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Abstract—Alzheimer's disease (AD), the most common type of 

dementia, is expected to affect 152 million people by 2050, 

emphasizing the importance of early diagnosis. This study uses the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, 

combining cognitive tests, biomarkers, demographic details, and 

genetic data to build predictive models. Using large language 

models (LLMs), specifically ChatGPT 3.5, we achieved high 

classification accuracy, with ROC AUC values of 0.98 for 

cognitively normal (CN) individuals, 0.99 for dementia, and 0.98 

for mild cognitive impairment (MCI). These findings show that 

LLMs can handle complex data quickly and accurately. By 

focusing on numerical and text-based data instead of just imaging, 

this method provides a cost-effective and accessible option for 

diagnosing AD. Adding genetic information improves the 

predictions, reflecting the important role of genetics in AD risk. 

This study highlights the potential of combining different types of 

data with advanced machine learning and LSTM to improve early 

AD diagnosis. Future research should explore more ways to 

combine data and test different machine learning models to 

further enhance diagnostic tools. 
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I. INTRODUCTION 

Alzheimer's disease (AD), the most common form of 
dementia, accounts for 60–80% of all dementia cases and is 
expected to become even more prevalent as populations age [1-
7]. By 2050, it is estimated that 152 million people worldwide 
will be living with Alzheimer's and other forms of dementia [1]. 
AD is particularly significant among non-communicable 
diseases, which together account for approximately 70% of 
global deaths [8-10]. The disease primarily affects older adults, 
impairing memory, behaviour, and reasoning abilities [11, 12]. 

To improve the health and quality of life for older adults, it 
is increasingly important to develop effective treatments for AD 
[13-15]. Although several biomarkers for early diagnosis have 
been identified [4], accurate diagnosis still partly relies on 
clinical criteria, which can take up to six months as symptoms 
gradually become apparent [16, 17]. Even when symptoms are 
clear enough for a confirmed diagnosis, AD remains incurable 
[10, 18, 19]. 

The Global Deterioration Scale [20] outlines symptoms 
such as decreased work performance, increased forgetfulness, 

and frequent disorientation during the mild cognitive 
impairment (MCI) stage. MCI is characterized by a prolonged 
period of decline that can last for around seven years [18]. This 
has led medical professionals to focus on establishing criteria 
for early diagnosis to slow or potentially prevent disease 
progression [14, 18]. 

Current medical practices for diagnosing AD can be time-
consuming. As a result, researchers are increasingly exploring 
approaches that combine medicine with computer science, 
particularly deep learning, to develop methods for earlier and 
more accurate diagnoses. This interdisciplinary focus has 
become a key area of ongoing research. 

Various approaches have been employed to diagnose 
Alzheimer’s disease (AD) as early as possible. These include 
skeleton-based human action evaluation [18], 3D CNN-based 
classification of sMRI and MD-DTI images to detect brain 
changes [8, 9, 19], and speech analysis [15, 17]. Monitoring 
dementia progression using 2D and 3D imaging techniques has 
become a sophisticated method, utilizing advanced medical 
imaging to track changes in brain structure and function over 
time [2, 7, 19, 21, 22]. Additionally, it is crucial to determine 
whether cognitive measures identified as predictive in research 
cohorts are also applicable in clinical memory clinics [2, 13, 23-
25]. 

This study aimed to identify the most effective measures for 
predicting future AD dementia in clinical settings where 
expensive biomarkers may not be widely available. Early 
detection of AD severity is critical [5, 14, 19, 26, 27]. While 
neuroimaging and computer-assisted diagnostic tools can 
detect AD in its early stages, these methods often lack high 
accuracy [11]. Techniques like Computed Tomography (CT), 
Positron Emission Tomography (PET), and Magnetic 
Resonance Imaging (MRI) significantly contribute to 
diagnosing brain disorders [28]. 

Advancements in medical imaging, supported by computer-
aided diagnostic research, have greatly improved the ability to 
monitor and predict dementia progression. 2D and 3D imaging 
techniques play an essential role, offering a comprehensive 
view through structural, functional, and molecular imaging. 
These advances continue to improve our understanding and 
management of this complex condition, providing hope for 
better patient outcomes. 
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However, several challenges persist. Advanced imaging 
techniques such as MRI and PET are expensive, making routine 
monitoring financially difficult for many patients. Access to 
high-quality imaging facilities is often limited, particularly in 
rural or underserved areas. Additionally, technical limitations 
such as resolution and sensitivity may prevent the detection of 
small or early brain changes. Imaging data can also be affected 
by noise and artifacts, complicating interpretation. Health-
related concerns include exposure to ionizing radiation from 
PET and CT scans, especially with repeated use, and discomfort 
or anxiety during MRI scans, particularly for patients with 
claustrophobia. 

From a technical perspective, the large volume of data 
generated by 3D imaging requires robust data management and 
analysis systems, along with advanced computational tools and 
expertise for handling and interpreting big data. While these 
imaging techniques provide valuable insights, their limitations 
underscore the importance of a balanced approach. 

Recent advancements have also identified blood-based 
biomarkers that can assist in monitoring dementia progression. 
These tests are less invasive than cerebrospinal fluid (CSF) tests 
and more practical for regular use. Key biomarkers include 
Amyloid Beta (Aβ), Tau Proteins, and Neurofilament Light 
Chain (NfL). Cognitive tests remain essential for assessing 
cognitive functions and tracking changes over time. Commonly 
used tests include the Mini-Mental State Examination (MMSE), 
Montreal Cognitive Assessment (MoCA), Clock Drawing Test, 
Alzheimer’s Disease Assessment Scale-Cognitive Subscale 
(ADAS-Cog), and neuropsychological testing. This paper 
consists of literature review, methodology, results, discussion 
and conclusion, where every section highlights related 
information. 

II. LITERATURE REVIEW 

Alzheimer’s disease (AD) is a neurological disorder that 
progressively worsens over time. It is typically divided into 
three main stages, with the early stage being particularly 
important [29]. One challenge with Alzheimer’s treatments is 
their limited effectiveness, especially during the disease’s 
typical eight-year progression [29]. 

In the early stage, daily activities gradually become more 
difficult. The most common signs include short-term memory 
loss and trouble learning new things [12, 29]. Other symptoms 
may include low energy, a sad mood, and a lack of interest or 
motivation [30]. Notably, individuals diagnosed with mild 
cognitive impairment (MCI) are at a significantly higher risk of 
developing AD [29]. In many cases, MCI is classified as the 
early stage of AD [31]. 

Researchers have also observed that difficulties with 
language—such as trouble pronouncing or remembering 
complex words—alongside challenges in performing daily 
tasks, may serve as early indicators of AD [29, 31, 32]. These 
findings suggest that there are more affordable diagnostic tools 
for detecting dementia than costly imaging techniques. Many 
studies have applied statistical analysis alongside other types of 
data (excluding imaging) to explore alternative methods for 
diagnosing Alzheimer’s disease (AD). For instance, human 
action evaluation has shown potential applications in areas such 

as assisted living, physical rehabilitation, sports activity 
scoring, and skills training [18]. This approach can also be 
applied to AD by using sequences of 3D skeletal joint data to 
assess the severity of the disease in patients. For example, Yu 
et al. [18] utilized a two-task graph convolutional network to 
analyze skeleton data for tasks involving abnormality detection 
and quality evaluation. Their method, evaluated using the UI-
PRMD dataset, demonstrated accurate abnormality detection. 

Taghvaei et al. [33] applied statistical analysis to investigate 
the relationship between white matter hyperintensities (WMH) 
tract disconnection and cognitive performance. Their study 
highlighted the significant role of demographic factors, such as 
education level, age, and sex, in influencing the relationship 
between WM tracts and cognitive scores. Similarly, Raj et al. 
[1, 34] emphasized the importance of genetics, which 
contributes to approximately 70% of the overall risk for AD. 
They introduced a system that combines text mining and 
machine learning to identify and prioritize candidate genes for 
AD, categorizing them into three association classes with 
corresponding weights. 

Another cost-effective method for predicting AD involves 
analyzing patients’ speech patterns [35]. Many studies have 
focused on acoustic and syntactic analysis of speech. For 
example, Haj Zargarbashi and Bagher [17] employed statistical 
and neural methods to classify audio signals into dementia and 
control groups, achieving an accuracy of 83.6%. Similarly, 
Vincze et al. [36] analyzed specific utterances using deep 
learning models, with and without demographic data, and found 
no significant differences between the models. Colla et al. [37] 
used large language models alongside N-grams and perplexity 
metrics to predict potential AD with an accuracy of 84%. 
Gómez-Zaragoza et al. [15] provided empirical evidence that 
punctuation and pauses in speech could reveal early signs of 
AD. A comprehensive review by [38] highlighted the high 
potential for deep learning to be utilized with medical data in 
future research. 

Cai et al. [35] examined methods for detecting AD through 
speech analysis by transcribing audio into text and extracting 
audio features using the WavLM model. They tested pre-
trained models and Graph Neural Networks (GNNs) with the 
DementiaBank Pitt dataset and applied fine-tuning techniques 
such as data augmentation (e.g., synonym replacement and 
GPT-based augmentation). Wang et al. [39] also used pre-
trained language models with fine-tuning methods, achieving 
up to 89% accuracy. Finally, blood tests have shown promise 
in detecting AD. Certain biomarkers in blood may indicate the 
potential presence of the disease. Kim and Lee [40] 
demonstrated that complex interactions among blood proteins 
could predict the likelihood of AD development. 

Several gaps have been identified in Alzheimer’s disease 
(AD) research. For example, while the ADNI dataset has been 
extensively used in studies focusing on MRI images [29], it has 
only been partially utilized. Most studies have concentrated 
solely on MRI images, overlooking the wealth of other 
information in the dataset that could enhance the analysis of 
AD. A recent systematic literature review by Singh et al. [41] 
found that the majority of AD studies used ADNI and deep 
learning methods, a trend confirmed by Alwuthaynani et al. [2], 
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but with an exclusive focus on MRI data. Similarly, Essemlali 
et al. [42] highlighted that one of the key challenges in dementia 
prediction lies in distinguishing between MCI and AD, as well 
as between NC (normal cognition) and MCI. These are among 
the most difficult classification tasks and often require 
additional data, such as multi-modality or genetic information, 
to improve predictions. 

This study leverages the powerful classification capabilities 
of large language models (LLMs), such as ChatGPT, to classify 
dementia stages. There is a notable lack of research utilizing 
LLMs with non-imaging data from the ADNI dataset to address 
classification problems. For instance, Agbavor and Liang [43] 
demonstrated that GPT-3 embeddings significantly improved 
Alzheimer’s detection accuracy from spontaneous speech, 
outperforming traditional methods based on acoustic features. 
They used models such as support vector classifiers and logistic 
regression, achieving high classification performance. Another 
study [44] combined imaging and phenotype data from the 
ADNI dataset with LLMs, achieving state-of-the-art 
performance in classifying Alzheimer’s and various stages of 
cognitive impairment. This highlights the effectiveness of 
integrating LLMs with diverse data types. 

However, as discussed, this study focuses on utilizing 
LLMs with textual and numerical data rather than imaging data. 
This approach aims to provide a cost-effective solution suitable 
for clinical settings and requiring less computational power. 
The methodology is informed by the work of Feng et al. [44], 
excluding imaging data, to create a more accessible and 
efficient model for AD classification. 

III. METHODOLOGY 

A. ADNI Dataset 

This study utilized the ADNI dataset due to its extensive use 
in recent research and its comprehensive collection of data 
necessary to achieve the goals of this study. The ADNI dataset, 
available at adni.loni.ucla.edu, has been widely referenced in 
studies related to Alzheimer’s detection [41, 45]. 

The ADNI project was launched in 2003 by the National 
Institute on Aging (NIA), the Food and Drug Administration 
(FDA), the National Institute of Biomedical Imaging and 
Bioengineering (NIBIB), private non-profit organizations, and 
pharmaceutical companies [41, 45]. Its original purpose was to 
determine whether the combination of genetic, neuroimaging, 
biomarker, clinical, and neuropsychological data could be used 
to predict Alzheimer’s disease. 

The ADNI dataset is renowned for its longitudinal design, 
capturing data at multiple time points. Images and other data 
are collected at baseline and then at intervals of 6 months, 12 
months, 24 months, and 48 months [42]. Several versions of the 
dataset, including ADNI2 and ADNI-Go, have been developed 
to expand its scope. 

B. Feature Set 

In addition to demographic data, such as sex, age, gender, 
and race, which have been shown to significantly contribute to 
predicting the clinical status of individuals [36], this study 
incorporates a variety of other features for analysis. Cognitive 
tests play a central role in assessing various aspects of memory, 

language, and executive function. These include the Mini-
Mental State Examination (MMSE), a widely used measure of 
cognitive function, and the Montreal Cognitive Assessment 
(MOCA), another standard cognitive measure. The study also 
utilizes scores from the Rey Auditory Verbal Learning Test 
(RAVLT), including immediate recall, learning, forgetting, and 
percentage of forgetting, which assess different dimensions of 
memory. Other cognitive tests include the Logical Memory 
Delayed Recall test (LDELTOTAL), the Digit Span test 
(DIGITSCOR), which measures attention and working 
memory, and the Trail Making Test Part B (TRABSCOR), 
which evaluates executive function. The Functional Activities 
Questionnaire (FAQ) is also included to assess daily living 
capabilities. 

Biomarkers represent another crucial component of the 
analysis. The Apolipoprotein E (APOE4) genotype, strongly 
associated with Alzheimer’s disease risk, is used alongside 
imaging biomarkers from PET scans, including tracers such as 
FDG, PIB, AV45, and FBB. Additionally, cerebrospinal fluid 
protein levels of amyloid-beta (ABETA), tau (TAU), and 
phosphorylated tau (PTAU) are examined for their role in the 
disease's progression. 

Clinical and diagnostic scores also contribute significantly 
to the analysis. These include the Clinical Dementia Rating – 
Sum of Boxes (CDRSB), which evaluates cognitive and 
functional performance, and various subscales from the 
Alzheimer’s Disease Assessment Scale (ADAS), such as 
ADAS11, ADAS13, and ADASQ4. Reports of cognitive 
function from both patients and their study partners are 
included, with patient-reported scores covering memory, 
language, visuospatial ability, planning, organization, divided 
attention, and overall cognitive function. Study partner-
reported scores assess the same domains, providing additional 
perspectives on cognitive performance. 

Baseline data for all these measures are also incorporated to 
analyze changes over time. Baseline values for clinical scores 
such as CDRSB, ADAS, and MMSE, as well as cognitive tests 
like RAVLT, Logical Memory, and FAQ, are included. 
Baseline levels of biomarkers, such as ABETA, TAU, and 
PTAU, are also considered. Patient- and study partner-reported 
cognitive scores at baseline offer further context for tracking 
progression. Temporal variables, such as the number of years 
or months since the baseline visit, are included to provide 
additional detail about the timing of data collection. 

In summary, the features included in this study’s prediction 
models encompass cognitive assessments, genetic information, 
biomarkers, demographic data, and clinical details. These 
measures provide a comprehensive dataset for early detection 
of dementia, offering insights into cognitive decline and 
associated risk factors. By integrating this diverse set of 
features, the study aims to improve the accuracy and 
practicality of predictive models for Alzheimer’s disease [27, 
46, 47]. 

C. Models 

Shah and Shah [12] explored the use of machine learning 
(ML) algorithms, particularly convolutional neural networks 
(CNNs), for the early diagnosis of Alzheimer’s disease (AD) 
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through the analysis of medical imaging data, such as MRI 
scans and biomarkers. Their study compared various ML 
algorithms, including k-nearest neighbor (KNN) and support 
vector machines (SVM), and highlighted the superior accuracy 
and reliability of CNNs in detecting AD. The deep learning 
capabilities of CNNs enable them to extract subtle features 
from medical images, making them particularly effective for 
this application. Shah and Shah [12] demonstrated that CNNs 
outperformed other algorithms due to their deep architecture, 
which can handle complex data and identify patterns that 
simpler models may miss. 

However, the authors also noted several challenges in using 
CNNs for AD diagnosis. These include the need for large, well-
curated datasets, as CNN models are prone to overfitting when 
trained on small or imbalanced datasets. Additionally, they 
emphasized the importance of transparency and interpretability 
in ML models, especially in medical applications where 
clinicians need to understand the rationale behind a diagnosis. 
Despite these challenges, CNN-based models were identified as 
the most effective for early detection of AD, particularly when 
applied to MRI scans and biomarker data. 

While Shah and Shah [12] provided a thorough 
investigation into the use of ML and deep learning methods for 
early AD detection, their work predominantly focused on 
image-based data, such as MRI scans. They did not explore the 
application of these methods to other types of data, such as 
textual or numerical information, nor did they consider the 
potential of large language models (LLMs). LLMs, with their 
ability to process both structured and unstructured text, could 
provide valuable insights and significantly enhance prediction 
models for AD. Additionally, the study did not examine the use 
of Long Short-Term Memory (LSTM) networks, which are 
particularly effective for analyzing sequential data, such as 
time-series health records or longitudinal datasets. 

Building on their work, this study proposes the integration 
of both LSTM networks and LLMs alongside traditional 
machine learning methods to develop cost-effective and 
accurate prediction solutions for AD. By focusing on non-
image data, such as cognitive assessments, biomarkers, and 
clinical records, this approach aims to expand the scope of 
predictive models and offer accessible diagnostic tools for 
clinical settings. 

1) LSTM: Long Short-Term Memory (LSTM) networks are 

a specialized type of recurrent neural network (RNN) designed 

to learn and retain long-term dependencies in sequential data. 

They are particularly well-suited for tasks involving time-series 

or sequential data due to their unique architecture, which 

includes memory cells and gating mechanisms (input, output, 

and forget gates) to control the flow of information. This 

capability makes LSTM networks highly effective in 

addressing the vanishing gradient problem, a common 

challenge in traditional RNNs. 

In this study, LSTM networks are employed to process 
clinical and biomarker data from the ADNI dataset. The input 
features, which consist of textual and numerical data, are well-
suited to LSTM’s architecture. The model begins with an input 
layer that accepts the data features, followed by one or more 

LSTM layers that process the sequences of observations. The 
final dense layer produces the output, classifying the stages of 
Alzheimer’s disease based on the processed data. By leveraging 
LSTM’s ability to handle sequences effectively, this study aims 
to improve classification accuracy for Alzheimer’s diagnosis. 
Additionally, LSTM networks are prioritized due to their 
demonstrated effectiveness in managing textual and numerical 
data, which are key components of the ADNI dataset. The 
following equations illustrate the core functionality of LSTM 
networks in classification tasks: 

The forget gate controls which information from the 
previous cell state (Ct−1) should be carried forward to the 
current cell state (Ct ). 

ft=σ(Wf ⋅[ht−1, xt] + bf) 

Where ft is the forget gate's activation vector; Wf and bf are 
the weight matrix and bias for the forget gate; ht−1 is the 
previous hidden state; xt is the current input and σ is the sigmoid 
activation function [48]. Input Gate [49] represented as follows: 

it=σ(Wi⋅[ht−1, xt] + bi) 

Ċt =tanh (WC ⋅[ht−1, xt] + bC) 

where it is the input gate's activation vector; Ċt is the 
candidate cell state, representing new information; and Wi, WC 
bi, bC are the weight matrices and biases for the input gate and 
cell state. 

Meanwhile; Cell State Update is implemented as follows 

Ct=ft∗Ct−1+it∗ Ċt 

And the output gate [50] is implemented as follows 

ot=σ(Wo⋅[ht−1, xt]+bo) 

ht=ot∗tanh(Ct) 

where ot is the output gate's activation vector; ht is the 
current hidden state (which also serves as the output for 
classification). 

The classification layer is implemented using this formula 
[51]: 

y=softmax(Wy⋅ht+by) 

where y is the predicted class probabilities; Wy and by are 
the weight matrix and bias for the classification layer. 

finally; Loss Function for Classification (Cross-Entropy) 
[52] is presented by 

L= − ∑ 𝑦𝑖  𝑙𝑜𝑔(𝑦′𝑖)𝑁
𝑖=1  

Where: yi is the true label; 𝑦′𝑖  is the predicted probability 
for class and N is the number of classes. 

At each time step, the LSTM updates the cell state and 
hidden state using the forget, input, and output gates. The final 
hidden state after processing the entire sequence is passed to the 
classification layer, where the class probabilities are calculated. 
The loss function is used to optimize the model by comparing 
the predicted output with the actual labels. This process allows 
the LSTM to classify sequential data effectively. 
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2) Few-Shot: Few-shot learning is a machine learning 

technique that enables models to perform tasks with minimal 

examples or training data. Unlike traditional machine learning 

methods, which rely on large datasets and extensive training, 

few-shot learning allows for adaptability and flexibility with 

significantly reduced training overhead. This approach is 

particularly useful for large language models (LLMs) like 

OpenAI's ChatGPT-3.5-turbo, as it enables the model to learn 

effectively from a limited number of examples. The primary 

advantage of few-shot learning is its ability to achieve accurate 

predictions with less effort in data preparation and model 

training. 

In this study, few-shot learning was applied to classify 
Alzheimer’s disease stages using examples from the ADNI 
dataset. The process began by defining a small set of examples 
representing the desired outcomes: "CN" (cognitively normal), 
"Dementia," and "MCI" (mild cognitive impairment). A sample 
of 10 examples was provided, reflecting various cases in the 
dataset, including instances with missing values across specific 
groups of features. Next, a prompt was constructed to include 
these examples and the task to be performed, guiding the model 
toward the desired predictions. The model then used this 
context to generate predictions, which were subsequently 
extracted to retrieve the relevant outputs. This streamlined 
process demonstrates the efficiency of few-shot learning in 
handling limited data while maintaining accurate and 
meaningful results. 

IV. RESULTS 

A. Demographic 

The ADNI dataset contains numerous cases categorized 
under each stage of dementia. These cases include multiple 
rows for the same patient, corresponding to different visits over 
time. The distribution of cases across the stages of dementia is 
illustrated in Fig. 1. As shown, the majority of patients are at 
the MCI stage, followed by those at the CN stage, highlighting 
the prevalence of MCI cases in the dataset. 

 
Fig. 1. Patients‘stage in ADNI dataset. 

The demographic data available in the ADNI dataset is 
presented in Fig. 2. The data shows a balanced distribution in 
terms of gender. However, there is an imbalance in race, with 
the white population significantly outnumbering other racial 
groups. The age range of participants spans from 55 to 90 years. 

 
Fig. 2. Demographics related statistics. 

B. Feature Selection and Machine learning Methods’ 

Prediction 

To identify the most important features for predicting the 
diagnosis label (DX), three approaches were implemented: (a) 
Correlation Analysis to examine relationships between features 
and DX, (b) Random Forest Feature Importance to rank features 
by their predictive significance, and (c) Recursive Feature 
Elimination (RFE) to select the most relevant features based on 
model performance. 

The Correlation Analysis revealed that the features most 
strongly correlated with DX are: CDRSB (Cognitive Dementia 
Rating – Sum of Boxes) with a correlation of 0.751, 
EcogSPTotal (Total score of Everyday Cognition, Study 
Partner version) at 0.735, EcogSPMem (Everyday Cognition, 
Study Partner Memory score) at 0.732, FAQ (Functional 
Activities Questionnaire) at 0.730, and ADAS13 (Alzheimer’s 
Disease Assessment Scale, 13-item) at 0.725. These results 
indicate that cognitive and functional assessments are highly 
correlated with Alzheimer’s diagnosis. Using Random Forest 
Feature Importance, the top features for predicting DX were 
identified as EcogSPTotal (20.28%), ADAS13 (18.84%), 
ADAS11 (16.54%), EcogSPMem (12.64%), and EcogSPOrgan 
(9.45%). These findings reinforce the importance of cognitive 
and functional assessments in predicting Alzheimer’s. 

With Recursive Feature Elimination (RFE), the same top 
five features were selected: EcogSPTotal, EcogSPMem, 
ADAS13, ADAS11, and EcogSPOrgan. A Random Forest 
Classifier trained using only these features achieved an average 
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cross-validation accuracy of 38.75% (standard deviation: 
0.89%) and a test accuracy of 39%. Class 2 (Dementia) was 
predicted with the highest recall (63%), but precision and recall 
for Class 0 (Cognitively Normal) and Class 1 (MCI) were low. 
The macro-average F1-score was 0.32, highlighting significant 
confusion between classes, particularly between Cognitively 
Normal and MCI. 

To address these limitations, several strategies were 
explored. Class Imbalance Handling techniques, such as 
oversampling, undersampling, and class-weighted models, 
improved the weighted F1-score slightly to 0.37, with Class 2 
(Dementia) achieving 63% recall. However, confusion between 
Cognitively Normal and MCI persisted. Feature Engineering 
was then applied, creating interaction features by combining 
cognitive scores and biomarkers. This approach marginally 
increased the overall accuracy to 40%, with a recall of 66% for 
Class 2. While improvements in classifying Cognitively 
Normal and MCI cases were observed, misclassification 
between MCI and Dementia remained significant. 

Next, Advanced Models were tested, including Gradient 
Boosting and Support Vector Machines (SVM). Gradient 
Boosting achieved an overall accuracy of 43%, with Class 2 
(Dementia) recall at 92%. However, predictions for Class 0 
(Cognitively Normal) and Class 1 (MCI) were poor, with F1-
scores close to zero. Similarly, SVM performed slightly better 
with an overall accuracy of 45% and a recall of 99% for Class 
2, but almost no correct predictions for Classes 0 and 1. Both 
models struggled with class imbalance, favoring Dementia at 
the expense of distinguishing other classes. 

Finally, Ensemble Modeling was implemented, leveraging 
techniques like Voting Classifiers (combining Random Forest, 
Gradient Boosting, and SVM), Stacking Classifiers (training 
multiple models and using their predictions as inputs for a meta-
model), and Bagging (aggregating predictions from models 
trained on different data subsets). These ensemble methods aim 
to balance predictive performance across classes and address 
the challenges of class imbalance and overlapping features. 
Further evaluation and refinement of these approaches are 
ongoing to improve the overall diagnostic accuracy and 
robustness of the model. 

1) Voting classifier results: The model achieved an overall 

accuracy of 43%, with Class 2 (Dementia) having the highest 

recall at 90%. However, performance for Class 0 (Cognitively 

Normal) and Class 1 (MCI) was poor, with F1-scores of 

approximately 0.09 and 0.05, respectively. The macro-average 

F1-score was 0.24, highlighting that the model 

disproportionately favors Dementia while struggling to 

accurately classify Cognitively Normal and MCI cases. 

Significant confusion remains between the classes, with many 

CN and MCI cases misclassified as Dementia. 

2) Stacking classifier results: The model achieved an 

overall accuracy of 45%, matching the performance of the 

Voting Classifier. However, the results reveal a significant bias, 

as Class 2 (Dementia) was the only class predicted, with a recall 

of 100%. Both Class 0 (Cognitively Normal) and Class 1 (MCI) 

had 0% recall and precision, indicating that no cases from these 

classes were correctly identified. The macro-average F1-score 

was 0.21, underscoring the model's heavy bias toward 

Dementia and its inability to distinguish between Cognitively 

Normal and MCI cases. All instances of CN and MCI were 

misclassified as Dementia. 

3) Bagging: Using Bagging with the Random Forest 

model, which inherently trains on different subsets of data, the 

overall accuracy achieved was 41%. Class 2 (Dementia) had a 

recall of 73%, while Class 0 (Cognitively Normal) and Class 1 

(MCI) showed lower recall and F1-scores. The macro-average 

F1-score was 0.31, indicating a moderate improvement in 

balancing predictions across classes compared to previous 

classifiers. Bagging demonstrated better differentiation 

between classes than the Voting and Stacking classifiers, though 

significant misclassifications remained between Cognitively 

Normal, MCI, and Dementia. Notably, Bagging performed 

slightly better in predicting minority classes. 

In summary, the Voting Classifier achieved an accuracy of 
43% but was heavily biased toward predicting Dementia, 
performing poorly on other classes. The Stacking Classifier 
achieved a slightly higher accuracy of 45%, but it failed to 
classify Cognitively Normal and MCI cases, predicting only 
Dementia. Bagging, with an accuracy of 41%, showed 
improved balance across the classes compared to Voting and 
Stacking but continued to struggle with distinguishing between 
Cognitively Normal and MCI cases. 

Among the ensemble methods, Bagging demonstrated 
better overall balance in classifying multiple categories, 
although limitations remained. To further enhance 
performance, future work could focus on advanced feature 
engineering, fine-tuning model hyperparameters, or exploring 
other sophisticated techniques to address the challenges in 
distinguishing between these diagnostic categories. 

C. Advanced Analyses 

To further improve model performance, particularly in 
distinguishing between the different diagnostic classes 
(Cognitively Normal, MCI, and Dementia), several advanced 
techniques could be employed. Automated machine learning 
(AutoML) tools, such as TPOT, can automate the process of 
testing a range of algorithms and hyperparameter 
configurations, helping to identify the best model without 
requiring manual experimentation. 

In this study, an AutoML framework was used to 
automatically test multiple models and optimize their 
hyperparameters. The results from the TPOT AutoML run 
provided valuable insights into the model selection and tuning 
process. The internal cross-validation (CV) accuracy, which 
TPOT uses to evaluate different pipelines during its 
evolutionary search, stabilized at approximately 47.7% across 
most generations. The final best pipeline achieved an internal 
CV score of 47.78%, indicating the highest performance based 
on TPOT’s cross-validation evaluation. 

TPOT selected the ExtraTreesClassifier as the best model. 
This ensemble method, similar to Random Forest, reduces 
variance by averaging predictions across multiple decision 
trees, often resulting in more stable outcomes. The 
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ExtraTreesClassifier was identified as the optimal model with 
the following key parameters: 

 Bootstrap: True (bootstrap sampling was used). 

 Criterion: Gini (used for measuring the quality of a 
split). 

 Max features: 0.8 (80% of the features are considered 
when looking for the best split). 

 Min samples leaf: 17 (minimum number of samples 
required to be at a leaf node). 

 Min samples split: 5 (minimum number of samples 
required to split an internal node). 

 n_estimators: 100 (number of trees in the forest). 

The test set accuracy was 43.6%, meaning the final model 
achieved 43.6% accuracy on unseen data. While consistent with 
the performance of other models tested, this accuracy highlights 
the challenges in distinguishing between the diagnostic 
categories (Cognitively Normal, MCI, and Dementia). The 
consistency of accuracy between 43% and 45% across different 
models suggests that the feature set may require further 
refinement or that the inherent complexity of differentiating 
between these classes, particularly between Cognitively 
Normal and MCI, remains a significant challenge. 

Since focusing on the top five features did not result in 
substantial improvements in accuracy, a new approach was 
tested by including DX_bl (the baseline diagnosis) as a key 
feature for predicting the final diagnosis (DX). This approach 
is logical, as the baseline diagnosis likely correlates strongly 
with the final diagnosis, and transitions between diagnostic 
categories (e.g., from MCI to Dementia) over time can provide 
valuable insights. Using a Random Forest model with DX_bl as 
a feature, the accuracy improved significantly to 83%, 
demonstrating that DX_bl is a strong predictor of the final 
diagnosis. 

The model's performance metrics for each class are as 
follows: 

Class 0 (Cognitively Normal - CN): 

Precision: 89% (89% of cases predicted as CN are correct). 

Recall: 92% (92% of actual CN cases were correctly 
identified). 

F1-Score: 91% (indicating strong and balanced 
performance for this class). 

Class 1 (MCI): 

Precision: 100% (all predicted MCI cases were correct). 

Recall: 51% (only 51% of actual MCI cases were identified 
correctly). 

F1-Score: 67% (highlighting an imbalance, as many MCI 
cases are misclassified). 

Class 2 (Dementia): 

Precision: 75% (75% of Dementia predictions were 
correct). 

Recall: 93% (93% of actual Dementia cases were 
identified). 

F1-Score: 83% (indicating strong performance for this 
class). 

The Macro Average F1-Score, which gives equal weight to 
each class, was 80%, showing good overall performance but 
highlighting some imbalance in the prediction of MCI. The 
Weighted Average F1-Score, which accounts for the number of 
instances in each class, was 82%, reflecting the model's strong 
performance for the larger classes (CN and Dementia). 

Cognitively Normal (CN) and Dementia cases are well 
predicted, with high precision and recall. However, MCI 
remains the most challenging class for the model to classify, 
with high precision but low recall. This indicates that many 
MCI cases are misclassified as either CN or Dementia. While 
DX_bl is a highly predictive feature for the final diagnosis, the 
model still struggles to effectively differentiate MCI from the 
other categories. 

D. Baseline Data Analysis and Prediction 

Baseline data analysis can provide valuable insights and 
contribute to improving predictions. Among the diagnostic 
groups, Cognitively Normal (CN) and Alzheimer’s Disease 
(AD) dominate the baseline dementia diagnoses. This analysis 
specifically compares these two groups with respect to key 
variables, such as CDRSB (Cognitive Dementia Rating Sum of 
Boxes) and PTAU_bl (Phosphorylated Tau at baseline). Using 
the Mann-Whitney U test, a non-parametric test suitable for 
comparing two independent samples, the following results were 
obtained: 

CDRSB: The p-value was effectively 0, indicating a highly 
significant difference in cognitive scores between the CN and 
AD groups. 

PTAU_bl: The p-value was 0.0001, also showing a highly 
significant difference in phosphorylated tau levels between the 
two groups. These findings suggest that both cognitive scores 
(CDRSB) and biomarker levels (PTAU_bl) are significantly 
different between CN and AD groups, consistent with 
established Alzheimer’s research. The Mann-Whitney U test 
for ABETA levels yielded a p-value of <0.0001, further 
confirming a significant difference between CN and AD 
groups. This result aligns with the well-documented role of 
amyloid-beta in Alzheimer’s disease pathology. Similarly, for 
MMSE (Mini-Mental State Examination), the p-value was 
<0.0001, indicating that AD participants had significantly 
lower MMSE scores, reflecting more severe cognitive 
impairment. The same was observed for MOCA (Montreal 
Cognitive Assessment), where the p-value was 0.0001, 
demonstrating a significant difference in MOCA scores 
between CN and AD groups. 

The analysis of neuroimaging biomarkers, such as FDG 
(Fluorodeoxyglucose PET) and AV45 (Amyloid PET), also 
revealed significant differences. The p-value for FDG PET was 
0.0001, indicating that brain glucose metabolism, as measured 
by FDG PET, is significantly lower in individuals with AD. 
Similarly, AV45 PET, which measures amyloid accumulation, 
showed a p-value of 0.0001, confirming higher amyloid levels 
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in the AD group. These findings underscore the significant 
differences in neuroimaging biomarkers between CN and AD 
groups. 

Regarding the APOE4 genotype distribution, the results 
highlight the strong association between APOE4 and 
Alzheimer’s risk. Among individuals with AD, 47.7% had one 
copy of the APOE4 allele, 21.2% had two copies, and 31.1% 
had no copies. In contrast, among CN individuals, 72.6% had 
no copies, 25.4% had one copy, and only 2% had two copies. 
These distributions confirm the well-established link between 
APOE4 and increased Alzheimer’s risk, with individuals 
carrying one or two APOE4 alleles being significantly more 
likely to develop the disease. 

Examining the impact of APOE4 status on biomarkers and 
cognitive scores provides additional insights into how this 
genetic risk factor influences Alzheimer’s pathology. 
Individuals without APOE4 alleles had the highest average 
ABETA levels (990), while those with two alleles had the 
lowest (521), consistent with APOE4's role in promoting 
amyloid accumulation. Similarly, TAU and PTAU levels were 
progressively higher in individuals with more APOE4 alleles. 
Those with two alleles had the highest TAU (363) and PTAU 
(35), reflecting greater neurofibrillary pathology. Cognitive 
function, as measured by MMSE, decreased with the number of 
APOE4 alleles, with individuals carrying two alleles having the 
lowest average MMSE score (24.5). The CDRSB score, 
indicating cognitive impairment, increased with the number of 
APOE4 alleles. 

These findings demonstrate that APOE4 is strongly 
associated with greater amyloid and tau pathology and more 
severe cognitive decline. The relationship between APOE4 
status, biomarkers, and cognitive scores underscores the genetic 
influence on Alzheimer’s disease progression. 

E. Neural Network Prediction Models 

The results of the models developed in this study, 
particularly the LSTM model, were evaluated using the ADNI 
dataset. Performance metrics included accuracy, precision, 
recall, and F1-score. The model achieved a Validation Loss of 
0.369 and a Validation Accuracy of 84.5%, with an overall 
Accuracy of 84.5%. A detailed classification report is presented 
in Table I, while the confusion matrix is illustrated in Fig. 3, 
providing further insights into the model’s performance across 
diagnostic categories. 

TABLE I. PERFORMANCE MATRIX FOR LSTM-BASED MODEL 

 precision Recall F1-score 

CN 0.84             0.81 0.83 

Dementia 0.79            0.80 0.80 

MCI 0.86             0.87 0.87 

Accuracy 0.84 

macro avg. .83 .83 .83 

Weighted avg 0.84 0.84 .84 

 
Fig. 3. Confusion matrix for LSTM-based model. 

It was observed that the features illustrated in Fig. 4 
contribute significantly more to predicting Alzheimer’s disease 
compared to other features. Among these, MMSE_bl (baseline 
Mini-Mental State Examination) and MMSE_fu (follow-up 
Mini-Mental State Examination) showed the greatest 
contribution, highlighting their critical role in the predictive 
model. 

 

Fig. 4. The important features in predicting Alzheimer. 

Additional models were explored using baseline 
information, including Gradient Boosting and Support Vector 
Machine (SVM). The Gradient Boosting model achieved an 
impressive 96% accuracy on the test set, with perfect precision, 
recall, and F1-scores for both the Cognitively Normal (CN) and 
Alzheimer’s Disease (AD) groups. Similarly, the SVM 
classifier performed exceptionally well, achieving 95% 
accuracy on the test set and perfect scores across all 
performance metrics. These results demonstrate the strong 
predictive capabilities of both models when using baseline data. 

F. Evaluating Model Performance Longitudinally 

To assess longitudinal performance, the model's ability to 
predict changes in cognitive scores, imaging biomarkers, or 
diagnoses over time was evaluated. This involved two main 
aspects: 
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Predicting Cognitive Decline: The model was used to 
predict future cognitive scores based on baseline data and 
observed longitudinal trends. 

Evaluating Model Stability: The model's predictive 
accuracy was tested across multiple visits for the same 
individuals to determine its consistency over time. 

The analysis began with visualizing interactions among key 
features, followed by evaluating longitudinal performance. A 
heatmap (Fig. 5) illustrates the correlations between key 
features. Notably, the MMSE Decline Rate is negatively 
correlated with both MMSE at Baseline and FDG 
(Fluorodeoxyglucose PET), indicating that as cognitive 
function declines, brain metabolism also tends to decrease. In 
contrast, AV45 (Amyloid PET) shows a weaker correlation 
with other features, highlighting its specific role in amyloid 
accumulation, which is less directly tied to immediate cognitive 
decline. These findings underscore the nuanced relationships 
between cognitive decline, biomarkers, and brain function over 
time. 

 

Fig. 5. Correlation of heatmap of key features (baseline features). 

The model's ability to predict cognitive decline, such as 
changes in MMSE scores over time, was evaluated using 
baseline data. The assessment focused on how well the model 
predicts cognitive decline across multiple visits. A linear 
regression model, which used baseline features including 
MMSE, FDG, and AV45, achieved a Mean Squared Error 
(MSE) of approximately 0.01. This indicates that the model 
performed reasonably well in predicting cognitive decline over 
time. The low error suggests the model has potential for 
forecasting Alzheimer’s progression, though further refinement 
and validation on larger datasets could improve its accuracy and 
robustness. 

When a more advanced regression method, such as Gradient 
Boosting, was applied to refine the longitudinal model, it 
achieved an MSE of 0.0121. While the Gradient Boosting 
model captured some patterns in the data, its slightly higher 

MSE suggests that the simpler linear regression model 
performed better for this specific task. 

Fig. 6 visualizes the relationship between predicted and 
actual MMSE decline rates. The scatter plot includes a red 
dashed line representing ideal predictions, where predicted 
values perfectly match the actual values. Most predictions were 
reasonably close to the actual values, with some variability, 
which is expected in longitudinal predictions. These findings 
demonstrate the model's promise in predicting cognitive decline 
over time while highlighting areas for further improvement in 
longitudinal performance. The same analysis used to predict 
cognitive decline was applied to forecast imaging deterioration 
over time, focusing on FDG (glucose metabolism) and AV45 
(amyloid accumulation). Baseline features such as FDG_bl, 
AV45_bl, and MMSE_bl were utilized to predict changes in 
FDG and AV45 over time. Gradient Boosting Regression was 
employed for both tasks, demonstrating strong performance in 
predicting longitudinal imaging changes. 

For FDG deterioration rate prediction, the model achieved 
a Mean Squared Error (MSE) of 0.000006, indicating excellent 
accuracy in forecasting changes in glucose metabolism over 
time. Similarly, for AV45 deterioration rate prediction, the 
MSE was 0.000028, showing the model's effectiveness in 
predicting changes in amyloid accumulation. These low error 
rates suggest that the model performs well for both imaging 
biomarkers, making it a valuable tool for tracking Alzheimer's 
progression longitudinally. Visualization of the results further 
supports the model's effectiveness. In Fig. 7, the scatter plot 
illustrates the predicted vs. actual FDG deterioration rates, with 
most points closely aligned with the ideal prediction line (red 
dashed line), indicating strong predictive performance. 
Similarly, Fig. 8 shows the predicted vs. actual AV45 
deterioration rates, with most points clustering near the ideal 
line, demonstrating the model's capability to accurately forecast 
amyloid accumulation changes. 

Overall, the models effectively predict longitudinal changes 
in both FDG and AV45 imaging biomarkers, which are critical 
for monitoring Alzheimer’s disease progression over time. 
These results highlight the utility of Gradient Boosting 
Regression in capturing complex patterns in imaging data. 

 

Fig. 6. Predicted vs. Actual MMSE Decline Rate (Gradient Boosting). 
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Fig. 7. Predicted vs. Actual FDG Deterioration Rate (using Gradient 

Boosting). 

 
Fig. 8. Predicted vs. Actual AV45 Deterioration Rate (using Gradient 

Boosting). 

We explored additional derived features by combining 
cognitive scores and biomarkers to create new indicators of 
Alzheimer's progression. Investigating interactions between 
longitudinal features and temporal patterns revealed deeper 
insights into disease progression. These derived features were 
designed to capture more complex relationships between 
cognitive and biomarker data. The newly created features 
included: 

MMSE_TAU Interaction: A combination of baseline 
MMSE and FDG values to assess the relationship between 
cognitive function and brain metabolism. 

ABETA_TAU Ratio: A ratio of amyloid (AV45) to glucose 
metabolism (FDG) to highlight the balance between amyloid 
accumulation and metabolic activity. 

Combined Decline Rate: The sum of MMSE and FDG 
deterioration rates, providing a measure of overall cognitive 
and metabolic decline. 

Using cross-validation, the performance of models with 
these derived features was evaluated. The Random Forest 
model achieved an accuracy of 97.46%, slightly outperforming 
the other models. The Gradient Boosting model achieved an 
accuracy of 96.83%, while the Support Vector Machine (SVM) 
reached 96.21%. All three models demonstrated strong 
predictive performance, with Random Forest showing a 

marginal advantage. These results highlight the potential of 
derived features in enhancing model performance by capturing 
intricate relationships between cognitive and biomarker data. 
This approach emphasizes the value of feature engineering in 
advancing the predictive capabilities of machine learning 
models for Alzheimer’s progression. 

G. Few-shot LLMs 

Regarding the results of the experiment with few-shot 
training, we employed Large Language Models (LLMs), 
specifically ChatGPT 3.5, instead of LSTM models. The results 
demonstrated a significant improvement over LSTM, with the 
following performance metrics: Accuracy: 0.97, Precision: 
0.97, Recall: 0.97, and F1-Score: 0.97. The confusion matrix is 
presented in Fig. 4. To evaluate the diagnostic performance of 
the model, we used Receiver Operating Characteristic (ROC) 
curves for various clinical conditions, as shown in Fig. 9. The 
ROC curve provides a graphical representation of the model's 
ability to discriminate between diagnostic categories by 
plotting the true positive rate (sensitivity) against the false 
positive rate (1-specificity) across different threshold settings. 
The model demonstrated excellent discriminatory ability across 
all diagnostic categories. The Area Under the Curve (AUC) for 
the ROC of Cognitively Normal (CN) subjects was 0.98, 
indicating a high level of accuracy in distinguishing CN 
individuals from those with cognitive impairment. Similarly, 
the ROC curve for dementia yielded an AUC of 0.99, reflecting 
outstanding performance in identifying subjects with dementia. 
For Mild Cognitive Impairment (MCI), the ROC curve 
achieved an AUC of 0.98, signifying robust capability in 
differentiating MCI from other conditions. 

The high AUC values for CN, dementia, and MCI 
underscore the exceptional performance of our model in 
correctly classifying individuals into their respective diagnostic 
categories. These findings highlight the potential of our 
approach in supporting early and accurate diagnosis of 
Alzheimer’s disease and related cognitive disorders. The results 
demonstrate that few-shot training with LLMs like ChatGPT 
3.5 can provide significant advancements in diagnostic 
modeling, offering reliable and efficient tools for clinical 
applications. 

V. DISCUSSION 

The ADNI dataset is regularly updated as more participants 
engage in studies on dementia progression. This work utilized 
the latest version of the dataset, published in 2024, which 
includes detailed information on assessments conducted during 
each patient visit. It was observed that machine learning models 
achieved high accuracy when predicting the baseline dementia 
stage using baseline information. However, their performance 
declined when tasked with predicting the dementia stage for 
each subsequent visit, highlighting the challenges associated 
with longitudinal predictions. When exploring neural networks 
and deep learning, the results of this study underscore the 
significant potential of integrating numerical and textual data 
from the ADNI dataset to develop highly accurate predictive 
models for Alzheimer’s disease and related cognitive disorders. 
By leveraging the extensive cognitive assessments, biomarkers, 
and demographic data available in ADNI, our approach 
illustrates how comprehensive datasets can enhance diagnostic 
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accuracy. The inclusion of varied data types enables a 
multifaceted analysis, which is essential for understanding the 
complex progression of Alzheimer’s disease. This integrative 
approach not only improves model performance but also 
provides deeper insights into the factors driving cognitive 
decline, reinforcing the value of holistic data utilization in 
Alzheimer’s research. 

 
Fig. 9. ROC for the ChatGPT 3.5 after been few-shot training. 

In the introduction, we highlighted the projected increase in 
Alzheimer’s disease prevalence, with estimates suggesting that 
152 million people globally will be affected by 2050. This 
alarming trend underscores the urgent need for effective 
diagnostic tools that facilitate early detection and intervention. 
The current study addresses this need by leveraging the 
extensive ADNI dataset, which includes diverse data such as 
cognitive test scores (e.g., MMSE, RAVLT), biomarker levels 
(e.g., amyloid-beta, tau proteins), and demographic information 
(e.g., age, gender, race, education). These features have been 
shown to significantly contribute to predicting clinical status, 
as noted by Banerjee (2020) and Tian et al. (2023). 

The literature review emphasized the limitations of relying 
solely on imaging techniques for Alzheimer’s diagnosis, such 
as the high cost and limited accessibility of MRI and PET scans. 
Previous studies, such as Balakrishnan et al. (2023), 
predominantly focused on MRI images, underutilizing the full 
spectrum of data available in ADNI. Our study addresses this 
gap by integrating numerical and textual data, offering a more 
holistic and cost-effective approach to Alzheimer’s diagnosis. 
This aligns with findings by Feng et al. (2023), who 
demonstrated the efficacy of combining imaging and phenotype 
data with large language models (LLMs). 

The application of LLMs, such as ChatGPT 3.5, 
significantly improved classification performance in this study. 
LLMs enable rapid processing and analysis of large datasets, 
achieving high accuracy in classification tasks. Our findings 
show that LLMs can accurately distinguish between cognitively 
normal individuals, those with mild cognitive impairment 
(MCI), and those with dementia. Specifically, the ROC curves 
for cognitively normal (CN) subjects, dementia, and MCI 
exhibited AUC values of 0.98, 0.99, and 0.98, respectively. 

These high AUC values highlight the robustness of LLMs in 
classifying different stages of cognitive impairment, thereby 
supporting early and precise diagnoses. 

Genetics, a significant contributor to Alzheimer’s disease 
risk (accounting for approximately 70% of overall risk), was 
also incorporated into our predictive models, as suggested by 
Raj et al. (2024). The importance of genetic data is underscored 
in this study, complementing other features. Furthermore, the 
literature review highlighted the effectiveness of speech 
analysis and text mining in detecting Alzheimer’s disease. 
Studies by Agbavor and Liang (2022) and Colla et al. (2022) 
demonstrated the utility of LLMs in analyzing spontaneous 
speech and text data, aligning with our approach of utilizing 
LLMs to process numerical and textual data from ADNI. 

The contribution of this work lies in demonstrating that 
LLMs provide not only a rapid and effective approach to 
classification tasks but also maintain high accuracy, making 
them valuable tools in clinical settings. This study fills a critical 
gap in existing research by focusing on the integration of textual 
and numerical data from ADNI, rather than relying solely on 
imaging data. By doing so, we offer a cost-effective alternative 
that reduces dependence on expensive and less accessible 
imaging techniques. The ability to utilize readily available data 
to achieve reliable diagnostic outcomes represents a significant 
advancement, paving the way for more accessible and scalable 
solutions in Alzheimer’s disease detection. 

Future research can expand the scope of Alzheimer’s 
prediction beyond image analysis by incorporating a broader 
range of patient data, such as clinical notes, genetic 
information, and cognitive test results. This approach has the 
potential to lead to more comprehensive and accurate prediction 
models, facilitating earlier detection and enabling more 
personalized treatment strategies for patients with Alzheimer’s 
disease. 

In conclusion, this study highlights the transformative 
potential of LLMs in utilizing diverse datasets to enhance 
diagnostic accuracy for Alzheimer’s disease. By integrating 
cognitive assessments, biomarkers, demographic data, and 
genetic information, our approach offers a comprehensive and 
efficient diagnostic tool. The findings emphasize the 
importance of multi-modal data integration and advanced 
machine learning techniques in addressing the growing 
challenge of Alzheimer’s disease diagnosis and management. 

VI. CONCLUSION 

This study demonstrates the significant potential of 
integrating numerical and textual data from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset to develop 
highly accurate predictive models for Alzheimer’s disease and 
related cognitive disorders. By leveraging a comprehensive 
range of features, including cognitive assessments, biomarkers, 
demographic information, and genetic data, this approach 
provides a robust and holistic method for early diagnosis. 

The findings underscore the utility of large language models 
(LLMs), such as ChatGPT 3.5, in processing and analyzing 
complex datasets. LLMs exhibited exceptional performance in 
classification tasks, achieving high accuracy rates and rapid 
processing times. Specifically, the ROC curves for cognitively 
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normal (CN) subjects, dementia, and mild cognitive 
impairment (MCI) yielded AUC values of 0.98, 0.99, and 0.98, 
respectively. These results highlight the efficacy of LLMs in 
distinguishing between different stages of cognitive 
impairment, thereby supporting early and precise diagnosis. 

This study addresses a critical gap in existing research by 
focusing on the integration of numerical and textual data rather 
than relying solely on imaging data. This approach provides a 
cost-effective alternative, reducing dependence on expensive 
and less accessible imaging techniques. Utilizing readily 
available data to achieve reliable diagnostic outcomes 
represents a significant advancement, paving the way for more 
accessible and scalable solutions for Alzheimer’s disease 
detection. Additionally, the inclusion of genetic information 
aligns with findings from previous studies that emphasize the 
importance of understanding the genetic basis of Alzheimer’s 
disease. By incorporating diverse data types, the proposed 
models offer a more comprehensive analysis, improving 
prediction accuracy and supporting targeted interventions. 

The transformative potential of combining multi-modal 
data with advanced machine learning techniques is a key 
contribution of this work. Integrating ADNI’s rich dataset with 
LLMs offers a promising approach to enhancing diagnostic 
accuracy and efficiency. Beyond Alzheimer’s disease, this 
work provides a framework for leveraging diverse datasets to 
address other complex medical conditions. Future research 
should focus on further integrating various data types and 
exploring advanced machine learning models to enhance 
diagnostic capabilities and improve patient outcomes. 
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