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Abstract—Maintaining optimal water quality is crucial for
successful aquaculture. This necessitates careful management of
various water quality parameters, including pH levels within
their ideal range. There is growing interest in creating affordable
optical pH sensors that provide accurate readings across a
wide range of pH values. Development of sensors that are both
accurate and cost-effective remains a challenge. To this end, this
study demonstrates the use of machine learning with mango leaf
extract as a colorimetric indicator to achieve accurate and cost-
effective pH estimation for aquaculture practices. Mango leaf
was utilized as the pH indicator, covering a range from 1 to
13. RGB color extraction and Exif data were used for image
analysis to extract relevant features. The XGBoost algorithm,
optimized through stepwise hyperparameter tuning with early
stopping, was used to train three different models on this dataset
to predict pH values. Three classification models, namely Y3,
Y5, and Y13, were trained with 3, 5, and 13 output classes,
respectively. The overall precision achieved by each model was
0.94, 0.85, and 0.72, respectively. This demonstrates the potential
of this approach for developing a user-friendly yet cost-effective
sensor for pH detection applicable in aquaculture practices. The
proposed method could help aquaculture farmers an affordable
and intelligent smartphone-based pH detection tool, enhancing
water quality management while reducing the need for expensive
instruments and eliminating the need for additional costly and
time-consuming experimental work, thereby contributing to the
sustainability of aquaculture practices.
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I. INTRODUCTION

Water quality is a pivotal factor in aquaculture, exerting
significant influence on fish growth, survival, and reproduc-
tion [1], [2], [3]. Precise and consistent monitoring of water
quality parameters is essential for effective aquaculture man-
agement, aiding in disease prevention, treatment, and overall
productivity [2]. To maintain optimal water conditions, various
physical, chemical, and biological treatments are applied to
aquaculture pond [3]. Key water quality parameters, including
temperature, dissolved oxygen, salinity, and pH, provide valu-
able insights into aquaculture system health and performance
[4], [5]. The primary challenge with traditional water quality
assessment methods is their lack of cost-effectiveness and the

significant labour they require. This highlights the need for
more innovative monitoring solutions. Although technological
advancements like the Internet of Things (IoT) and artificial
intelligence have enabled real-time monitoring and analysis
of water quality [6], the high cost of sensors remains a
major barrier to the widespread adoption of these modern
technologies [7].

Several studies have highlighted that pH is a crucial param-
eter for assessing water quality and plays a fundamental role
in aquatic ecosystems. It has been reported that abnormal pH
levels can negatively impact the health of aquatic organisms
and the overall quality of water [8], [9]. Therefore, maintain-
ing optimal pH levels is essential for successful aquaculture
practices. However, research consistently shows that the ideal
pH range varies among fish species, as detailed in Table I,
which presents the acceptable pH ranges for different aquatic
species.

Colorimetric methods are simpler, more cost-effective,
and capable of providing realtime results, making them a
promising solution for pH measurement in various fields,
such as environmental monitoring [10], [11], [12], [13]. In
aquaculture, colorimetric pH sensors demonstrated continuous,
in-situ monitor-ing, which allows for early detection of pH
fluctuations and enables prompt corrective actions [14]. This
study aims to advance the development of more efficient and
effective aquaculture practices by addressing the limitations of
traditional water quality monitoring techniques and leveraging
the benefits of colorimetric pH sensors.

Supervised learning is a subfield of machine learning
algorithms that trains models, f , on la-belled data. This data
comprises feature vectors, x, and their corresponding labels,
y. The primary objective is to minimize a loss function,
denoted by L(f), which quantifies the discrepancy between
the predicted labels, f(x), and the true labels, y [23].

Ensemble learning is a subcategory of supervised learning
algorithms that aims to construct a robust learner, F, by
combining multiple weaker learners, fi. A prominent example
of ensemble learning is XGBoost, which utilizes decision trees
as base learners. These decision trees recursively partition the
feature space based on specific decision rules, ultimately pre-
dicting a class or a continuous value [24]. XGBoost operates in
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TABLE I. OPTIMAL RANGE OF PH VALUES AS REPORTED IN LITERATURE

Description Lower Range Upper Range Reference
Optimal pH range for nile tilapia is between 5 and 8. 5 8 [15]
Efficient nitrification activity in aquaculture biofilters 7.0 9.0
Reproduction and infectivity of c. Irritans. 6 9 [16]
C. Irritans can survive in pH 5-10 in aquaculture. 5 10 [16]
PH ranged from 7.4 to 9.6 in eutrophic aquaculture ponds. 7.4 9.6 [8]
pH range 6-8 commonly acceptable in aquaculture. 6 8 [17]
pH ranges vary based on species, but generally 6.5-9.0. 6.5 9.0 [18]
Optimal pH for most aquaculture species is 7.0-8.5. 7.0 8.5 [18]
pH levels between 7.51 and 8.00 maintained in aquaculture. 7.51 8.00 [19]
Atlantic salmon embryos have lower lethal limits around pH 3.0-4.0. 3.0 4.0 [20]
Silver catfish juveniles survive in pH range of 4.0-9.0. 4.0 9.0 [21]
pH range in aquaculture: 6.5-9.0 suggested, optimal range varies by species. 6.5 9.0 [22]
Results suggest that 8.0–8.5 is the best pH range for survival and growth
of the larvae of the silver catfish (rhamdia quelen) larvae 8.0 8.5 [22]

an iterative manner, gradually building an ensemble of decision
trees. Each subsequent tree, fi, focuses on rectifying the errors
made by its predecessors using a technique called gradient
boosting. Mathematically, this translates to minimizing L(f)
by strategically adding trees that target the residuals of the
existing ensemble, Fi−1(x). This approach enables XGBoost
to effectively handle intricate feature relationships and achieve
significant minimization of the loss function, L(f).

II. BACKGROUND

Traditionally, pH measurement has relied on physical sen-
sors, both analog and digital [25]. Despite their precision, these
sensors necessitate frequent calibration to maintain accuracy,
which can be expensive and time-consuming. Coupled with
manual operation, this has prompted a search for more af-
fordable and user-friendly alternatives. Recent advancements
have facilitated the integration of digital pH sensors into IoT
systems for continuous water quality monitoring [26], [25],
[27]. While these solutions are suitable for larger aquaculture
operations, their high implementation costs often preclude
their adoption by smaller farms seeking economical options.
An alternative approach to pH measurement involves pH test
strips, a traditional and cost-effective method for assessing
water quality in aquaculture [28], [29]. While less precise
than sensor-based methods, their simplicity, affordability, and
portability make them valuable tools in various applications.
However, relying on visual color comparisons with a reference
chart can introduce subjectivity and potential inaccuracies.
Furthermore, the presence of other water constituents may
interfere with test strip accuracy [30], [31]. Despite these limi-
tations, the ease of use and absence of calibration requirements
make pH test strips an economical option, particularly for
small-scale farms with limited resources.

To mitigate the subjectivity inherent in interpreting pH test
strip colors, researchers have explored the use of machine
learning models to enhance the accuracy of pH measurements
derived from paper strips [32], [33], [34]. Concurrently, the
development of novel reagents for pH determination remains
an active research area. These innovative reagents, when inte-
grated with smartphone or machine learning-based methodolo-
gies, hold the potential to significantly improve pH measure-
ment accuracy. A novel method for directly measuring the pH
of airborne particles or droplets has been developed, combining
pH indicator paper with RGB-based colorimetric analysis.
This approach established a linear correlation between RGB
values and pH, surpassing the accuracy and applicability of

previous models. Hydrion® Brilliant pH dip stciks (lot no.
3110, Sigma-Aldrich), with their wide pH detection range and
resistance to interference, were deemed optimal for analyzing
ambient aerosols. Initial findings suggest that aerosol pH can
be estimated with an uncertainty of 0.5 units or less, casting
doubt on the reliability of traditional pH color charts and
emphasizing the need for in situ calibration of pH papers using
standardized pH buffers [11].

A smartphone-based colorimetric analysis technique em-
ploying a pH-sensitive photonic gel was reported. The gel
exhibited color variations corresponding to different pH levels,
which were captured and analyzed using a smartphone camera
and image processing algorithms. This method demonstrated
accurate real-time pH measurement, suggesting its potential
applications in environmental monitoring and medical diag-
nostics [35].

A smartphone-based colorimetric method was developed
for detecting enzyme-substrate reactions using pH-responsive
gold nanoparticle assemblies. The pH-induced color changes in
the gold nanoparticles, resulting from enzyme-substrate inter-
actions, were captured and analyzed using a smartphone. This
method offers a simple, cost-effective, and portable platform
for monitoring enzyme-substrate reactions in various fields
such as biochemistry and environmental science [36].

Traditionally, pH measurement in aquaculture has relied on
physical sensors and pH test strips, which provide accurate
results but often suffer from portability and usability con-
straints. In contrast, smartphone-based approaches, utilizing
colorimetric changes and sophisticated image processing, offer
high precision, portability, and user-friendliness, making them
suitable for remote and real-time monitoring. However, these
methods may necessitate specific reagents and con-trolled
conditions for optimal performance. This research underscores
the potential for developing cost-effective and user-friendly
smartphone-based pH detection systems with broader appli-
cations.

III. MATERIALS AND METHODS

A. Chemicals

Ortho-Phosphoric acid (85-88%) and sodium hydroxide
(99%) were purchased from R & M Chemicals. All chemicals
were of analytical grade and used as received without further
purification. Distilled water was used in all experiments. Green
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Fig. 1. Schematic illustration of the smartphone colorimetric sensors data
gathering. (a) smart phone, (b) PVC pipe of, (c) Cuvette containing sample
solution, (d) light diffuser that is a one-centimeter-thick hot glue, (e) torch

light as the source of light.

mango leaves were collected from apple mango trees in Kuala
Nerus, Terengganu, in November and December 2023.

B. Sample Preparation for Colorimetric Studies

Mango leaves powder was prepared by thoroughly washing
the leaves with tap water, followed by three additional rinses
with distilled water. The washed leaves were then dried in an
air oven at 65°C for 48 h. After drying, the leaves were ground
and sieved to obtain a powder with a particle size of 120 µm.
To prepare standard solutions covering a pH range from 1 to
13, a sequential dilution process was conducted. This process
involved diluting stock solutions of 1M H3PO4 and 1M NaOH
with distilled water. The dilution ratios were exactly adjusted
to achieve the desired pH levels for each standard solution.
For colorimetric studies, 40 mL of each standard solution was
mixed with 0.1 g of mango leaves powder. The mixture was
manually shaken for 1 min at room temperature and then
centrifuged at 8000 rpm for 15 min. The supernatants were
removed and filtered using a Nylon syringe filter with a pore
size of 0.22 µm. The filtered samples were then transferred to
cuvettes for colorimetric analysis.

C. Dataset

Seven different smartphones were used to capture three sets
of photographs for each sample with pH values ranging from
1 to 13. A simple photography setup, as illustrated in Fig. 1,
was employed for image acquisition. The apparatus consisted
of a commonly available 1-inch PVC pipe (Fig. 1(b)) designed
to produce consistent images. A 22cm long polyethylene
pipe with a 4.5cm inner diameter was used for the setup.
A white LED flashlight (Eveready LC1L2A) was placed at
one end of the pipe to illuminate the samples (Fig. 1(e)).
To position the samples, a hole was created 7cm from the
light source. A 0.5cm thick layer of translucent hot melt
glue was applied inside the pipe to evenly distribute the light
(Fig. 1(d)). The smartphone camera was positioned at the
opposite end of the pipe to capture images of the samples
(Fig. 1(a)). All photographs were taken of samples placed in
standard spectrophotometer cuvettes with dimensions of 4.5cm
height, 3.5mL capacity, and an optical range of 190−2500nm
(Fig. 1(c)).

Image files were renamed to accurately reflect sample type
details and subsequently transferred to a computer system.

Fig. 2. Heat map chart of suitable pH ranges in aquaculture, as reported in
the literature.

iPhone images were converted to JPG format post-transfer. Im-
age boundaries were then delineated using the VIA annotation
tool [37].

A dataset of 819 images was initially collected, reduced
to 817 images after excluding two due to incorrect labeling.
A Python script was developed to extract dominant colors
within annotated regions of interest from each image. This
process involved applying K-Means clustering with K=1 to
determine the predominant color within the annotated regions
of the image.

In addition to the dominant color’s RGB value, Exif
metadata was extracted from each image and integrated into the
dataset. Feature engineering was applied to create additional
features, such as average image intensity (mean of RGB
values) and grayscale values calculated using,

0.299R+ 0.587G+ 0.114B,

The red-to-green ratio was calculated and added as an
additional feature to the dataset. Subsequently, RGB values
were converted to XYZ, HSL, and LAB color spaces using
the Python colormath library.

D. pH Class Construction

The original dataset contained a discrete target variable,
pH, with 13 distinct classes, forming a 13-class classification
problem (Y13). To create datasets with reduced class numbers,
a label binarization process was applied. The pH values were
grouped into three and five classes for the Y3 and Y5 datasets,
respectively. These new datasets represent multi-class classifi-
cation problems with reduced cardinality. Table II outlines the
binning criteria used to transform the original 13 classes into
the desired number of classes.

TABLE II. CLASSIFICATION SCENARIOS

Scenario Label pH
low high

Y3
Acidic 1 3
Neutral 4 6
Basic 7 13

Y5

Lethal Acidic 1 3
Acidic 4 5
Neutral 6 9
Basic 9 10
Lethal Basic 11 13

Fig. 2 presents a heat-map generated from Table I data
that was used as the reference points for determining class
boundaries. Colour intensity within the heat-map indicates the
frequency with which a pH range was reported as optimal in
the literature. These ranges were used as a reference to define
pH class boundaries for the Y3 and Y5 datasets.
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E. XGBoost Classifier

The XGBoost was selected as it offers a compelling
alternative to complex deep learning mod-els, particularly for
tabular data problems, due to its practicality, robustness, and
effectiveness (Harrison, 2023). This algorithm belongs to a
family of Ensemble learning, a meta-algorithmic framework
that amalgamates multiple base models to enhance predictive
accuracy and robustness, has witnessed substantial growth
in recent years. Within this domain, boosting has gained
recognition for its effectiveness as a sequential approach where
models are iteratively developed to correct the errors of their
predecessors. Among boosting algorithms, XGBoost stands out
as a leading option, known for its computational efficiency,
scalability, and superior predictive accuracy. Unlike traditional
gradient boosting methods, XGBoost introduces key enhance-
ments such as regularization, optimized tree construction, and
robust handling of missing data. The primary objective of
XGBoost is to minimize a loss function that includes both
a differentiable error component and a regularization term,
which helps prevent over-fitting. This approach is mathemati-
cally represented as:

L(θ) = Σn
i=1l(yi, ŷi) + Ω(θ)

The algorithm iteratively builds decision trees, with each
tree refining the predictions made by the previous ensemble.
XGBoost accelerates the training process by utilizing tech-
niques such as approximation, weighted quantile sketches, and
columnar storage. Furthermore, it incorporates a regularized
objective function that includes both L1 and L2 regularization,
which helps prevent overfitting and enhances generalization.
XGBoost’s ability to efficiently handle missing values, along
with its parallel computing capabilities, has solidified its domi-
nance in various machine learning competitions and real-world
applications.

F. Hyperparameter Tuning

Hyperparameter tuning was performed utilizing a stepwise
approach with Hyperopt. This method iteratively explores the
space of possible hyperparameter values. In each iteration, a
configuration is drawn from the search space, an XGBoost
model is trained with those parameters, and the model’s per-
formance is evaluated using a chosen metric. This information
is then used by Hyperopt to update its internal model of the
search space, prioritizing regions that are more likely to contain
high-performing configurations. This process continues until a
stopping criterion, such as a maximum number of iterations, is
met. The main advantage of this approach is its faster execution
time compared to other methods. Table III shows the value of
the hyper parameters for each classification scenario.

TABLE III. THE HYPER PARAMETER VALUES AS THE RESULT OF
HYPERPARAMETER TUNING FOR EACH SCENARIO

Parameter Y3 Y5 Y13
max depth 4 8 5
min child weight 0.69 0.44 0.22
subsample 0.87 0.92 0.67
colsample bytree 0.53 0.72 0.96
reg alpha 0.59 0.89 0.47
reg lambda 4.57 1.75 8.64
gamma 0.00 0.01 0.00
learning rate 0.52 0.27 0.48

IV. METHODOLOGY

As previously described, three distinct classification sce-
narios, labeled Y3, Y5, and Y13, were established. To opti-
mize model performance, hyper-parameter tuning with early
stopping was implemented for each scenario. The identified
optimal parameters were subsequently employed to train re-
spective models. A comprehensive evaluation of these models
was undertaken, en-compassing precision, recall, F1-score, and
support metrics. To provide a visual representation of model
performance, a variety of diagnostic plots were generated.
These included confusion matrix heat-maps to visualize clas-
sification accuracy, prediction error charts to identify patterns
in mis-classifications, classification charts to assess overall
performance, and AUC-ROC curves to evaluate the model’s
ability to discriminate between positive and negative classes.

V. RESULTS

Fig. 3 presents the confusion matrices for the three sce-
narios. The results indicate that model performance generally
improved as the number of classes decreased. In the Y3
scenario, the model achieved perfect classification of all Basic
samples. Similarly, all samples in the “lethal acidic” category
were correctly classified in the Y5 scenario. A common
trend emerged, demonstrating superior model performance for
samples at the extreme ends of the class spectrum. Conversely,
classification accuracy tended to diminish for samples in the
intermediate classes, a pattern particularly evident in the Y13
scenario.

Fig. 4 illustrates the class prediction error profiles for the
three classification models using stacked bar charts. Each bar
represents a true class, segmented into stacked bars indicating
the predicted classes. This visualization provides insights into
the types of errors made by the models.

In the Y3 and Y5 scenarios shown in Fig. 4a and Fig. 4b
respectively, the models demonstrated relatively strong perfor-
mance, with most observations correctly classified within their
respective true classes. However, the Y13 (show in Fig. 4c)
model exhibited a more pronounced error pattern. The stacked
bars for pH 9 and pH 5 classes were notably taller than others,
indicating higher rates of mis-classification for these cate-
gories. This suggests potential class overlap, where instances
of pH 9 might share similar feature characteristics with other
classes, leading to confusion during the classification process.
Additionally, the model might have been underrepresented in
training data for these classes, contributing to lower classifica-
tion accuracy. These findings highlight the challenges inherent
in multi-class classification tasks, where class boundaries can
be less distinct and model performance is influenced by factors
such as data quality and feature engineering.

Fig. 5 presents a heatmap visualization of key classification
metrics computed on a per-class basis. The heatmap encapsu-
lates four critical performance indicators: precision, recall, F1-
score, and support. Support represents the number of instances
within each class, providing a measure of class distribution.
Precision quantifies the accuracy of positive predictions, essen-
tially the proportion of correctly predicted positive instances
among all predicted positives. Recall, conversely, assesses a
model’s ability to identify all relevant instances, calculated as
the ratio of correctly predicted positive instances to the total
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(a) Y3 (b) Y5

(c) Y13

Fig. 3. Confusion matrices.

number of actual positive instances. The F1-score, a harmonic
mean of precision and recall, offers a balanced evaluation
of a model’s performance, providing a single metric that
considers both precision and recall. This metric ranges from
0 to 1, with higher values indicating superior performance.
A weighted average of the F1-scores across all classes is
commonly employed to compare the overall effectiveness of
different classification models.

Referring to Fig. 5c we can observe that while several
classes demonstrated robust classification capabilities, as indi-
cated by F1-scores exceeding 0.7, a subset of classes exhibited
suboptimal performance. These classes with lower F1-scores

suggest potential challenges in accurately identifying and clas-
sifying instances within these categories, warranting further
investigation into factors such as class imbalance, data quality,
or model complexity.

The original model, i.e. Y13 model, exhibited variable
performance across classes, with several notably lower F1-
scores. While the distribution of instances across classes ap-
peared balanced, as indicated by the support column in the
classification report, the intrinsic challenge of the problem
became apparent. The data, primarily composed of images
with subtle variations in shades of yellow, presented a complex
classification task. The model’s difficulties in distinguishing
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(a) Y3 (b) Y5

(c) Y13

Fig. 4. Class prediction errors.

be-tween these closely related visual features, coupled with the
limited discriminative power of the available features, likely
contributed to the sub-optimal performance. These findings
suggest that enhancing feature engineering or exploring more
sophisticated image processing techniques might be necessary
to improve classification accuracy for Y13 scenario.

The Y3 and Y3 scenario exhibit notably higher average
F1-scores compared to the original thirteen-class model. This
suggests that consolidating the original classes into fewer
categories has led to improved classification performance.
The Y3 model, in particular, demonstrates consistently strong
performance across all classes, with F1-scores above 0.88. The
Y5 model also shows promising results, with three classes
achieving F1-scores above 0.7. These findings imply that the
complexity introduced by the thirteen-class model might have
hindered its ability to accurately discriminate between closely
related classes. By reducing the number of classes, the models
were able to focus on more distinct categorical boundaries,
resulting in enhanced classification accuracy.

The ROC AUC curves, as shown in Fig. 6, provide
valuable insights into the discriminative power of the models
across different class scenarios. The Y3 model (see Fig. 6a)
exhibits exceptional performance, with all classes achieving
AUC values close to 1. This indicates an outstanding ability
to differentiate between the three classes. While the Neutral
class in Y3 shows a slightly lower AUC of 0.94 compared
to the other two classes, the overall performance remains
exceptionally high. The same is true for the Y5 (see Fig. 6b)
model as it has shown comparable performance with the Y3

model.

In contrast, the Y13 model (see Fig. 6c) presents a more
complex picture. While the macro and micro average AUC
values of 0.96 are still commendable, the individual class
performance varies. Classes “pH 6” and “pH 3” show notably
lower AUC values, suggesting challenges in distinguishing
these classes from others. This aligns with the previously
discussed difficulties in classifying closely related shades of
yellow.

Overall, the ROC AUC analysis reinforces the findings
from the F1-score evaluation. The Y3 model demonstrates
superior discriminative power, likely due to the increased class
separability. The Y13 model, while showing good overall
performance, struggles with certain classes, emphasizing the
impact of feature similarity and the potential limitations of the
current feature set.

These results further support the conclusion that refin-
ing feature engineering or exploring more advanced image
processing techniques could be crucial for improving the
performance of the thirteen-class model.

This research evaluated the feasibility of developing a cost-
effective smartphone-based pH detection system for aquacul-
ture. While commercial pH sensors provide precise measure-
ments, their high cost limits their adoption by small-scale
farmers.

To address this gap, we developed a method using readily
available materials like mango leaves, smartphones, and simple
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(a) Y3 (b) Y5

(c) Y13

Fig. 5. Classification report.

photography equipment. Our results demonstrate that while
models like Y13 may not achieve the precision of commercial
sensors, models Y3 and Y5 can effectively estimate pH ranges.
This level of accuracy aligns with the practical needs of most
aquaculture farmers, as precise pH values are often less critical
than maintaining pH within specific ranges (see Table I).

Our proposed method offers a low-cost, accessible alter-
native to traditional pH monitoring. By reducing reliance on
expensive equipment, it has the potential to improve water
quality management in aquaculture. However, to ensure reli-
able results, farmers should conduct multiple tests and consider
factors such as water change frequency and potential water
treatment measures.

VI. CONCLUSION

This study successfully demonstrated the potential of a
smartphone-based sensor for pH monitoring in aquaculture
settings. By integrating the colorimetric properties of mango
leaf extract with advanced image processing and machine
learning techniques, we developed a predictive model for pH
levels. This approach offers a sustainable and economically
viable alternative to traditional pH sensors.

The use of a natural indicator aligns with eco-friendly
aquaculture practices while the smartphone platform enhances
accessibility. Farmers can potentially utilize this device for
regular water quality assessments, enabling proactive pond
management.

While the initial results are promising, further research is
imperative to improve the model’s precision and reliability

under diverse environmental conditions. Extensive field trials
are necessary to validate the sensor’s effectiveness in real-
world aquaculture scenarios. Overcoming these challenges is
crucial for transforming the technology into a practical and
indispensable tool for aquaculture practitioners.

Ultimately, the development of cost-effective and user-
friendly water quality monitoring solutions is essential for the
sustainable growth of the aquaculture industry. This research
represents a significant step towards achieving this goal. By
providing farmers with data-driven insights into water quality,
we can enhance the overall health and productivity of aqua-
culture systems while minimizing environmental impact.
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A. Bayram, A. Bayram, N. Horzum, N. Horzum, M. Solmaz, and
M. E. Solmaz, “Smartphone-based colorimetric detection via machine
learning,” Analyst, 2017.

[34] E. V. Woodburn, K. D. Long, and B. T. Cunningham, “Analysis of
Paper-Based Colorimetric Assays With a Smartphone Spectrometer,”
IEEE Sensors Journal, vol. 19, no. 2, pp. 508–514, jan 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8494768/

[35] H. Park, Y. G. Koh, and W. Lee, “Smartphone-based colorimetric anal-
ysis of structural colors from pH-responsive photonic gel,” Sensors and
Actuators B: Chemical, vol. 345, p. 130359, oct 2021. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S0925400521009278

[36] L. Zou, C. Mai, M. Li, and Y. Lai, “Smartphone-
assisted colorimetric sensing of enzyme-substrate system using
pH-responsive gold nanoparticle assembly,” Analytica Chimica
Acta, vol. 1178, p. 338804, sep 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0003267021006309

[37] A. Dutta and A. Zisserman, “The VIA Annotation Software for
Images, Audio and Video,” in Proceedings of the 27th ACM
International Conference on Multimedia, ser. MM ’19. New York,
NY, USA: ACM, 2019, event-place: Nice, France. [Online]. Available:
https://doi.org/10.1145/3343031.3350535

www.ijacsa.thesai.org 1342 | P a g e


