j F (Q

(ij)
pred, Q

(ij)
ref )∑

1≤i≤n len(Q
(i)
ref )

(4)

Where Q
(ij)
pred and Q

(ij)
ref are the jth predicted single-intent

command and ground-truth single-intent command in the ith

sample in the evaluation dataset. The function F (Q
(ij)
pred, Q

(ij)
ref )

in the above equation is the indicator function:

F (Q
(ij)
pred, Q

(ij)
ref ) = I

(Q
(ij)
pred=Q

(ij)
ref )

(5)

However, applying the metric EM directly in our experi-
ment is not suitable. We have seen that our merging methods
only retain the essential information of the merged single-
intent commands (considered as ground-truth commands in an
evaluation sample) and get rid of their writing style, e.g. for-
mal, informal, or even humorous, in the resulting multi-intent
command. As a result, the output single-intent commands that
are predicted by the multi-intent handling module are mostly
different from the ground-truth, which means the metric EM
cannot make an accurate evaluation. As a result, apart from EM
metric, we proposed a new metric called proportional match
(PM), which modifies the F function in EM. This new metric
is used to measure the accuracy in the essential information
of predicted single-intent commands. The F function in the
metric is computed by Eq. (6):

F (Q
(ij)
pred, Q

(ij)
ref ) =


0 if

∃k ∈ D
(ij)
ref and

D
(ij)
refk

̸= NULL and

D
(ij)
refk

̸= D
(ij)
predk

1 otherwise

(6)

Where D
(ij)
pred and D

(ij)
ref are the dictionaries containing

the intents and entity values extracted from Q
(ij)
pred and Q

(ij)
ref

respectively by the VA (trained on the overall dataset). k is the
key in D

(ij)
pred and Dij

ref . The condition that D(ij)
ref ̸= NULL

is set to get rid of abundant information, which appears very
common in almost every sample of the evaluation dataset.
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C. Experimental Results

1) VA experimental result

We conducted an evaluation of all three DIETClassifier
models that are trained on the same NLU40 training dataset
on the NLUtest testing dataset. The DIETpB+BOW is chosen
for our proposed method (called Our model). The results are
shown in Table IV.

TABLE IV. RESULT OF DIETCLASSIFIER MODELS ON NLUtest

Model IC EE
F1 Acc F1 Acc

Our model 0.93 0.93 0.96 0.98
DIETFt+BOW 0.92 0.92 0.96 0.98
DIETBOW 0.92 0.92 0.95 0.97

Table IV shows our model achieved the best performance
for both IC and EE tasks on the NLUtest.

In order to know the quality of the our semi-automatically
built datasets, we used Our model to train on NLU datasets.
The results are shown in Table V.

TABLE V. RESULTS OF DIETpB+BOW MODEL ON NLUtest

Training dataset IC EE
F1 Acc F1 Acc

NLU40 0.93 0.93 0.96 0.98
NLU50 0.94 0.93 0.96 0.98
NLU60 0.94 0.93 0.97 0.98
NLU70 0.95 0.95 0.97 0.98
NLUtrain 0.96 0.96 0.97 0.99

2) Multi-intent handling experimental result

Fig. 9 shows the result of three sentence-BERT on STSvalid

throughout their training processes.

Tables VI and VII show the BLEU, ROUGE SACC, EM
and PM score of the multi-intent handling module using
static contexts and different context retrieval models. The
SBERTfew−shotCOT is chosen in our proposed method.

D. Discussion

1) Our semi-automatically data built method and VA

Table V shows that the model is trained on the training
dataset NLU40 includes 180 samples made manually and 1260
samples made by our proposed method that achieved a 0.93
F1 and Acc score in the IC task and a 0.96 F1 and 0.98 Acc
score in the EE task. This demonstrates that our data is of high
quality, and the VA we made works so well.

The dataset NLUtrain is made by adding 1440 samples
is built by our proposed method to NLU40. The model is
trained on NLUtrain achieved F1 and Acc score are higher
than the model is trained on demonstrates our proposed
semi-automatically data building method is a good method.
Especially its ability to update itself with new data to become
better.

2) Multi-intent handling experiment

In the first experiment evaluating the performance of
sentence-BERT models on STSvalid throughout their training
process shown in Fig. 9, it can be clearly seen that the best
performance that all three models can achieve converges at
a result of 0.82. Their convergence speeds, however, differ
greatly from each other. The model SBERTzero−shot trained
on STSzero−shot dataset converges much slower than the
other two sentence-BERT models when needing about 100
training steps to converge compared to just about 30 to 50
training steps of SBERTfew−shot and SBERTfew−shotCOT .
The reason for its slow convergence speed is because its
training dataset STSzero−shot is built from the context dataset
Contextzero−shot which has plenty of false multi-intent com-
mands. Fig. 10 shows some examples of these kinds of
commands in the Contextzero−shot dataset.

The false multi-intent commands shown in the “merged
multi-intent commands” column in the Table X are actu-
ally single-intent commands. When this kind of command is
matched with true multi-intent commands in the dataset, it
will make the false sample in the STS dataset used to train
the context retrieval dataset, thus making the training process
of the model divergent.

In the second experiment shown in Tables VI and VII
which evaluates the performance of multi-intent handling mod-
ule when using trained context retrieval models compared to
using static contexts with various metrics, it can be clearly
seen that the performance of multi-intent handling module
using trained context retrieval models is relatively higher than
one of multi-intent handling module using static context in
every metric, emphasizing the great contribution of context
retrieval models trained on STS training datasets to the per-
formance of multi-intent handling module. In Table VI, the
difference in ROUGE in BLEU metric between the worst-
performing model (Baseline model) and the best-performing
model (SBERTfew−shotCOT ) is not really notable, ranging
around 0.02 and 0.04. We hypothesize that we have concate-
nated the output single-intent command list into a single string
and evaluated on this concatenated string so that the evaluated
strings of different models may be similar to each other in
some substrings. The results in SACC, EM and PM metrics
shown in Table VII, on the other hand, see a significant gap
between the worst-performing and the best-performing model,
ranging from 0.04-0.05. Furthermore, what we can clearly see
in that table is that the gap between the results of multi-intent
handling module using a trained context retrieval model is
pretty trivial, indicating that with contexts that are relatively
similar to the user’s input, the LLMs can accurately split the
input into single-intent commands in terms of intent and assign
the correct information to each of the output commands.

To investigate the capability of multi-intent handling in
single-intent and multi-intent command detection, we have
conducted two additional experiments for the module with
different configurations on single-intent commands and multi-
intent commands separately. The Tables VIII and IX show the
results in SACC metric of the two experiments.

In Table VIII, the multi-intent handling module using
SBERTzero−shot as context retrieval model archives the worst
result, even much worse than the Baseline module. This
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Fig. 9. Spearman’s correlation coefficient of three sentence-BERT models trained on three different STS datasets

TABLE VI. ROUGE AND BLEU SCORE OF MULTI-INTENT HANDLING MODULE USING STATIC CONTEXTS AND DIFFERENT CONTEXT RETRIEVAL
MODELS

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-S BLEU
Baseline 0.87 0.81 0.84 0.84 0.7
SBERTzero−shot 0.89 0.83 0.85 0.85 0.74
SBERTfew−shot 0.89 0.83 0.86 0.86 0.74
SBERTfew−shotCOT 0.9 0.84 0.86 0.86 0.75

TABLE VII. SACC, EM AND PM OF MULTI-INTENT HANDLING
MODULE USING STATIC CONTEXTS AND DIFFERENT CONTEXT

RETRIEVAL MODELS

Model SACC EM PM
Baseline 0.87 0.75 0.83
SBERTzero−shot 0.93 0.79 0.87
SBERTfew−shot 0.90 0.79 0.86
SBERTfew−shotCOT 0.92 0.79 0.87

TABLE VIII. THE RESULT IN SACC METRIC ON SINGLE-INTENT
COMMANDS OF THE EVALUATION DATASET

Module SACC Score
Baseline 0.93
SBERTzero−shot 0.85
SBERTfew−shot 0.94
SBERTfew−shotCOT 0.96

TABLE IX. THE RESULT IN SACC METRIC ON MULTI-INTENT
COMMANDS OF THE EVALUATION DATASET

Module SACC Score
Baseline 0.87
SBERTzero−shot 0.94
SBERTfew−shot 0.91
SBERTfew−shotCOT 0.92

is due to the false multi-intent commands in its context
database, as mentioned in Fig. 10. That makes the model
likely to retrieve true multi-intent commands when receiving
the single-intent command of the user, leading to the wrong
segmentation. In contrast, the multi-intent handling module
using SBERTzero−shot as context retrieval model achieves the
best result, and the gap between the modules using trained
context retrieval models is relatively trivial. This is due to the
majority of multi-intent commands in the evaluation dataset
being simple commands that have single-intent commands
linked by linking words and punctuation, which appear very
common in all three context datasets. The remaining multi-
intent commands in the evaluation dataset, however, have
information interleaved or even tricky to assign to an intent.
The Contextzero−shot context dataset can have many complex
multi-intent commands due to the lack of reference examples
in the Zero-shot merging method, which is used to generate
multi-intent commands in that dataset, thus making LLMs
likely to generate out-of-the-box commands with no limit.

V. CONCLUSION

In this work, we have proposed the effective method for
recognizing multi-intent commands in low-resource languages
and respond to SF in doing the drawing task. In the phase
of data building, we proposed a semi-automatic data building
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Fig. 10. False multi-intent commands in the Contextzero−shot dataset.

method. Applying it to the Vietnamese language, we built an
intent list including 36 intents, an entity list including 31 en-
tities, and the labeled Vietnamese command corpus including
3240 commands. In the phase of generating the JSON file, we
proposed the method that separates the multi-intent command
from the user’s command into single-intent commands to be
better understood by the VA, from which it supports more
effectively for SF. Our labeled command corpus and the open
source code of the splitting tool are shared with the research
community. In the future, we will continue to research and
improve our data construction method and extend it to some
low-resource languages. Furthermore, we will conduct research
to improve the capabilities and accuracy of the VA problem.
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APPENDIX

Table X shows all intent labels we have used in our dataset and their meanings.

TABLE X. THE INTENT LABELS AND THEIR MEANING

Intent Meaning
select all object The user wants to select all object (with optionally the same properties) on the

interface of the SF
exit select The user wants to give up selecting some (or all) selected objects (with optionally

the same properties) on the interface of the SF
delete selected objects The user wants to delete some (or all) selected objects (with optionally the same

properties) on the interface of the SF
selected area The user wants to select all objects (with optionally the same properties) in an area

defined by a pair of coordinates on the interface of the SF
rotate left The user wants to rotate a specific object on the interface of the SF to the left side
rotate right The user wants to rotate a specific object on the interface of the SF to the right

side
horizontal flip The user wants to flip a specific object on the interface of the SF horizontally
vertical flip The user wants to flip a specific object on the interface of the SF vertically
move left The user wants to move a specific object on the interface of the SF to the left side
move right The user wants to move a specific object on the interface of the SF to the right

side
move up The user wants to move a specific object on the interface of the SF upward.
move down The user wants to move a specific object on the interface of the SF downwards.
color background The user wants to paint the background of a specific object on the interface of the

SF by a specific color.
color foreground The user wants to paint the foreground of a specific object on the interface of the

SF by a specific color.
change width The user wants to change the width of a specific object on the interface of the SF.
change height The user wants to change the height of a specific object on the interface of the SF.
change length The user wants to change the length of a specific object on the interface of the SF.
change radius The user wants to change the radius of a specific object on the interface of the SF.
change top The user wants to move a specific object on the interface of the SF in the vertical

direction so that its new position is a certain distance from the top border of the
interface of the SF.

change left The user wants to move a specific object on the interface of the SF in the horizontal
direction so that its new position is a certain distance from the left border of the
interface of the SF.

change right The user wants to move a specific object on the interface of the SF in the horizontal
direction so that its new position is a certain distance from the right border of the
interface of the SF.

change bottom The user wants to move a specific object on the interface of the SF in the vertical
direction so that its new position is a certain distance from the bottom border of
the interface of the SF.

draw line The user wants to draw a line on the interface of the SF. The information about
attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

draw circle The user wants to draw a circle on the interface of the SF. The information about
attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

draw ellipse The user wants to draw a ellipse on the interface of the SF. The information about
attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

draw rectangle The user wants to draw a rectangle on the interface of the SF. The information
about attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

draw square The user wants to draw a square on the interface of the SF. The information about
attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.
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draw rhombus The user wants to draw a rhombus on the interface of the SF. The information
about attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

draw parallelogram The user wants to draw a parallelogram on the interface of the SF. The information
about attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

draw trapezoid The user wants to draw a trapezoid on the interface of the SF. The information
about attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

draw arrow The user wants to draw an arrow on the interface of the SF. The information about
attributes of the object is optionally provided. Any attributes with no provided
information will be set to its default value.

copy selected objects The user wants to copy all selected objects (with optionally the same properties)
to the clipboard.

cut selected objects The user wants to cut all selected objects (with optionally the same properties) and
save them into the clipboard.

paste The user wants to paste the object saved in the clipboard to a certain position on
the interface of the SF.

undo The user wants to undo the task.
redo The user wants3 to redo the task.

Table XI shows all entity labels which are grouped into entity groups with their meanings.

TABLE XI. ENTITY LABELS AND THEIR MEANINGS

Entity group Entity Meaning
Object (used to label
phrases describing
attributes of the object)

object—shape Indicates the shape of the object

object—width Indicates dimensions like the upper base of a trapezoid,
radius of a circle, width of a rectangle, etc.

object—height Indicates the height of various shapes such as triangles
and parallelograms

object—length Indicates the length of various shapes like rectangles,
arrows, etc.

object—color Indicates the color of the object
object—thickness Indicates the thickness of the object’s border

object—destination Indicates the end point of a line (e.g. center of the
screen or top left corner)

object—angle Indicates the value of the angle at the top left corner of
the object

object—destination x Indicates the x-axis of the end point of the line
object destination y Indicates the y-axis of the end point of the line

Value (used to label
phrases indicating
essential parameters for
specific tasks)

value—color Indicates the color for tasks like ”color background”
and ”color foreground”

value—change Indicates changes to the size of an object (e.g. increase,
decrease, set new value)

value—move Indicates the distance between the new and old positions
of the object

value—angle Indicates the angle for rotating the object (e.g. “ro-
tate left”, “rotate right”)

Position (used to label
phrases indicating the
position of the object)

position—source Indicates the current position of the object, like “top left
corner” or “center of the screen”

position—source x Indicates the x-axis of the current position of the object
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position—source y Indicates the y-axis of the current position of the object

position—destination Indicates the target position for tasks like “paste” or
selecting an area

position—destination x Indicates the x-axis of the target position
position—destination y Indicates the y-axis of the target position
position—center Indicates the center of the object
position—center x Indicates the x-axis of the object’s center
position—center y Indicates the y-axis of the object’s center

Selected area (used for
“select area” tasks) selected area—height Indicates the height of the selected area

selected area—width Indicates the width of the selected area
selected area—length Indicates the length of the selected area

Change action (used for
resizing objects) change action—increase Indicates that the user wants to increase the size of the

object

change action—decrease Indicates that the user wants to decrease the size of the
object

change action—set Indicates that the user wants to set a new size for the
object

Aspect aspect Used to compare an object with others based on features
like size or length

Comparison comparison Used to label phrases that compare objects (e.g. “bigger
than”, “equal to”)
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