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Abstract—Advanced threat detection systems are needed more
than ever as cyber-attacks become more advanced. A novel
cybersecurity model uses Bipolar Fuzzy Rough Sets, Graph
Neural Networks, and dense network (BFRGD-Net) architec-
tures to identify threats with unmatched accuracy and speed.
The approach optimizes threat detection using Dynamic Range
Realignment, anomaly-driven feature enhancement, and a hybrid
feature selection strategy on a comprehensive Texas dataset
of 66 months of real-world network activity. With 97.8% ac-
curacy, 97.5% Fl-score, and 98.3% AUC, BFRGD-Net sets
new standards in the field. Threat Detection Sensitivity shows
the model’s capacity to find uncommon, high-severity threats,
while Balanced Risk Detection Efficiency provides fast, accurate
threat detection. The model has strong correlations and the
highest statistical metrics scores compared to other techniques.
Extensive simulations demonstrate the model’s capacity to discern
threat levels, attack kinds, and response techniques. BFRGD-
Net revolutionizes cybersecurity by seamlessly merging cutting-
edge machine learning with specific insights. Its advanced threat
detection and classification engine reduces false negatives and
enables proactive critical infrastructure protection in real-time.
The model’s adaptability to various attack situations makes it
vital for cybersecurity resilience in a digital environment.
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I. INTRODUCTION

Advancements in technology have raised cybersecurity
risks such as unauthorized access, malware attacks, phishing,
and DoS [1]. Over 900 million malware executables existed in
2024, compared to 50 million in 2010 [2]. Annual cybercrime
costs firms, individuals, and governments $400 billion. Due to
data breaches and security incidents, essential systems and data
require cybersecurity. Modernizing security helps companies
avoid losses and adapt to shifting threats. Cybersecurity shields
data, programs, networks, and systems against cyberattacks
and unauthorized access [2]. Security for networks, applica-
tions, data, and operations. Data-driven cybersecurity solutions
complement firewalls, antivirus, and intrusion detection. To im-
prove threat detection, machine learning (ML) may find hidden
patterns and irregularities. Cybersecurity machine learning is
part of Al-powered decision-making and threat identification.
Attackers’ expertise in exploiting connected technologies is
leading to more complex cyber threats [3]. From 2015 to 2022,
cybersecurity and machine learning gained popularity from 30
to over 70 [3]. ML increases complex dataset analysis, security,

and incident response. Traditional security measures, such as
user authentication, cryptographic systems, and firewalls, need
human setup and maintenance, making them less effective as
threats evolve [4] Thus, machine learning and data analytics-
based adaptive and automated systems discover new risks and
provide robust protection.

Cybersecurity situational awareness (SA) involves col-
lecting, evaluating, and interpreting information from several
sources to manage risks [5]. SA, created for military usage,
is currently utilized in cybersecurity to understand activi-
ties. Real-time vulnerability and network traffic analysis may
prevent attacks. SA frameworks integrate data from several
sources, including network traffic and vulnerability assess-
ments, to provide a comprehensive security picture [5]. SA
predicts and detects cyberattacks using many data sources.
Many situational awareness methods manually gather and
analyze data. Despite advancements in data fusion and ma-
chine learning, human participation remains vital [6]. Our
fully automated systems must use the Common Vulnerability
Scoring System to monitor and evaluate network parts for
vulnerabilities and security risks.

Company cybersecurity awareness initiatives may raise
security awareness and share responsibilities. A frequent cy-
bersecurity risk is the human component since workers are
the weakest link in the security chain [7]. Security-focused
workplaces prevent errors and social engineering. Cyberattacks
may harm reputation, legal obligations, consumer confidence,
and money. Secure solutions must address technology and hu-
mans. As more people use the internet, hackers target browsers.
Using browser vulnerabilities, attackers may get access to
devices and steal sensitive data [8]. Covert downloads from
reputable websites spread 22 million malware types in 2022.
User data must be protected from browser-based attacks using
security, notably automated threat detection. Cybersecurity
requires flexibility. To resist growing threats, cybersecurity
defenses must adapt to new attack methods [9]. Machine
learning and situational awareness automate danger detection
in this essay. Multi-domain threat detection is improved by
diverse data sources and new techniques. Main contributions
of this research.

1) The BFRGD-Net framework is introduced to en-
hance threat intelligence, integrating BFRS, GNN,
and DenseNet architectures to improve Cyber Secu-
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rity Awareness Programs. This advanced approach
facilitates accurate threat detection by identifying
intricate patterns in network traffic, hence enhancing
the precision and dependability of threat intelligence
techniques.

2)  The study introduces innovative preprocessing tech-
niques, including HTS and CBSA, that substantially
improve data quality and model resilience in sup-
port of cyber security awareness. By mitigating data
imbalance and noise, these solutions enable threat
intelligence tactics to react to emerging cyber threats,
hence enhancing the efficacy of awareness programs.

3)  Hybrid Feature Selection for Enhanced Threat Identi-
fication: The use of a hybrid feature selection method-
ology that integrates Statistical-Driven Filtering, Re-
dundancy Aggregation, and ODAS guarantees the
prioritization of the most pertinent and significant
characteristics. This enhancement improves threat de-
tection, making it a substantial tool for advancing
Cyber Security Awareness Programs.

4)  The research introduces new metrics—TDS, AIS, and
BRDE—that provide a more thorough assessment of
threat detection efficacy. These metrics are designed
to assess the model’s capacity to recognize significant
risks and optimize detection efficiency, aiding in
the identification of the most effective tactics for
improving cybersecurity awareness.

5) Exhibiting Enhanced Threat Detection to Guide
Awareness Initiatives: Comprehensive assessments
indicate that BFRGD-Net routinely surpasses current
models, demonstrating superior capability in detect-
ing diverse attack types and categorizing threat sever-
ity levels. This performance highlights the frame-
work’s capacity to enhance Cyber Security Awareness
Programs via the provision of actionable and timely
threat information.

The remaining structure of the paper: Section 2 discussed
the review of relevant literature. The proposed method struc-
ture is described in detail in Section 3. The simulations and
their accompanying discussion are detailed in Section 4. The
last section concludes with a discussion of future work.

II. RELATED WORK

Threat intelligence and cybersecurity awareness initiatives
have been improved using machine learning and decision-
making frameworks. The NIST cybersecurity lifecycle consists
of five steps: Identify, Protect, Detect, Respond, and Recover,
offering a systematic threat management strategy [10]. How-
ever, many studies disregard lifecycle-wide techniques and
concentrate on one or two processes. One threat intelligence
technique in Software-Defined Networking (SDN) uses a Sup-
port Vector Machine (SVM) to discover attack scenarios and
analyze vulnerabilities [11]. Another method uses K-Nearest
Neighbors (KNN) to categorize IoT network traffic by risk
level [12]. These strategies emphasize identification without
incorporating threat intelligence throughout the lifecycle.

Threat detection is improved via machine learning. An
anomaly-based intrusion detection system (IDS) increased pre-
diction accuracy by using Recurrent Neural Networks (RNNs)
to identify unexpected network patterns [13]. A Multiclass
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Support Vector Machine (SVM) was used to categorize net-
work abnormalities in real-time, successfully distinguishing
attack types [14]. Due to obsolete datasets, many methods
fail to identify new threats. Users learn to recognize and
react to cyber dangers via cybersecurity awareness programs.
Static material in traditional systems may not be adequate
for developing threats [15]. A dynamic strategy using Graph
Neural Networks (GNNs) was suggested to update cybersecu-
rity training material depending on current threat information
[16]. Using Convolutional Neural Networks (CNNs), another
application created interactive training simulations [17]. These
strategies increased training but did not integrate live threat
intelligence data. Cybersecurity methods are evaluated using
MADM frameworks. One method assessed intrusion detec-
tion trade-offs using Decision Trees (DT) based on accuracy
and reaction time [18]. Analytical Hierarchy Process (AHP)
and Logistic Regression (LR) were used to prioritize threat
response techniques and evaluate their influence on security
[19]. Although effective, MADM approaches are seldom used
to improve awareness training.

Deep learning-fuzzy logic hybrid models can handle cy-
bersecurity uncertainty. LSTM networks and Fuzzy C-Means
clustering were utilized to identify Advanced Persistent Threats
(APTs) using fuzzy logic to handle imprecise data [20]. A
study used Deep Belief Networks (DBN) and Fuzzy Inference
Systems (FIS) to improve network anomaly classification
accuracy under uncertainty [21]. Fuzzy rough set techniques
have been used in cybersecurity research, notably for un-
certain decision-making. Bipolar Fuzzy Rough Sets (BFRS)
add bipolar information to fuzzy logic for more sophisticated
decision-making. In the study, BFRS using Random Forest
(RF) classifiers improved phishing attack detection rates by
addressing uncertainty in approaches [22]. BFRS and Neuro-
Fuzzy Systems (NFS) were combined to enhance threat cate-
gorization and protect against zero-day attacks [23]. Merging
Bipolar Fuzzy C-Means (BFCM) clustering with BFRS may
enhance network traffic anomaly detection and reduce false
positives [24].

Cybersecurity hybrid models and decision-making frame-
works are difficult to integrate. Many frameworks lack thor-
ough integration of situational awareness technologies and
threat intelligence methodologies, and obsolete datasets hin-
der innovative threat detection. The summarized view of the
literature is shown in Table I.

TABLE L SUMMARIZED LITERATURE REVIEW
Ref Method Used Objective Achieved Limitati

01, (117 SVM, KNN Detection of attack scenarios and clas- | Focuses mainly on identification with-
sification of network flows in SDN and | out fully integrating the complete threat
10T environments based on risk levels. lifecycle.

[12], [13] RNN,  Multiclass | Anomaly detection and real-time classi- Relies on outdated datasets, limiting the

SVM fication of network anomalies, improv- | ability to detect emerging threats.
ing prediction accuracy by leveraging
historical data.

[14], [15] GNN, CNN Dynamic modeling of relationships be- | Lacks full integration with live threat in-
tween cybersecurity events for adaptive | telligence data, limiting real-time adapt-
training and creating interactive simula- | ability.
tions for better user

[161, [17] Decision  Trees, | Evaluation of intrusion detection con- | Rarely applied (o evaluating cybersecu-

AHP, Logistic | figurations and prioritization of threat | rity awareness programs’ effectiveness.
Regression response strategies based on various cri-
teria (e.g., accuracy, cost).
T18], [19] LSTM, Fuzzy C- | Detection of Advanced Persistent | High computational cost and limited
Means, DBN, FIS Threats and classification of network | adaptability to novel attack types.
under uncertain conditions.

1207, [21], [22] | BFRS,  Random | Detection of phishing attacks, adap- | May require continuous retraining, with
Forest, Neuro- | tive threat classification, and enhanced | increased sensitivity potentially leading
Fuzzy Systems, | anomaly detection using Bipolar Fuzzy | to higher false-positive rates.
BFCM Rough Sets.
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A. Challenges and the Need for BFRGD-Net

Cybersecurity threat identification is complicated by un-
even datasets, dynamic attack patterns, and real-time reaction.
These issues demand a model that can manage uncertainty,
rapidly interpret complicated data linkages, and react to chang-
ing threats. The BFRGD-Net framework was created around
these factors. It uses BFRS, GNNs, and DenseNet to provide
a resilient, adaptable solution.

1) Suitability of BFRGD-Net for cybersecurity challenges:

e Bipolar Fuzzy Rough Sets clearly accommodate for
ambiguous patterns by separating confidence and un-
certainty, making the model more accurate in finding
anomalies with confusing features.

e Relational Insights: GNNs capture source-destination
dependencies and flow correlations, which are essen-
tial for threat categorization.

e DenseNet’s layered architecture efficiently propagates
and reuses features, allowing it to analyze high-
dimensional data without duplicate calculations.

e  Balanced Detect: BFRGD-Net balances feature signif-
icance and class distributions in cybersecurity datasets
using hybrid feature selection (Statistical-Driven Fil-
tering, RRFA, ODAS) and advanced preprocessing
(CBSA, HTS).

2) Existing technique limitations:

e  Traditional models like SVM and KNN struggle with
huge, unbalanced datasets and cannot identify high-
severity, low-frequency threats.

e CNNs and LSTMs ignore network traffic related rela-
tionships in favor of spatial or temporal patterns.

e Fuzzy logic can manage uncertainty, but hybrid sys-
tems like BFRGD-Net give scalability and real-time
flexibility.

e (Old dataset models cannot adapt to new attack vec-
tors, limiting their real-world usefulness. However,
BFRGD-Net’s superior preprocessing and dynamic
feature selection enable stable performance in chang-
ing settings.

BFRS, GNN, and DenseNet in the BFRGD-Net archi-
tecture overcome these restrictions, enabling great sensitivity
to uncommon threats, real-time efficiency, and flexibility to
varied attack scenarios. These traits make BFRGD-Net ideal
for current cybersecurity applications, assuring its relevance
and efficacy in solving problems.

III. PROPOSED METHOD

To improve threat classification accuracy and resilience,
the proposed cybersecurity threat detection framework uses
modern Deep learning and statistical analysis methodologies.
The hybrid architecture, BFRGD-NeT, uses Bipolar Fuzzy
Rough Sets (BFRS) and a GNN-DenseNet model to lever-
age GNNs’ relational learning and DenseNet’s feature reuse.
Data is preprocessed using Dynamic Range Realignment
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and Perturbation-Weighted Outlier Filtering to ensure quality
and correct feature imbalance. A Hybrid Feature Selection
technique using Statistical-Driven Filtering and Optimization-
Driven Adaptive Selection identifies the most relevant features
for classification after preprocessing. Feature transformation
improves model training data representation using Scaled
Differential Encoding and Exponential Scaling Modulation.
Using its capacity to manage ambiguity and relational data,
the BFRGD-NeT model classifies threats. Using Adaptive
Learning Rate Adjustment, model hyperparameters are fine-
tuned for best performance. The proposed framework is shown
in Figure 1 and afterwards, each module is explained in detail.

Feature selection, Extraction and Tranformation | |Proposed Ensembl
NPF Adaptive
RREA WPSR Attribute
ODAS ASI, SEF Refinement
@
Preprocessing
Data balancing using| [ Feature Enhancement
CBSA using ADFE
Feature standardization Missing
using DRR values Prediction / Classification @
S T al Outlier using > Cybersecurity Incident Prediction
mooth cmpmf] ut le! using > Threat Intelligence Strategy Effectiveness
data using HTS 5 PWOF I
(2)
1 Performance Evaluation and Statistic@
Data Input Analysis
network traffic characteristics, Fl-measure, Accuracy, Recall, Precision |
anomaly scores, attack vectors, etc Log loss, time complexity, Threat Detection
- - = Sensitivity (TDS
8 - Confusion Matrix, Anomaly Impact Score
iy ! M o
- e LN (AIS) Balanced Risk Detection Efficiency
o = (BRDE)
‘Wilcoxon Test, Kruskal Test Kendalla's Test
@ Paired Student's Test, ANOVA Test,
Pearson's Test Etc

Fig. 1. Proposed system framework.

A. Dataset Description

This research utilized real-world Texas network traffic and
cybersecurity activities. Over 66 months, from January 2018
to July 2024, the study collects hourly network events, user
behaviors, and system states in an active corporate network
infrastructure [23]. Financial companies, healthcare providers,
and educational institutions in the area provided vital cy-
bersecurity information for the dataset. These firms follow
strong compliance standards to protect data. From low-level
abnormalities to high-severity threats, the data shows how
cyber dangers evolve. In Texas, a technological and industrial
powerhouse, network connections, user behaviors, and world-
wide cyberattack vectors are abundant. Information from local
threat intelligence feeds was included in the dataset to make
it more realistic and depict these firms’ cybersecurity envi-
ronment. This dataset provides a complete picture of regional
cybersecurity issues by merging numerous data sources and
using threat information from internal and external systems. It
presents a solid framework for designing and testing advanced
threat intelligence tactics to improve cybersecurity awareness
and response. The dataset’s imbalance, caused by real-world
network traffic and attack events, properly depicts current
cybersecurity systems’ situations. The dataset characteristics
are listed in Table II.

B. Data Preprocessing Steps

The dataset underwent preprocessing using many inno-
vative strategies to enhance its appropriateness for machine
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TABLE II. DATASET FEATURES OVERVIEW

S.No | Features Short Description

1 Source IP IP address of the source device or user.

2 Destination IP IP address of the target device or server.

3 Source Port Port number used by the source device for com-
munication.

4 Destination Port Port number used by the destination device.

5 Protocol Type Type of protocol used for communication (TCP,
UDP, etc.).

6 Flow Duration Total duration of the network flow.

7 Packet Size Size of the transmitted packets during the commu-
nication.

8 Flow Bytes/s Rate of bytes transmitted per second.

9 Flow Packets/s Rate of packets transmitted per second.

10 Total Forward Packets Total number of packets sent by the source.

18 Anomaly Score A score indicating the abnormality level of the
traffic.

19 Attack Vector The method or entry point used by the attack.

20 Botnet Family Family of botnet detected in network traffic.

21 Anomaly Severity Index Derived feature measuring anomaly severity.

22 CPU Utilization CPU usage percentage during traffic transmission.

23 Memory Utilization Memory usage percentage during the flow.

24 Label Indicate whether the traffic is normal or an attack.

learning [24][25]. The first phase was Dynamic Range
Realignment (DRR), used to normalize feature values
according to their dynamic range while preserving
variability. The transition is articulated as:

3 (y)>
+8- ( (1)
¥(y)

B is a weighting factor, £(y) is the standard deviation,
and v (y) is the feature mean. Features with different scales
are modified while keeping their relative dispersion using this
method. To reduce noise and preserve trends across time,

Hierarchical Temporal Smoothing (HTS) was employed to
smooth temporal data across periods. Smoothing involves:

y — min(y)
max(y) — min(y)

Yadjusted =

h n
1
Ysmooth = 7 ,; (Yt—t + Yeyr) + 0 - ; u -y (2)

where h represents short-term window size, 6 adjusts
long-term trend, and wu; weights temporal distances. This
successfully captures short-term and long-term tendencies.
Perturbation-Weighted Outlier Filtering (PWOF) was created
to handle outliers. The following rule filtered outliers:

y if |y — median(y)| < (- £(y)
median(y) otherwise

Yfiltered = { (3)

where ( is the threshold determining outlier sensitivity,
and £(y) is the standard deviation. This method ensures that
extreme values are moderated without affecting the general
distribution of the feature. To handle class imbalance, Cluster-
Based Synthetic Amplification (CBSA) was applied, generating
synthetic samples for underrepresented classes based on clus-
tering. The synthetic sample generation is governed by:

Ysynth = Yg + A (yg - yh) (4)

where y, is the cluster centroid, yy, is an adjacent point, and
A regulates synthetic amplification. This generates realistic new
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data points to balance the collection. In conclusion, Anomaly-
Driven Feature Enhancement (ADFE) was used to enhance
important features, particularly surrounding identified assaults.
Enhancement calculation is done using the following equation:

1
Yenhanced = Y- <1 M ) ) ©)

w indicates the amplification factor, ¢ adjusts temporal
effect, and t.,e,¢ represents the closest attack timestamp.
This technique emphasizes anomaly-related characteristics as
needed. These preprocessing processes balance, normalize and
filter the dataset while keeping temporal and anomaly-based
information needed for robust model performance.

C. Hybrid Feature Selection Process

This research uses a hybrid feature selection procedure
that combines innovative strategies to maximize relevance
and reduce duplication [26]. First, Statistical-Driven Feature
Filtering (SFF) assesses feature variance and class separability
contribution. For dataset imbalances, SFF dynamically weights
feature importance by class distribution, unlike previous ap-
proaches. The significance score for feature h is determined
as:

_ G 1
Wi = P ) (6)

Cr and my, represent the feature’s standard deviation and
mean, T}, represents its correlation with the target label, and p
regulates the score’s sensitivity This prioritizes high-variance,
class-separable characteristics. To reduce feature redundancy,
Redundancy-Reduced Feature Aggregation (RRFA) was cre-
ated. This technique penalizes feature content redundancy
by measuring overlap. The aggregate score for feature pairs
(hi, h]) is:

|Shi,hj|

—_— 7
1+¢.|Shi¢h]‘| @

Vhi,hj =

Where Shi’h]. represents the correlation between features,
and ¢ penalizes highly correlated features, preserving only the
most representative ones from each correlated collection. Next,
the Optimization-Driven Adaptive Selector (ODAS) approach
is used. The cost function in ODAS repeatedly adjusts feature
weights depending on predicted accuracy while punishing
needless complexity. The cost function is:

F=> v R(h)+0-) v (8)
h=1 j=1

where vy, is feature weight, R(h) is error contribution, and 6 is
regularization parameter. This refines choices by deleting low-
performance model characteristics. SFF, RRFA, and ODAS
are combined to keep just the most important, non-redundant
features in the hybrid feature selection approach. This method
optimizes features for prediction performance and simplicity.
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D. Derived Attribute Transformation

This work proposed a unique approach called Derived
Attribute Transformation (DAT) to create new characteristics
from existing ones, therefore improving the dataset’s capacity
to capture intricate interactions. The first derived feature, Nor-
malized Packet Flow (NPF), integrates forward and backward
packet counts normalized by flow time, articulated as:

(P forward 1 B backward)
Flow Duration

NPF = 9

This function captures a network flow’s communication
strength. Computed as weighted packet size ratio (WPSR),
another attribute balances forward and backward packet sizes
relative to flow bytes:

Forward Packet Size - Flow Bytes

WPSR =
Backward Packet Size + €

(10)

Using IDS alerts and reputation score, a crucial function
Anomaly Severity Index (ASI) increases the anomaly score:

100 — Reputation Score
ASI = Anomaly Score - (1 4 log(1 + IDS Alerts)) - o
11)

This underscores the importance of reputation and IDS
alerts in the identification of hazards. The Session Efficiency
Factor (SEF) is a metric that integrates system resource
utilization and session activity.

CPU Utilization

SEF = —— 12)
Memory Utilization + €

Active Duration
Idle Duration + €

Lastly, Dynamic Threat Potential (DTP) figures out risk
based on how bad an attack is and how many hosts have been
hacked:

1

1 + e—7-(Attack Vector)
13)

DTP = (Attack Severity - log(1 + Compromised Hosts)) -

The newly created features, produced by the DAT method,
provide enhanced insights into network activity, hence improv-
ing model performance for predictive analysis.

E. Adaptive Attribute Refinement (AAR)

A new method of transformation called Adaptive Attribute
Refinement (AAR) is suggested in this research. The goal
of this approach is to dynamically modify feature values
according to how they affect the distribution of the whole
dataset so that important patterns are highlighted and noise
is reduced [26]. When characteristics change substantially
between classes or time intervals, the AAR process uses an
adaptive scaling technique to account for this. In the first stage
of transformation, known as Dynamic Weight Adjustment
(DWA), the statistical variance and impact of each feature on
class separability are used to weigh the value of each feature.
The feature y transformation is defined as:
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yadj—y.<1+,€.|y_l/y|) (14)

Ty

where v, is the feature mean, 7, is the standard deviation,
and x is an adaptive scaling factor based on the feature
distribution. This emphasizes outliers and major deviations
by weighing data further from the mean. The next stage,
Contextual Recalibration (CR), refines the converted feature
depending on its temporal or category context. In datasets
with characteristics that respond differently under different
situations (e.g., events), this is beneficial. The recalibration
process:

1

Yrec = Yadj * m (15)

A is a sensitivity factor, Dy is the feature’s contextual score
at the time ( t ), and D is the dataset’s average contextual
score This adjusts features depending on their situation or class
relevance. Finally, the Smooth Variance Reduction (SVR) stage
reduces noise while maintaining essential trends. This stage
maintains the converted feature’s variability by smoothing
severe variations. Transformation is modulated by:

yl’CC

- 16
1+ 0 - Plocal ( )

Ysmooth =

0 is a tuning parameter, and pj,c, is the local variance within
a preset window of neighboring values. Short-term spikes are
reduced but long-term patterns are maintained. The integrated
Adaptive Attribute Refinement (AAR) technique produces a
robust transformation process that improves the model’s crucial
pattern detection, noise reduction, and context-aware dataset
refinement. This technique dynamically adapts each feature
depending on its importance to the task, improving model
accuracy and resilience.

This work uses BFRGD-Net, a unique classification model
that combines Bipolar Fuzzy Rough Sets (BFRS) with GNN-
DenseNet. This hybrid model benefits from Bipolar Fuzzy
Rough Sets (BFRS) for uncertainty and interpretability, Graph
Neural Networks (GNNG5s) for relational learning, and DenseNet
for feature propagation and reuse. This layered structure is
ideal for high-dimensional, complicated data like cybersecurity
threats, where local and global interactions are crucial to threat
identification.

FE. Classification using BFRGD-Net

An improved method for handling uncertainty is presented
by the Bipolar Fuzzy Rough Sets (BFRS) [27] framework,
which describes the dataset using positive and negative areas.
Positive associations represent certainty, while negative con-
nections capture doubt. The proposed layered archictecutre is
shown in Figure 2.

This is of the utmost importance in the field of cyber-
security since irregularities often manifest in unpredictable
data patterns. The membership functions, both positive and
negative, are defined by the BFRS method as:
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Bipolar Fuzzy Rough Sets (BFRS) Module

Membership
Function Layer
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Upper and Lower
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BFUA and Graph Neural
Bl‘;]-A Networks

Input Layer

anomaly scores. attack
vectors. CPU utilization.
etc.)

Network Traffic Data

Refined feature se

Fully Connected
(FC) Layer

DenseNet

er 2: Updated Node

mbeddings

Final Node Embedding

Lay

Output
Cross-Entropy Loss
4
J0e] Xewnjog

Final Dense Layer
Dropout layer
Dense Layer
MBCony1 3x3
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MBCony6 3x3
Dense Layer
Dense Layer

Fig. 2. Proposed BFRGD-Net architecture.

P(Z)={z€U|wn(z)=a}, N(Z)={z€U|wn() <p}

a7
In this instance, P(Z) and N(Z) denote the positive and
negative areas, respectively, while v (z) and vo(z) signify the
membership functions for the positive and negative classes.
Additionally, « and B represent the thresholds that delineate
the certainty and uncertainty regions. The Bipolar Fuzzy Upper
Approximation (BFUA) and Bipolar Fuzzy Lower Approxima-
tion (BFLA) of a set Z are defined as follows:

BFUA(Z) = 81615 (min (11 (2),1 — v2(2))) (18)
BFLA(Z) = inf (max (v1(z),1 — 12(2))) (19)

zeU

These approximations improve the model’s capacity to
identify ambiguous data points, aiding in the identification of
indistinct cybersecurity risks that display obscure patterns. The
Graph Neural Network (GNN) component captures relational
connections in graph-structured data, including network traffic
and system logs. In Graph Neural Networks (GNNs), each
node ggl) at layer [ consolidates information from its adjacent
nodes to enhance its feature representation in the subsequent
layer. The propagation rule for a Graph Neural Network layer
is delineated as follows:

(+1) _ ) O BT
g = | WO Y 9 +b (20)
jenty Vs
gi(H_l) is the updated node feature for node ¢ at layer [ +

1, WO is the weight matrix for layer [, d; and d; are the

degrees of nodes ¢ and j, and o is the activation function \/le
idj

normalizes node connections, enabling balanced information
aggregation from nearby nodes. In the cybersecurity dataset,
the model may capture local (node-level) and global (graph-
level) interactions.

The DenseNet design tightly connects each layer to ev-
ery other layer feed-forward for optimal feature reuse. This
propagates previous layer feature maps without losing critical
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information, which is vital for deep model performance. The
DenseNet [-th layer output is computed as:

20 =1, ([x(o),x(l), . ,a:(l_l)]) 21)

T; is the transformation (e.g., batch normalization, ReL.U,
convolution) performed to the concatenated input from all pre-
ceding layers [z(®), (1) ... z(=1] The model can capture
complex cybersecurity data relationships by effectively prop-
agating information by concatenating feature maps. This re-
duces feature extraction parameters. DenseNet transition layers
pool feature maps to reduce dimensionality while preserving
crucial information. Transition layer outputs are calculated as:

S(z) = BN (ReLU (Conv(z))) (22)

where S(z) is transition layer output, BN is batch normal-
ization, ReLU is activation function, and C'onv is input feature
map convolution. The model stays small and economical with-
out losing performance with this operation. A fully connected
layer and softmax function complete the classification stage
after GNN-DenseNet processing. Class probabilities for each
cybersecurity threat are calculated using learning attributes.
Definition of softmax:

. €Ok
Y = 207@ (23)
=

The predicted probability for class k is ¢, the logit output
is oy, and the total number of classes is C. Cybersecurity risks
may be accurately classified using the softmax function’s prob-
ability distribution across all classes. BFRGD-Net training uses
cross-entropy loss, which is ideal for multi-class classification
problems like threat detection. The cross-entropy loss L is
computed as:

C
L£=-> ylog(gr) (24)
k=1

yr is the actual label for class k; ¢ is the projected
probability for class k. This loss function motivates the model
to provide greater probability for the proper class and penalizes
erroneous projections.

Bipolar Fuzzy Rough Sets (BFRS), Graph Neural Networks
(GNNs), and DenseNet form the BFRGD-Net architecture,
which detects cybersecurity risks effectively. BFRS improves
the model’s uncertainty handling, GNN layers capture network
traffic relational relationships, and DenseNet optimizes fea-
ture reuse. With the softmax classification layer and cross-
entropy loss function, the model can reliably identify many
cybersecurity risks while being computationally efficient. That
makes BFRGD-Net ideal for real-time threat identification in
complicated cybersecurity contexts.
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Algorithm 1 BFRGD-Net Framework

Require: Preprocessed input features X, true labels Y, learning rate 7, number of GNN layers L g, number of Dense
blocks L g, batch size B, number of epochs E

Ensure: Predicted class probabilities Y

. Step 1: Input Layer

* Initialize the input layer with feature vector X

. Step 2: Bipolar Fuzzy Rough Sets (BFRS) Module

. Calculate positive and negative membership functions for X

. Compute Bipolar Fuzzy Upper Approximation (BFUA) and Lower Approximation (BFLA)

Update input features based on BFUA and BFLA

. Step 3: Graph Neural Network (GNN) Layers

cforl =1t Lgdo

Perform graph convolution on node features using neighbors

Apply degree normalization and ReLU activation

. end for

. Step 4: DenseNet Module

ford = 1to Ly do
Perform convolution, batch normalization, and ReLU activation in Dense Block d
Concatenate output with input features for feature reuse
if Transition Layer is required then

Apply batch normalization, ReLU activation, and average pooling

end if

. end for

. Step 5: Fully Connected Layer

. Flatten the output from the DenseNet module

. Pass through a dense layer with ReLU activation

* Optionally apply dropout for regularization

24 Step 6: Output Layer

25: Use a final dense layer to map features to the number of classes

26: Apply the softmax activation function to get class probabilities ¥’

27: Step 7: Loss Function and Backpropagation

28: Compute the cross-entropy loss between Y and ¥

29: Update model parameters using the Adam optimizer with learning rate 77

30): Step 8: Training Loop

31: for epoch = 1 to E do

N R DD BN b ot ot ot st o et et i \ O 00 ~J N LN N 0O DD —
TRORRIDUNE WO =

W

32:  for each batch of size B do
: Forward pass: Perform Steps 1 to 6
34 Compute loss and perform backpropagation (Step 7)

35: Update parameters
end for

37: end for

38

. Return Predicted class probabilities Y

G. Role of Bipolar Fuzzy Rough Sets in BFRGD-Net

The BFRGD-Net architecture relies on Bipolar Fuzzy
Rough Sets (BFRS) to deal cybersecurity dataset uncertainty
and ambiguity. BFRS clearly separates confidence from uncer-
tainty by dividing the dataset into positive and negative areas.
This method assures accurate categorization, even when data
points overlap or are unclear.

The BFRS module refines data representations using BFUA
and BFLA. BFUA finds the largest collection of class mem-
bers, whereas BFLA finds the most specific. These estimates
help the framework manage imprecise and partial data. The
BFUA and BFLA are defined mathematically:

BFUA(Z) = sup (min (11(2),1 — v2(z))) (25)
zeU
BFLA(Z) = inIf] (max (11(2),1 — 12(2))) (26)
ze
v1(z) and v5(z) are the membership functions for positive and
negative classes, respectively, and 7 is the dataset.

BFRS improves the model’s unusual and ambiguous threat
classification by using these approximations. Cybersecurity
requires this capability because high-severity anomalies can
resemble regular data. In addition to uncertainty managing,
BFRS improves model decision-making interpretability, re-
vealing threat identification and classification. In real-world
applications where transparency is as crucial as accuracy,
interpretability is a major benefit.

H. Performance Evaluation Metrics

To evaluate the BFRGD-Net model for cybersecurity threat
detection, metrics like accuracy, precision, recall, and FI1-
score are used to evaluate correctness, true positives, and
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precision-recall balance [28]. However, cybersecurity requires
identifying uncommon and significant threats, thus we offer
three unique metrics: Threat Detection Sensitivity (TDS),
Anomaly Impact Score (AIS), and Balanced Risk Detection
Efficiency. Threat Detection Sensitivity (TDS) weights low-
frequency, high-severity events that dataset imbalances ignore
to assess the model’s capacity to identify infrequent, high-
impact threats. We compute TDS as:

ZM LA
j=1\Y% " A +B;
j=1"Yj

where v; represents threat class weight based on severity
and frequency, A; represents true positives, and B; repre-
sents false negatives. This statistic prioritizes infrequent but
significant threats, boosting the model’s sensitivity to high-
risk cybersecurity events. The Anomaly Impact Score (AIS)
calculates real-time detection system operating expenses for
false positives and negatives. AIS weighs the real-world effect
of false positives and missing detections against the advantages
of true positives. We define AIS as:

TDS = 27)

S M A
J=1\ A;+Cj+p-B;

M

AlS = (28)

p penalizes false negatives, especially in high-impact cir-
cumstances, whereas A; represents genuine positives, C; false
positives, and B; false negatives for class j. This enhances real
positive detection while lowering false positives and undis-
covered threats. Finally, Balanced Risk Detection Efficiency
(BRDE) evaluates the model’s real-time detection accuracy and
operating efficiency. To respond quickly, cybersecurity models
must effectively identify threats with minimal latency. These
two elements are balanced in BRDE:

ZM Aj . 1
j=1 \ A;+C;+B; 146-D;

BRDE =
M

(29)

where D; is the detection time for class j and 6 is a
scaling factor that accounts for detection speed. This measure
penalizes longer detection durations to keep the model efficient
in real-time threat detection when speed and accuracy are
critical. While accuracy, precision, recall, and Fl-score give
a broad evaluation of model performance, TDS, AIS, and
BRDE provide key insights into the model’s capacity to man-
age infrequent threats, balance operational effects, and retain
efficiency. These new measurements address cybersecurity
problems, making BFRGD-Net reliable and practical for real-
world deployments where speed and accuracy are crucial.

IV. SIMULATION RESULTS

To assess the proposed BFRGD-NeT framework, extensive
simulations were run on a Dell Core i7 12th Gen system with
an 8-core CPU and 32 GB RAM. Python and SPYDER IDE
were used for simulation setup and execution. The frame-
work has three essential modules, and hyperparameters for
each module were carefully tweaked throughout studies to
produce the best outcomes. To assure data quality, dynamic
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parameters like the outlier filtering threshold were set to 0.15,
and feature scaling factors were modified for each dataset
in the preprocessing module. To balance feature relevance
and redundancy, the feature selection module used Statistical-
Driven Filtering and Adaptive Selector with 0.6 optimization
weight. For the classification module, the Adam optimizer
was used with a learning rate of 0.0005, batch size of 32,
and dropout rates of 0.3 to avoid overfitting. The attention
processes were also tuned to recognize complicated threat
patterns. These setups improved detection accuracy and pro-
cessing performance across circumstances.

Before Data Balancing: Distribution of Traffic Labels After Data Balancing: Distribution of Traffic Labels
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Fig. 3. Label distribution before and after data balancing.

Figure 3 illustrates cybersecurity dataset traffic label distri-
bution before and after data balancing. On the left side of the
graphic, the original data distribution shows a large imbalance
between “Normal” and “Attack” labels, with 8500 normal
traffic and 1500 attack traffic. Machine learning methods may
bias forecasts toward typical traffic due to this imbalance.
After balancing, the data distribution is shown on the right.
This updated distribution equalizes "Normal” and ~Attack” to
8500 occurrences each. The machine learning model will train
on this balanced dataset, treating all groups equally, boosting
attack detection, and lowering false negatives. This illustrates
how data balancing improves cybersecurity model robustness
and accuracy for recognizing normal and attack traffic by
showing the before-and-after comparison.

Anomaly Severity Index Distribution

6000{ [l
|

50001 1|/

W

s 8
o (=]
(=) o

Frequency

7
2000 { 1

1000 ‘

| mﬂh—rr
0 50 100 150 200 250
Anomaly Severity Index

Fig. 4. Anomaly severity index distribution.

Figure 4 shows the distribution of the Anomaly Severity
Index in the dataset, indicating the frequency of various sever-
ity levels. The Anomaly Severity Index is on the x-axis and
frequency is on the y-axis. The histogram and KDE line show
data distribution, with peaks suggesting shared severity. Right-
skewed distributions indicate that lower-severity anomalies
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are more prevalent. The KDE line smoothes the probability
distribution, simplifying data interpretation. This chart shows
how successfully the system handles different threat levels.

CPU Utilization vs Memory Utilization (Hexbin Plot)
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Fig. 5. CPU-Memory connection.

A hexbin plot in Figure 5 shows the dataset’s CPU-
Memory connection. Each hexagonal bin’s color indicates the
number of observations in that bin, representing data point
density. Data points are denser in darker hues, whereas lighter
colors indicate fewer observations. Analyzing the hexbin plot
reveals CPU and memory consumption trends. Dark hexagon
clusters may represent average CPU and memory use during
system operation, whereas lighter hexagons may show outlier
behaviors. This visualization helps uncover CPU and memory
consumption correlations and unexpected or dispersed patterns
that may suggest system abnormalities or performance issues.
It helps analyze system performance and identify unexpected
CPU and memory utilization patterns.

Normalized Packet Flow by Attack Vector
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Fig. 6. Normalized packet flow by attack vector and anomaly score vs.

severity index.

Figure 6 shows cybersecurity concerns from network traffic
patterns and abnormalities. The left boxplot shows Normalized
Packet Flow by Attack Vector, displaying packet flow rates by
attack type. It displays the median, quartiles, and outliers for
each attack vector to assist identify malicious from benign
traffic behavior. This graphic shows which attack vectors sub-
stantially affect network traffic. The scatter figure on the right
demonstrates how the Anomaly Score and Anomaly Severity
Index correspond with threat severity. Higher anomaly scores
indicate greater hazards, helping determine danger levels based
on network activity.

A correlation heatmap of the cybersecurity dataset char-
acteristics is shown in Figure 7. Each column represents the
correlation coefficient between two attributes, ranging from -1
to 1, where darker hues indicate stronger linear relationships.
Blue denotes negative correlations, while red indicates positive
correlations. Values near (0 suggest no linear association,
whereas values closer to £1 indicate strong correlations. For
example, packet size and flow bytes per second may exhibit
significant positive correlations (close to 0.9), suggesting that
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Fig. 7. Correlation heatmap of features.

larger packets carry more data. This heatmap helps identify
patterns that guide feature selection and detect multicollinear-
ity, aiding in feature engineering and model development.

Feature Importance Calculated by Statistical-Driven Feature Filtering
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Fig. 8. Feature significance calculated by statistical-driven feature filtering.

Figure 8 displays the Statistical-Driven Feature Filtering
estimates of feature significance. The bar plot scores 15 charac-
teristics by relevance from 0.1 to 0.9. Important characteristics
are at the top of the decreasing list. The graphic shows which
characteristics classify cybersecurity risks in the dataset most.
Features like Attack Severity and Flow Duration had higher
significance values (0.9 and 0.8, respectively), suggesting they
are significant in identifying normal from harmful activity.
Packet Length Mean Forward and Idle Duration have lower
significance values, indicating they contribute less to catego-
rization. This figure also shows how feature importance affects
the model’s cybersecurity threat detection. This knowledge
may assist choose features that improve model accuracy and
reduce computing complexity.

Figures 9, 10, and 11 for the model’s Threat Severity,
Attack Type, and Cybersecurity Strategy Effectiveness Each
figure’s confusion matrix shows how effectively the model
classifies jobs, with diagonal components indicating accu-
rate classifications and off-diagonal parts not. Confusing "No

Vol. 15, No. 11, 2024

Confusion Matrix for Threat Severity

No Threat

Low-Level Threat -

Medium-Level Threat -

True Label

High-Level Threat -

Critical Threat -

-
-
o
N

No Threat -

©
<
=
=
©
2
S

Low-Level Threat-
Medium-Level Threat -
High-Level Threat -

Predicted Label
Fig. 9. Threat severity confusion matrix.

Confusion Matrix for Attack Type
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Fig. 10. Attack type identification confusion matrix.

Threat” to “Critical Threat”” Most occurrences are likely
categorized by the strong diagonal alignment. Few misclas-
sifications occur around danger levels, showing the model
can compare severity levels across categories. It can evalu-
ate cybersecurity incident criticality. Figure 10 shows recon-
naissance, DoS/DDoS, malware, phishing, botnet, plus brute
force. The confusion matrix shows the model notices diagonal
assaults. Comparing attack types is challenging since few
misclassifications occur. The matrix proves the model properly
classifies cyber dangers. Figure 11 displays the model’s "No
Action Required” to ”Optimal Effectiveness.” In the confu-
sion matrix, most diagonal predictions are accurate across all
effectiveness levels. Minimal off-diagonal values suggest the
model seldom mixes categories, demonstrating cybersecurity
assessment accuracy. Here are the model’s cybersecurity risk,
attack, and defense categories. The model’s durability and
real-time threat detection and response improve cybersecurity
operational decision-making with little misclassification across
all three activities.

Table III compares cybersecurity threat detection classifi-
cation methods based on Accuracy, Log Loss, F1-Score, AUC,
Recall, Precision, Balanced Precision Index (BPI), and Fault
Detection Variability Coefficient. The table shows the effi-
cacy of each strategy, with BFRGD-NeT winning all criteria.
BFRGD-NeT has the greatest accuracy (97.8%) and F1-Score
(97.5%), suggesting its robustness in determining threat levels.
With the lowest Log Loss (0.071), the BFRGD-NeT model
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Confusion Matrix for Cybersecurity Strategy Effectiveness
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Fig. 11. Cybersecurity strategy effectiveness confusion matrix.
TABLE III. CLASSIFICATION RESULTS OF DIFFERENT TECHNIQUES
Techniques Accuracy | Log F1- AUC | Recall| PrecisipnBPI FDVC
(%) Loss | Score | (%) | (%) | (%) | (%) (%)
(%)
CNN [14] 87.8 0271 | 872 | 886 | 870 | 868 | 795 712
Decision Trees [16] 83.1 0342 | 815 | 842 | 828 | 816 | 741 65.9
GNN [14] 90.1 0255 | 89.4 | 908 | 89.0 | 887 | 829 74.6
DBN [21] 85.5 0298 | 847 | 864 | 841 | 839 | 763 68.4
SVM [10] 85.1 0309 | 838 | 859 | 833 | 827 | 76.0 67.0
BFRS [20] 86.5 0285 | 85.1 | 87.3 | 854 | 848 | 78.0 69.8
KNN [11] 83.6 0332 | 823 | 845 | 820 | 815 | 737 65.4
LSTM [18] 84.2 0325 | 829 | 853 | 836 | 823 | 757 67.5
Proposed BFRGD-NeT | 97.8 0071 | 975 | 983 | 97.6 | 974 | 942 88.7

predicts more accurately than other techniques. Other models
like GNN and CNN perform well but fall short of the proposed
strategy, notably in BPI and FDVC, which imply balanced
prediction accuracy and fault detection consistency. Traditional
Decision Trees and KNN have poorer accuracy, F1-Score, and
AUC values, demonstrating they cannot handle complicated
cybersecurity threat data. The table shows that the BFRGD-
NeT model is best for real-time threat detection due to its
excellent classification performance.

TABLE IV. STATISTICAL ANALYSIS OF CLASSIFICATION METHODS

(F-STATISTIC & P-VALUE)

=
=
2 ~
.| 2| E |
8 g Z =
T =
U T o -
< = = = =
> = S = g
o 3 Z = G
. Z 2 3 5] =
Statistical Method < 17} [aw N @)
CNN [14] 6.98 0.020 | 0.88 0.75 7.92
Decision Trees [16] 4.89 0.043 0.61 0.57 6.18
GNN [14] 7.56 | 0014 | 0.84 | 0.72 8.63
DBN [21] 6.45 0.017 | 0.78 0.71 7.45
SVM [10] 5.67 0.029 | 0.70 | 0.64 | 6.88
BFRS [20] 7.12 | 0.021 0.81 0.69 7.58
KNN [11] 5.12 | 0.036 | 0.62 | 0.58 6.33
LSTM [18] 5.22 | 0.031 0.65 0.59 6.54
Proposed BFRGD-NeT 893 | 0.007 | 094 | 0.81 9.92

Table IV compares cybersecurity threat detection catego-
rization approaches using statistical tests including ANOVA,
Student’s T-test, Pearson Correlation (r), Kendall’s Tau (7),
and Chi-Square (x2). Decision Trees, KNN, SVM, CNN,
GNN, and DBN perform differently, as seen in the table.
The BFRGD-NeT technique classifies cybersecurity risks with
the greatest statistical values across all parameters, demon-
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strating its consistency, correlation, and robustness. ANOVA
and Chi-Square scores for BFRGD-NeT are greater than other
approaches, indicating a more statistically significant differ-
ence between predictions. BFRGD-NeT’s Pearson Correlation
(0.94) and Kendall’s Tau (0.81) reflect greater correlations and
rank correlation with outcomes, improving prediction. Deci-
sion Trees and KNN have poorer statistical results, indicating
their inability to handle complicated cybersecurity data. Table
IV shows that BFRGD-NeT produces more accurate threat
categorization than standard and deep learning approaches.

Sensitivity to Learning Rate

—e— Accuracy

0.980 —&— F1 Score

=]
©
~
@

0.976

Performance

0.974

0.972

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Learning Rate

Fig. 12. Sensitivity to learning rate.

Sensitivity to Batch Size
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Fig. 13. Sensitivity to batch size.

Sensitivity to Number of Layers
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Fig. 14. Sensitivity to number of layers.

This model’s sensitivity analysis shows how learning rate,
batch size, and layer count impact its performance in Figure
12, 13 and 14. The figure shows the sensitivity to learning
rate, batch size, and number of layers, with accuracy and F1-
score displayed in each subplot. In the plots, the model regu-
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larly achieves excellent accuracy and F1-scores close to 98%,
however hyperparameters vary somewhat. These variations
show that appropriate learning rates or batch sizes improve
outcomes, helping to optimize the model.

V. CONCLUSION

In cybersecurity threat detection, the BFRGD-Net frame-
work outperforms standard models in accuracy, Fl-score, and
AUC. It captures local interdependence and global traffic
patterns to solve difficult cybersecurity data problems using
BFRS, GNN, and DenseNet. A comprehensive hybrid feature
selection approach and sophisticated preprocessing methods
like HTS and CBSA have improved data quality and feature
relevance, improving classification performance. Novel metrics
TDS, AIS, and BRDE show how the system can effectively
detect uncommon, high-severity threats in real time while
retaining operational efficiency. Statistical research shows the
model’s consistency and resilience, making it suitable for
cybersecurity situations that need accurate and quick threat
detection. The findings are encouraging, but further study is
required to improve the framework. Data sources, adjust the
model for ICS and IoT networks and optimize hyperparameters
to enhance performance. This work enhances threat detection
and develops scalable, adaptive algorithms to react to the
quickly changing cyber threat environment, enabling more
proactive and robust security systems.

For cybersecurity dataset uncertainty management, Bipolar
Fuzzy Rough Sets (BFRS) in the BFRGD-Net architecture
are effective. Future work will include dynamic thresholds
for positive and negative areas and investigate context-aware
modifications to BFRS. These improvements improve the
model’s capacity to distinguish complex, dynamic threat pat-
terns, making it more applicable in real-world cybersecurity
settings.

VI. PRACTICAL IMPLICATIONS OF THEORETICAL
RESULTS

Real-world cybersecurity —applications benefit from
BFRGD-Net framework theoretical findings. The model is
ideal for dynamic and high-risk contexts because it can
manage skewed datasets, identify infrequent but crucial
threats, and adapt to changing assault patterns.

e  Critical Infrastructure Protection: The framework
protects electricity grids, healthcare systems, and
transportation networks against undiscovered cyberse-
curity attacks, which might have serious effects.

e Proactive Threat Mitigation: This research offered
unique metrics including Threat Detection Sensitivity
(TDS) and Anomaly Impact Score (AIS) to prioritize
and mitigate cybersecurity threats. These measure-
ments help organisations prioritise the biggest dangers
and allocate resources more strategically.

e Scalable, Real-Time Performance: BFRS, GNNs,
and DenseNet are used in BFRGD-Net’s architecture
to ensure computational efficiency and scalability,
making it suitable for real-time systems like industrial
control systems (ICS) and IoT networks.

Vol. 15, No. 11, 2024

The suggested framework may improve cybersecurity mea-
sures in many applications by combining theoretical and prac-
tical contributions. These practical advantages demonstrate the
theoretical conclusions’ relevance and application to cyberse-
curity issues.
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