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Abstract—Adversarial attacks represent a significant threat
to the robustness and reliability of deep learning models, par-
ticularly in high-stakes domains such as medical diagnostics.
Advanced Persistent Threat (APT) attacks, characterized by
their stealth, complexity, and persistence, exploit adversarial
examples to undermine the integrity of AI-driven healthcare
systems, posing severe risks to their operational security. This
study examines the transferability of adversarial attacks across
pre-trained models deployed for COVID-19 diagnosis. Using two
prominent convolutional neural networks (CNNs), ResNet50 and
EfficientNet-B0, this study explores critical factors that influence
the transferability of adversarial perturbations, a vulnerability
that could be strategically exploited by APT attackers. By
investigating the roles of model architecture, pre-training dataset
characteristics, and adversarial attack mechanisms, this research
provides valuable insights into the propagation of adversarial
examples in medical imaging. Experimental results demonstrate
that specific model architectures exhibit varying levels of suscep-
tibility to adversarial transferability. ResNet50, with its deeper
layers and residual connections, displayed enhanced robustness
against adversarial perturbations, whereas EfficientNet-B0, due
to its distinct feature extraction strategy, was more vulnerable to
perturbations crafted using ResNet50’s gradients. These findings
underscore the influence of architectural design on a model’s
resilience to adversarial attacks. By advancing the understanding
of adversarial robustness in medical AI applications, this study
offers actionable guidelines for mitigating the risks associated
with adversarial examples and emerging threats, such as APT
attacks, in real-world healthcare scenarios.
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I. INTRODUCTION

The application of deep learning (DL) in medical imaging
has transformed the landscape of disease diagnosis, offering
unprecedented accuracy and efficiency. Particularly, the re-
markable diagnostic capabilities of pre-trained DL models such
as ResNet50 and EfficientNet-B0 have significantly enhanced
disease detection from X-ray images in the medical field [1],
[2], [3], [4]. These models excel particularly due to their DL
architectures that effectively capture complex features, thus
improving predictive accuracy in clinical settings. A critical
advantage of employing these pre-trained models lies in their
capability to function effectively even with limited labelled
medical datasets. Through transfer learning, they can be fine-
tuned using relatively smaller datasets, which is especially ben-
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eficial in scenarios where comprehensive medical annotations
are scarce or costly to obtain.

Despite their successes, these models are notably sensitive
to adversarial attacks—a form of manipulation where subtle
modifications are made to input data to mislead models into
making incorrect predictions [5], [6]. This vulnerability is
further compounded by the transferability property, where
adversarial examples crafted for one model can deceive another
[7]. The risk becomes even more pronounced with the emer-
gence of Advanced Persistent Threat (APT) attacks, which
are stealthy, complex, and persistent cyber threats aimed at
disrupting or stealing information from targeted systems [22].
In this context, adversarial examples serve as a strategic tool
for APT attackers to manipulate DL models in healthcare,
thereby undermining the integrity of AI-driven diagnostics
[23]. The efficacy of such attacks has been demonstrated in
various domains, particularly in the medical field, where the
high stakes of misdiagnosis or overlooking critical patient
conditions can lead to severe consequences [8], [9].

Several studies across various domains have highlighted
the efficacy of such attacks on DL models, demonstrating
that models can be misled by carefully perturbed inputs.
Among the plethora of attack methods, the Projected Gradient
Descent (PGD) [10] and Fast Gradient Sign Method (FGSM)
[6] are particularly noteworthy due to their simplicity and
effectiveness. In the medical field, this sensitivity poses a
unique risk as it could lead to misdiagnosis or overlook critical
patient conditions, emphasizing the need for models to be both
accurate and robust. In this context, robustness in DL models
refers to their ability to maintain performance and make correct
predictions despite the presence of adversarial perturbations in
their inputs. Studies focused on improving model robustness
often explore techniques such as adversarial training [11],
where models are trained with adversarial examples to learn to
resist them. Other techniques include gradient masking [12] to
obscure the model’s gradients and using defensive distillation
to train models that are inherently more robust. Research has
shown varying levels of success with these defenses, highlight-
ing the need for continuous exploration of more robust solu-
tions. However, despite these defensive strategies significantly
enhancing the robustness of DL models, their effectiveness
tends to diminish against unfamiliar attacks. In this realm,
prior research has predominantly concentrated on assessing
robustness by examining vulnerabilities to Gaussian Noise,
out-of-distribution scenarios, and shortcut learning [13], [14],
[15]. Yet, there has been a lack of focus on evaluations against
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adversarial examples. Specifically, there is a gap in assessing
how reliably pre-trained models perform against transferable
adversarial images originating from different models. This
study is primarily guided by two questions: How vulnerable
are pre-trained DL models, employed in medical imaging,
to adversarial attacks, particularly those that are designed to
be transferable between models? And, what strategies can
be implemented to enhance the robustness of these models
against such sophisticated threats? Correspondingly, the ob-
jectives of this research are to investigate the transferability
of non-targeted attacks by generating and analyzing adver-
sarial images using two different attack methods (FGSM and
PGD) across two pre-trained networks that have been fine-
tuned on medical imagery. This research provides a thorough
assessment of the susceptibility of widely-used pre-trained
models to transferable adversarial attacks, thereby highlighting
critical security vulnerabilities within DL applications in the
medical field. By conducting this comprehensive vulnerability
assessment, the study illuminates areas where current models
are prone to compromise, guiding future enhancements in both
model design and application. Furthermore, the findings of this
research contribute significantly to the broader understanding
of the effectiveness of current defensive strategies against
adversarial attacks. This evaluation is crucial for developing
more robust defensive mechanisms that can effectively protect
DL systems in high-stakes environments such as healthcare.

The implications of our findings are profound, impacting
the deployment of DL models within healthcare settings.
Through our meticulous examination of model vulnerabilities
and robustness, this work not only enhances the reliability of
automated disease diagnostics but also ensures the protection
of sensitive medical data against malicious cyber activities.

A. Transferability of Adversarial Examples: An Overview

In examining the existing literature, the concept of transfer-
ability was first discussed in [5], where Szegedy et al. explored
the ability of adversarial samples to transfer across models
using the same data set as depicted in Fig. 1. Subsequently,
Goodfellow et al. in [6] noted that transferable images closely
corresponded with model weights, and that models tended to
learn similar weights for similar tasks. However, their findings
in [16] indicated that this pattern does not hold for models
based on ImageNet. It has been shown in [17] that models
trained on the same tasks share portions of subspaces, which
facilitates transferability.

Fig. 1. Transferability of adversarial attack.

Further research into the vulnerability of DL systems in

medical image analysis has shown that pre-training dramati-
cally increases the transferability of adversarial examples, even
across differing architectures. However, variations in training
data and model architecture significantly decrease the success
of these attacks, emphasizing the need for careful consideration
of these elements in security-critical applications [18]. The
remainder of this paper is organized as follows: Section II
delves into the methodology employed to generate and evaluate
adversarial attacks on the discussed DL models. Section III
presents a detailed account of the results obtained from these
evaluations, showcasing the vulnerabilities and performance
metrics under various adversarial conditions. Section IV dis-
cusses the implications of these findings, offering insights
into the robustness of the models. Finally, Section V suggests
avenues for future research, underscoring the critical need for
continuous improvements in the security of AI systems within
the field of medical imaging.

II. STUDY DESIGN

A. Target Architecture

To assess the robustness of pre-trained models against
adversarial attacks, two prominent architectures are selected
that have demonstrated exceptional effectiveness in medical
diagnostics through X-ray imaging:

• Residual Networks (ResNet) [19]: Known for their
ability to be deeply layered without the degradation
in performance typically seen in traditional deep net-
works, ResNets employ an identity mapping layer that
adds the output of previous layers to subsequent ones,
enabling effective learning in deeper architectures.

• EfficientNet-B0 [20]: This model represents a scal-
able approach to convolutional networks that balances
network depth, width, and resolution, which has been
shown to achieve superior performance. The scaling
method, based on an efficient compound coefficient,
allows the model to systematically adjust to varied
data complexities and resource allocations.

B. Adversarial Examples Generation

Two adversarial techniques are employed to generate ex-
amples designed to probe and expose vulnerabilities within
these architectures:

• Fast Gradient Sign Method (FGSM): As one of the
simplest yet effective adversarial attacks, FGSM [6]
perturbs images by adding noise derived from the sign
of the gradient of the loss function with respect to the
input image as illustrated by Eq. 1, scaled by a small
factor ϵ. This method challenges the model’s resilience
to slight but targeted data modifications.

x′ = x+ ε · sign(∇xJ(θ, x, y)) (1)

• Projected Gradient Descent (PGD): An iterative
method that builds upon FGSM by taking multiple
small steps in the direction of the gradient [10],
each time projecting back to the epsilon-constrained
perturbation space as shown by Eq. 2. This attack tests
the model’s robustness across a series of incremental
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yet adversarial modifications, offering insights into its
defensive capabilities.

X̃N+1 = ClipX,ε

{
X̃N + α · sign(∇XJ(X̃N , y))

}
(2)

C. Dataset and Model Configuration

In this study, two distinct X-ray image datasets were
utilized. The first dataset included samples labeled as COVID-
19 and Normal, while the second dataset contained images cat-
egorized as Pneumonia and Normal, sourced from Kaggel [21].
To address class imbalance, a balanced subset of 5,259 images
was extracted from the COVID-19 dataset, with 2,631 COVID-
19 cases and 2,628 Normal cases. Similarly, the Pneumonia
dataset was balanced by selecting 1,344 images of Pneumonia
cases and 1,341 Normal cases for model fine-tuning.

The COVID-19 dataset was used to train and fine-tune
ResNet50 and EfficientNet-B0 models. As illustrated in Fig. 2,
ResNet50 was initially trained and fine-tuned on the COVID-
19 dataset to serve as a baseline model for generating ad-
versarial examples. In parallel, the EfficientNet-B0 model
was also trained on the same dataset to evaluate the trans-
ferability and impact of adversarial attacks across different
model architectures. Additionally, the EfficientNet-B0 model
was fine-tuned on the Pneumonia dataset to further assess
the transferability of attacks across datasets with differing
characteristics. Adversarial examples were generated using
two common adversarial attack methods: FGSM and PGD.
These methods were applied to the fine-tuned ResNet50 model.
The perturbations were varied across three epsilon values —
0.01, 0.05, and 0.1 — to create adversarial examples that
tested the models at different levels of attack intensity. This
approach allowed the investigation of both models’ robustness
under increasing adversarial perturbations and the impact of
different attack magnitudes on model performance. Fig. 3
shows the impact of applying FGSM attack on covid sample
with different values of perturbations.

D. Evaluation Metrics and Scenarios

The effectiveness of the adversarial examples was assessed
through several rigorous scenarios:

• Intra-model evaluation on ResNet50: Testing the gen-
erated adversarial examples on the same model from
which they were derived highlights the internal robust-
ness of the model against self-generated threats.

• Cross-model transferability to EfficientNet-B0: This
test evaluates how adversarial examples designed for
one model affect another, providing a measure of the
adaptability and generalizability of defensive mecha-
nisms across different architectures.

• Cross-dataset and model adaptability: By testing on
a variant of the EfficientNet-B0 model fine-tuned on
a different medical dataset, this step assesses the
robustness and generalizability of the models across
medical conditions, which is crucial for real-world
application.

Performance metrics such as accuracy and AUC-ROC are used
to quantify the models’ diagnostic accuracy and robustness

under adversarial conditions, effectively highlighting potential
vulnerabilities and areas for improvement in AI applications
in medical imaging.

III. RESULTS

The resulting adversarial examples were evaluated on the
same ResNet50 model to assess intra-model resilience and
on EfficientNet-B0 models fine-tuned on either COVID-19 or
pneumonia datasets to explore inter-model transferability.

A. Intra-model Robustness of ResNet50

The adversarial attacks generated against the ResNet50
model provided significant insights into its robustness, quan-
titatively summarized by robustness scores calculated for both
true positive and true negative predictions across different
perturbation levels.

1) FGSM attack: As shown in Table I, at lower perturba-
tion levels (ϵ = 0.01), ResNet50 displayed robust performance
with an accuracy of 91.56%, indicating effective handling of
slight perturbations. However, as the perturbation magnitude
increased, we observed a pronounced drop in model accuracy
(68.36% for ϵ = 0.05 and 50.62% for ϵ = 0.1), suggesting a
substantial degradation in model discrimination capability. The
robustness scores for true positives remained high at 0.9934,
reflecting the model’s resilience in correctly identifying pos-
itive cases. However, the true negatives robustness score of
0.4818 indicates significant vulnerability in correctly rejecting
non-conditions at higher perturbations.

TABLE I. RESNET50 TRAINED ON COVID-19 ATTACKED BY FGSM
ATTACK

ε TP FN FP TN Accuracy

0.01 2581 50 394 2234 0.9156
0.05 2629 2 1661 964 0.6836
0.1 2631 0 2597 31 0.5062

2) PGD attack: As illustrated in Table II, this model ex-
hibited higher resilience to PGD attacks at lower perturbations
(96.08% accuracy at ϵ = 0.01), likely due to PGD’s iterative
nature allowing the model to better adapt to gradual changes.
However, similar to FGSM, increased perturbation levels led to
a considerable decrease in performance (accuracy of 55.22%
at ϵ = 0.1). The robustness scores for true positives under
PGD attacks were lower (0.7504) compared to FGSM, reflect-
ing a balanced decline in performance across both positive
and negative classifications, with true negatives achieving a
robustness score of 0.6715. These results underscore that while

TABLE II. RESNET50 TRAINED ON COVID-19 ATTACKED BY PGD
ATTACK

ε TP FN FP TN Accuracy

0.01 2161 52 78 1024 0.9608
0.05 1122 8 331 759 0.8473
0.1 2624 7 2348 280 0.5522

ResNet50 can manage lower intensity adversarial attacks, its
vulnerability escalates with increased perturbation magnitude,
especially under FGSM’s more disruptive approach.
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Fig. 2. Schematic diagram of robustness evaluation against transferable adversarial examples.

Fig. 3. Generation of adversarial COVID example using FGSM attack.

B. Inter-model Transferability to EfficientNet-B0

The evaluation of adversarial examples on EfficientNet-B0
model trained on different dataset highlighted critical aspects
of model transferability and dataset-specific robustness.

• EfficientNet-B0 trained on COVID-19: The FGSM
and PGD attacks at low perturbation levels (ϵ = 0.01)
resulted in relatively high accuracies (95.03% for PGD
and 79.18% for FGSM) as shown in Tables III and IV,
suggesting that EfficientNet-B0 can effectively handle
adversarial examples when the training and attack
contexts are aligned. However, the robustness scores
provide additional insight:

◦ TP robustness score decreased from 0.95 to
0.60 as ϵ increased from 0.01 to 0.1.

◦ TN robustness score showed a more significant
decline from 0.85 to 0.30 across the same
range of perturbations.

These numbers indicate that while the model main-
tains a moderate ability to correctly identify positive
cases, its capability to correctly reject negative cases is
substantially compromised as perturbations intensify.

• EfficientNet-B0 trained on pneumonia: This configu-
ration demonstrated poor performance across all per-
turbation levels for both FGSM and PGD attacks, with
overall accuracies and robustness scores deteriorating
to around 50% or lower as illustrated in Tables V and
VI. The specific robustness scores further highlight the
challenges:

◦ TP robustness score consistently remained be-
low 0.50 across all levels of perturbation.

◦ TN robustness score was particularly low, hov-
ering around 0.40, even at lower perturbations.

The consistently low robustness scores, especially for
TN, underscore the substantial vulnerabilities of the
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EfficientNet-B0 model to adversarial attacks when
trained on pneumonia images as evidenced in Fig. 4
and 5. The performance remains near random classi-
fication levels at varying perturbation levels for both
types of attacks, illustrating the model’s difficulty in
maintaining accuracy under adversarial conditions.

TABLE III. EFFICIENTNET-B0 TRAINED ON COVID-19 ATTACKED BY
PGD ATTACK

ε TP FN FP TN Accuracy

0.01 2213 0 166 936 0.9503
0.05 1130 0 1090 0 0.509
0.1 2631 0 2628 0 0.5003

TABLE IV. EFFICIENTNET-B0 TRAINED ON COVID-19 ATTACKED BY
FGSM ATTACK

ε TP FN FP TN Accuracy

0.01 2631 0 1095 1533 0.7918
0.05 2631 0 2625 0 0.5006
0.1 2631 0 2628 0 0.5003

TABLE V. EFFICIENTNET-B0 TRAINED ON PNEUMONIA ATTACKED BY
PGD ATTACK

ε TP FN FP TN Accuracy

0.01 0 2213 73 1029 0.3104
0.05 0 1130 0 1190 0.5129
0.1 0 2631 0 2628 0.4997

TABLE VI. EFFICIENTNET-B0 TRAINED ON PNEUMONIA ATTACKED BY
FGSM ATTACK

ε TP FN FP TN Accuracy

0.01 0 2443 93 2326 0.4789
0.05 0 2631 0 2625 0.4994
0.1 0 2631 0 2628 0.4997

C. Intra-model Robustness of ResNet50 and FGSM vs. PGD
impact

The evaluation of FGSM and PGD attacks on the ResNet50
model revealed critical insights into the differential impacts
of these adversarial methods. FGSM, due to its one-step,
maximal perturbation approach, tends to exploit the gradients
of the model aggressively. This leads to significant changes
in the input space that are not necessarily optimal but are
sufficient to disrupt the model’s performance drastically at
higher perturbation levels. FGSM’s strategy of applying a
large, uniform adjustment to the input image often results in
more pronounced errors in model predictions because it forces
the model to respond to an abrupt deviation from the learned
data distribution.

In contrast, PGD’s iterative nature, involving multiple
smaller steps with adjustments, allows the model more room
to adapt to changes, resulting in a less steep decline in per-
formance as perturbation increases. This iterative refinement
helps in exploring a more effective adversarial path that,
while potent, typically leads to less dramatic performance
degradations compared to FGSM.

IV. DISCUSSION

A. Transferability and Architecture Impact on EfficientNet-B0
vs. ResNet50

When comparing the impact of the same adversarial ex-
amples on EfficientNet-B0 and ResNet50, both trained on the
COVID-19 dataset, a notable difference in their vulnerability
to attacks was observed. Despite being trained under similar
conditions, EfficientNet-B0 generally exhibited more suscep-
tibility to adversarial perturbations than ResNet50. Several
factors contribute to this observed difference:

• Architectural differences: EfficientNet-B0 and
ResNet50 differ significantly in their architecture.
EfficientNet-B0 is designed to systematically scale
width, depth, and resolution with a compound
coefficient, which could potentially expose it to
different sensitivities in processing adversarial inputs
compared to ResNet50. The latter’s architecture,
with residual connections and deeper layers, might
inherently provide better resilience against abrupt
changes in input data, enabling it to maintain
performance under adversarial conditions better.

• Transferability issues: The concept of transferability of
adversarial examples across models posits that adver-
sarial examples effective against one model may not
necessarily perform the same against another due to
differences in model architecture, even if the training
data is the same. This is evident in the discrepan-
cies in model performance under attack. EfficientNet-
B0’s structure may lead to different feature extraction
and prioritization, making it less robust to perturba-
tions designed based on the gradient information of
ResNet50.

• Adversarial sensitivity: The sensitivity of each model
to adversarial examples also depends on the specific
ways each architecture processes inputs and learns
features. EfficientNet-B0’s variance in handling input
features might make it inherently more vulnerable to
certain types of adversarial noise that ResNet50 can
resist better due to its architectural robustness and
perhaps different learning dynamics.
These findings highlight the complex interplay be-
tween model architecture, training dataset, and the
nature of adversarial attacks in determining the robust-
ness of DL models. FGSM’s aggressive perturbation
strategy disproportionately affects model performance
compared to PGD, underscoring the need for defensive
strategies that can address sudden, large-scale input
distortions. Additionally, the difference in the impact
of adversarial examples on EfficientNet-B0 compared
to ResNet50 despite similar training conditions un-
derscores the importance of considering architectural
characteristics when developing and deploying models
in adversarial environments. This emphasizes the ne-
cessity for tailored defensive mechanisms that account
for specific architectural vulnerabilities to enhance the
security and reliability of models in critical applica-
tions like medical imaging.
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Fig. 4. ROC curves of EfficientNet-B0 model fine-tuned on COVID-19 dataset for both FGSM (Top row) and PGD (Second row) with perturbation values
0.01, 0.05, 0.1 (from left to right).

V. FUTURE RESEARCH DIRECTIONS

The insights garnered from our investigation underscore
the urgent need to enhance the robustness and security of AI
systems utilized in medical imaging. In pursuit of this goal,
this study proposes several critical areas of future research:

• Architectural Innovations: The findings reveal diverse
responses to adversarial perturbations by models such
as ResNet50 and EfficientNet-B0, indicating a need
for tailored architectural enhancements. Future stud-
ies should focus on optimizing DL architectures to
bolster their resilience. This could include integrating
architectural features that inherently improve defenses
against adversarial inputs, such as attention mecha-
nisms or dynamic routing layers, which may provide
more robust recognition capabilities under adversarial
conditions.

• Cross-Condition Robustness Testing: The variability
in model performance under adversarial attacks across
different medical conditions highlights a significant
gap in current research. Investigating the transfer-
ability of adversarial examples across a variety of
medical imaging datasets, especially those with dif-
ferent pathologies, is essential. This research will be
invaluable in revealing model limitations and aiding
in the design of AI systems that maintain high lev-
els of accuracy and reliability across various clinical
scenarios.

• Real-Time Adversarial Detection and Mitigation: To
maintain trust and ensure the reliability of medical AI

applications, it is crucial to develop systems capable
of detecting and mitigating adversarial attacks in real
time. Future work should explore the integration of
real-time anomaly detection systems within AI di-
agnostics frameworks. These systems could act as
critical safeguards, providing an additional layer of
security by actively monitoring and responding to
potential adversarial threats during clinical decision-
making processes.

By addressing these areas, future research will significantly
advance the development of medical imaging AI systems
that are not only accurate but also resilient to sophisticated
adversarial threats, ultimately enhancing patient safety and
trust in AI-driven diagnostics.

CONCLUSION

This study underscores the significant vulnerabilities of
pre-trained DL models in medical imaging to adversarial
attacks, highlighting crucial areas for improvement in model
robustness and security. Our examination of ResNet50 and
EfficientNet-B0 using adversarial examples generated through
FGSM and PGD revealed that the inherent architectural char-
acteristics of these models influence their resilience to such
attacks. While ResNet50 showed relative resilience at lower
perturbations, EfficientNet-B0 displayed a marked decline in
performance as perturbation levels increased, especially when
faced with adversarial examples from a condition different
from the training data.

The findings emphasize the importance of developing ro-
bust defense strategies that enhance the security and reliability
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Fig. 5. ROC curves of EfficientNet-B0 model fine-tuned on pneumonia dataset for both FGSM (Top row) and PGD (Second row) with perturbation values
0.01, 0.05, 0.1 (from left to right).

of medical imaging AI systems. Implementing adversarial
training, exploring architectural modifications, and enhancing
model training protocols are critical steps toward mitigating
the impact of adversarial attacks. Additionally, our study
highlights the need for ongoing research into the transferability
of adversarial attacks across different medical conditions,
ensuring that AI tools in healthcare remain dependable under
adversarial conditions.

By focusing on these aspects, the medical imaging commu-
nity can advance toward deploying AI systems that are not only
accurate but also resilient to the sophisticated threats posed by
adversarial attacks, ultimately safeguarding patient outcomes
and trust in AI-driven diagnostic processes.
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