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Abstract—Internet of Things (IoT) has become one of the most 

significant technological advancements of the modern era, which 

has impacted multiple sectors in the way it provides 

communication between connected devices. However, this growth 

has led to security risks in the IoT devices especially when 

constructing resource-limited IoT networks that are easily 

attacked by hackers through methods like DDoS and data theft. 

Traditional IDS such as centralized IDS and single-view machine 

learning-based IDS are incapable of providing efficient solutions 

to these issues due to high communication cost, latency, and low 

attack detection rate for IDS. To address these challenges, this 

paper presents FusionSec-IoT, a decentralized IDS based on 

multi-view learning and federated learning for better detection 

performance and scalability in the IoT context. The results sows 

that the proposed technique performs better than the existing IDS 

methods with 08.3% accuracy as compared to classic IDS 

techniques centralized IDS (91.5%) and single-view federated 

learning (92.7%). The other performance metrics like shows a 

better performance as compared to traditional IDS methods. 

Thus, FusionSec-IoT detects a broad range of cyberattacks with 

the help of the employed complex machine learning algorithms 

such as Reinforcement Learning, Meta-Learning, and Hybrid 

Feature Selection using Particle Swarm Optimisation (PSO) and 

Genetic Algorithm (GA), and ensures data privacy is maintained. 

Moreover, Edge Computing and Graph Neural Networks (GNNs) 

guarantee fast identification of multi-device coordinated attacks, 

for instance, botnets. The above-discussed proposed system 

enhances the traditional IDS approaches in terms of high detection 

accuracy, better privacy, and scalability, making the proposed 

system a reliable solution to secure the complex and large-scale 

IoT networks. 
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I. INTRODUCTION 

The Internet of Things (IoT) technology has rapidly emerged 
as a transformative force across various sectors, facilitating the 
interconnectivity of numerous devices and enabling seamless 
communication among them [1]. Its applications span diverse 
domains such as smart homes, healthcare, industrial automation, 
and smart city infrastructures. However, as the deployment of 
IoT devices expands, so too does the landscape of security 
threats, creating significant vulnerabilities that malicious actors 
can exploit. The proliferation of intelligent IoT devices, often 
characterized by limited processing power and communication 
capabilities, within extensive and intricate networks heightens 

their susceptibility to various cyber threats [2]. These threats 
include Distributed Denial of Service (DDoS) attacks [3], data 
breaches [4], and the exploitation of vulnerabilities inherent in 
communication protocols [5]. Consequently, ensuring robust 
security measures is paramount to safeguarding these 
interconnected systems against increasingly sophisticated 
cyberattacks. 

Intrusion detection systems (IDS) are critical components of 
cybersecurity frameworks, designed to monitor network traffic 
and identify potential security breaches [6]. Several techniques 
have been developed for intrusion detection, primarily 
categorized into signature-based, anomaly-based, and hybrid 
approaches [7]. Signature-based systems rely on predefined 
patterns of known threats, offering high accuracy in detecting 
familiar attacks; however, they are inherently limited by their 
inability to identify novel or zero-day threats [8]. Anomaly-
based systems, conversely, establish baselines of normal 
behavior to detect deviations, enabling the identification of 
previously unknown attacks [9]. Despite their potential for 
discovering new threats, these systems often suffer from high 
false positive rates, as benign anomalies can trigger alerts. 
Hybrid approaches attempt to combine the strengths of both 
techniques, yet they can introduce complexity and require 
extensive computational resources [10]. Overall, while existing 
intrusion detection techniques provide foundational security 
measures, their limitations necessitate continuous innovation 
and adaptation to effectively combat the evolving landscape of 
cyber threats. 

Traditional intrusion detection systems (IDS) face 
significant limitations that undermine their effectiveness in 
contemporary cybersecurity landscapes. One of the primary 
drawbacks is their reliance on signature-based detection 
methods, which depend on a database of known attack patterns 
[11]. This approach is inherently reactive; it can only identify 
threats that have been previously documented, leaving networks 
vulnerable to novel or zero-day attacks that exploit undiscovered 
vulnerabilities. Furthermore, signature-based systems often 
struggle with the rapid evolution of attack techniques, leading to 
delays in updates and an increased window of exposure. 
Anomaly-based systems, while capable of detecting previously 
unknown threats, frequently generate high false positive rates 
due to benign deviations from established baselines, which can 
overwhelm security personnel and lead to alert fatigue. 
Additionally, both types of traditional IDS typically operate in 
isolation, lacking the collaborative intelligence needed to adapt 
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to increasingly sophisticated and coordinated cyber threats [12]. 
These limitations highlight the urgent need for more advanced, 
adaptive intrusion detection methodologies that can effectively 
respond to the dynamic and multifaceted nature of modern cyber 
threats. 

Federated learning is an innovative machine learning 
paradigm that enables decentralized training of models across 
multiple devices while preserving data privacy by keeping the 
data local [13]. This approach is particularly relevant to IoT 
security, where vast numbers of interconnected devices generate 
sensitive data that, if centralized, could become a lucrative target 
for cyberattacks [14]. By utilizing federated learning, IoT 
devices can collaboratively learn from their local datasets 
without transmitting raw data to a central server, thereby 
significantly mitigating the risks associated with data breaches 
and unauthorized access. Moreover, this decentralized 
framework enhances the adaptability and resilience of intrusion 
detection systems, as each device can contribute to a shared 
model that reflects real-time threat landscapes and individual 
operating conditions [15]. Consequently, federated learning not 
only facilitates the development of more robust and context-
aware security mechanisms but also empowers IoT networks to 
respond dynamically to emerging threats, ultimately fostering a 
more secure and resilient IoT ecosystem. This alignment of 
federated learning with the unique challenges of IoT security 
underscores its potential as a transformative approach in 
safeguarding interconnected environments. 

The research study based on the FusionSec-IoT intrusion 
detection system is grounded in a multifaceted approach that 
integrates several advanced machine learning techniques to 
enhance the detection capabilities within IoT networks[16]. At 
its core, the system utilizes federated learning, which facilitates 
decentralized model training on individual IoT devices, thereby 
preserving data privacy by preventing the transmission of raw 
data. Complementing this, multi-view learning is employed to 
analyze network traffic from distinct perspectives—specifically, 
bi-directional flow, unidirectional flow, and packet-based 
features—allowing for a comprehensive assessment of various 
attack patterns. The architecture incorporates specialized 
machine learning models tailored to each data view, such as 
Convolutional Neural Networks for bi-directional traffic and 
Long Short-Term Memory networks for unidirectional traffic. 
Furthermore, a hybrid feature selection process utilizing Particle 
Swarm Optimization and Genetic Algorithms is implemented to 
effectively reduce dimensionality and enhance model 
performance. Reinforcement learning is integrated to enable the 
system to adapt dynamically to evolving threats by continuously 
updating its detection policies based on real-time feedback. 
Lastly, the incorporation of differential privacy techniques 
ensures that model updates remain secure, bolstering the overall 
resilience of the system against coordinated cyberattacks. 

The paper introduces FusionSec-IoT, a novel intrusion 
detection system (IDS) designed to address the pressing security 
challenges in Internet of Things (IoT) networks. Traditional IDS 
methodologies, primarily reliant on centralized architectures and 
single-view data analysis, exhibit significant limitations in 
detecting sophisticated cyber threats due to their reactive nature 
and high false positive rates. In response, FusionSec-IoT 
employs a decentralized approach that integrates multi-view 

learning and federated learning techniques. This innovative 
framework aims to enhance detection accuracy, scalability, and 
data privacy by leveraging advanced machine learning 
algorithms, including reinforcement learning and graph neural 
networks. The primary objective of this research is to develop a 
robust and adaptive IDS capable of identifying a wide range of 
cyberattacks while maintaining the privacy of sensitive data 
across resource-constrained IoT environments. 

The remainder of this paper is structured as follows. In 
Section II, we review related work in the fields of multi-view 
learning, federated learning, and IoT security. Section III details 
the proposed FusionSec-IoT approach, including its 
architecture, data pre-processing techniques, feature selection 
process, and machine learning models. In Section IV, we present 
the dataset, evaluation metrics, and results of our experiments. 
Discussion is presented in Section V. Finally, Section VI 
concludes the paper and discusses potential avenues for future 
research. 

II. RELATED WORK 

IDSs for IoT networks have been studied extensively 
because of the rising threats of cyber-attacks. The conventional 
IDS based on machine learning are used with centralized 
architecture and a single view of data and its usage is gradually 
shifting towards the decentralized and multi-view solutions. The 
development of novel techniques in multi-view learning, 
federated learning, and ensemble methods has raised optimism 
regarding the IDS accuracy and privacy in distributed IoT 
settings. This section revisits these developments, before 
pointing out the contributions from the recent literature and 
positioning the proposed FusionSec-IoT system within the 
context of this line of work. 

Some of the works done earlier have aimed at overcoming 
the deficiencies of using centralized IDS for IoT. For example, 
early approaches used supervised learning methods, which 
included ANNs, to identify the malicious traffic patterns with 
reference to the known attack types. The study in [17] presented 
a study of a system that utilizes a multi-level perceptron to 
identify DoS and DDoS attacks with an accuracy of 99%. 4%. 
In the same context, [18] suggested the feed-forward neural 
network for intrusion detection through the use of multi class 
classification to identify numerous attacks which included 
reconnaissance and information gathering. However, these 
methods, while being very effective in identifying known 
attacks, fail in the case of new or emerging threats because of 
the use of static datasets and centralized data analysis. 

However, centralized systems have loopholes that make 
them vulnerable to several problems that include; Nevertheless, 
to address these problems, federated learning (FL) has been 
proposed as the best solution for intrusion detection in IoT 
networks [19]. The implementation of Federated learning makes 
it possible to train models in a decentralized manner which is 
very essential in large scale distributed systems to protect data 
privacy. Compared with conventional machine learning 
structures, FL carries out model training directly at the edge 
devices and only transmits model coefficients to a central server 
for averaging. This approach has reduced the privacy concerns 
that come with passing raw data across the network by a large 
margin.  
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TABLE I.  PREVIOUS LITERATURE COMPARISON 

Ref # 

Key 

Focus of 

Study 

Methodology/Techniques 

Used 

Key 

Findings 
Limitations 

[18] 

Federated 

learning 
for 

intrusion 

detection 
in IoT 

systems 

Federated learning 

framework with anomaly 

detection 

Improved 

privacy-

preservin
g 

intrusion 

detection 

Limited 

scalability 

for large 
IoT 

environme

nts 

[19] 

Hybrid 

methods 
for 

intrusion 

detection 

Combined signature-
based and anomaly-based 

methods 

Improved 

detection 
accuracy 

compared 
to 

standalon

e 
technique

s 

High 

computati
onal 

requireme

nts 

[20] 

Compara
tive 

review of 

federated 
learning 

in 

intrusion 
detection 

systems 

Review of federated 

learning techniques for 

privacy and intrusion 
detection 

Highlight

ed 
advantag

es of 

decentrali
zed 

learning 

for 
privacy 

preservati

on 

Lack of 

real-world 
experimen

tal 

validation 

[21] 

Techniqu

es for 

anomaly-
based 

network 

intrusion 
detection 

Overview of anomaly 

detection systems 

Identified 
potential 

for 

detecting 
unknown 

attacks 

High false 

positive 
rates for 

benign 

anomalies 

[22] 

Trustwor

thy AI 
for 

cybersec

urity 

Multi-faceted approach 
integrating AI techniques 

for intrusion detection 

Proposed 

adaptable 

AI 

models 

for real-
time 

threat 

detection 

Limited 
discussion 

on 
privacy-

preserving 

mechanis
ms 

[23] 

Federated 
learning 

with 

LSTM for 
IoT 

intrusion 

detection 

Long Short-Term 

Memory (LSTM) models 
with federated learning 

Enhanced 

intrusion 
detection 

with 

decentrali
zed data 

High 

latency 

due to 
LSTM 

training 

The authors in study [20] have given one of the first 
elaborate design architectures for federated learning systems 
applicable to IoT security. Their work shows how a technique 
called federated learning can be employed to preserve data 
privacy while at the same time enable the sharing of knowledge 
across the devices. After this, the study [24] proposed a self-
learning anomaly detection system for compromised IOT 
devices using federated learning which is further explained 
below: Their system achieved 98. 2% accuracy and could detect 
95 per cent of the malignant tumors. In this attack, 6% of attacks 
were in under 257 milliseconds and demonstrates that FL is an 
effective method for reducing latency and increasing the speed 
of detection.  

One of the major weaknesses found in the research 
conducted on IDS is that most of the work done incorporates 
single view data that is not very effective in identifying multiple 
vector attacks. This has been pointed as a weakness of IDS as 
they only learn from a single view of the data Multi-view 
learning which is relatively newer addresses this problem by 
allowing IDS to learn from multiple views of the data. Each view 
presents different aspects of the network traffic including the bi-
directional traffic and the unidirectional traffic and features of 
the packets. Multiple views can therefore pick slightly different 
and more complicated attack patterns than a single view multi-
view systems. For instance, in semi-supervised co-training 
approach of [21], multiple views of attack data were 
incorporated. Their system was able to perform detection by 
creating a fusion of the outputs of models learned with these 
different views, hence yielding better detection results than 
those exhibited by conventional single-view systems. 

Recently, the use of federated learning coupled with multi-
view learning has been proposed to improve the performance of 
IDS in IoT networks. The work of study [22] discussed the 
multiple view aspects of MQTT data in a centralized context and 
yet, given the recent interest in federated learning, studies have 
been done on how these can be done in a decentralized manner. 
The multi-view analysis is spread across the devices so that there 
is effective utilization of multi-view learning but without 
compromising on the privacy of the users. This decentralized, 
multi-view approach is particularly beneficial in such 
environments as the devices are resource-scarce since it does not 
require extensive data transmission. 

Intrusion detection systems (IDS) have been analyzed 
extensively in the context of IoT networks because of the rising 
IoT network vulnerability to cyber threats. In fact, other 
conventional IDS approaches like the signature based systems 
suffer from the lack of ability to identify new or ‘zero-day’ 
attacks as stated by [23]. Recent developments have been 
centered on anomaly-based detection, which sets up behavioral 
norms to look for. Multi-view learning can be used to overcome 
the problem of single-view data analysis because it utilizes 
multiple views of network traffic. A study in [25] suggested to 
incorporate multi-view data to improve the detection accuracy 
while their work did not scale well and did not have privacy-
preserving components. To fill this gap, in our work, we 
incorporate multi-view analysis with federated learning to 
enhance the detection performance and privacy simultaneously. 

Another promising direction of research closely related to 
the multi-view and federated learning concepts is the ensemble 
learning [26]. Ensemble methods [27] enhance the detection 
performance, owing to the fact that each model may be trained 
to identify a specific type of attack. In the case of the federated 
learning, the ensemble methods can be applied to the results of 
the models trained on the different data views in order to get the 
better and more complete intrusion detection system. The recent 
work by [28], used an ensemble-based technique that integrate 
the NIDS and HIDS and it shown very much improvement in 
accuracy of different datasets. 

The other major milestone that has been made in the 
federated learning domain is the use of differential privacy 
techniques to add more privacy protection to the system [29]. 
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When training a model, federated learning guarantees that raw 
data does not need to be sent to the server but sharing the model 
updates without adequate protection is also problematic. 
Differential privacy solves this by introducing controlled noise 
in the model updates so that the parameters are not informative 
enough to allow the adversary to make any inference on the 
sensitive information. As established by [30], adding differential 
privacy into federated learning can enhance the privacy 
protection of the system from the attacks without affecting the 
model performance. 

Even though IDS for IoT networks have been studied 
extensively, there are several research challenges that limit the 
efficiency and expansion of the current IDS solutions. The 
traditional IDS approaches that include signature based and 
anomaly based have their weaknesses in that they fail to identify 
new attacks, zero day attacks and are characterized by high false 
positives. Although recent solutions such as federated learning 
and multi-view analysis have been proposed, many of them have 
to overcome the limitations of sacrificing privacy, model 
accuracy, or computational complexity in IoT devices with 
limited resources. Moreover, existing models provide limited 
capability to incorporate changes in threats over time and that is 
a key requirement for IoT networks which are constantly 
evolving. In addition, the deployment of privacy-preserving 
methods like differential privacy for federated learning has not 
been adequately investigated regarding large-scale IoT 
environments. It is also important to conduct more extensive 
assessments on various datasets and on these systems 
performance under actual conditions. This research presented in 
this paper seeks to fill these gaps by proposing a federated 
learning multi-view learning, hybrid feature selection, and 
reinforcement learning-based intrusion detection system that is 
scalable, privacy-preserving, and adaptive to the modern IoT 
environment. 

To conclude, with the help of existing research, the IDS for 
IoT networks has been developed with increased accuracy, 
efficiency, and privacy. Nevertheless, there are challenges that 
have not been adequately addressed, including the nature of 
multi-vector attacks, low-latency performance in resource-
scarce environments, and privacy-preserving data handling. The 
FusionSec-IoT system extends these improvements by 
integrating multi-view learning, federated learning, ensemble, 
and differential learning in a single IDS. Thus, applying these 
advanced approaches, FusionSec-IoT provides a highly 
extensible solution while maintaining the privacy of data and 
being adapted for the complex structure and constantly evolving 
nature of today’s IoT networks. 

III. PROPOSED METHODOLOGY 

The IoT technology has developed at a very fast rate and has 
brought a lot of challenges in the field of security since the 
devices are very many with different protocols and very limited 
resources. Inherent traditional security measures are a bit 
appropriate for conventional networks but not for IoT, especially 
because the devices are re-source-constrained, and data breaches 

are rampant. The novel intrusion detection system proposed in 
this research, FusionSec-IoT (Fusion of Multi-View Federated 
Learning for IoT Security), is particularly intended to address 
these challenges by incorporating several state-of-the-art 
approaches including RL, Meta-Learning, Hybrid Feature 
Selection involving PSO and GA, Edge Computing, GNNs, and 
DP. This integration of technologies guarantees that FusionSec-
IoT is capable of identifying several types of cyber threats, 
maintain data privacy, minimize computational overhead, and 
respond to the dynamic nature of threats in real-time fashion. 
The next sub-sections describe the technologies incorporated in 
FusionSec-IoT, why the technologies have been chosen, how the 
technologies are integrated, and the anticipated results.  

A. Architecture 

The architecture of FusionSec-IoT is built based on the idea 
of FL, which enables the training of a model on IoT devices 
without transferring raw data. This is especially important in IoT 
environments because many devices produce data that may 
contain personal information, it would be even more likely to 
leak and managing large amount of data would be problematic 
if they are all collected in one place. Federated learning makes 
certain that the models are trained on the devices and only the 
updates on the models (for instance, weights or gradients) are 
uploaded to the central server. This architecture, in addition to 
reducing the overhead of the communication, also adheres to the 
privacy and security specifications of IoT networks.  

In FusionSec-IoT, Security Gateways act as middle-layer 
between the IoT devices and the Central Server. These gateways 
aggregate the network traffic data from various IoT devices, do 
first level data processing, and train the model at the edge. This 
use of Edge Computing helps to ensure that the data processing 
is done close to the edge hence reducing the latency and 
enhancing real time intrusion detection.  

The Fig. 1 shows the FL architecture for improving the IoT 
network security with the help of central server and IoT devices 
connected through a gateway. Feature extraction and 
reinforcement learning are used to train base models of data 
inputs, namely Bi-Flow, Uniflow, and Packet View Data, and 
these models are deployed to IoT devices. In the gateway, local 
data processing is performed to identify the attacks, and the 
devices learn from the local data. These locally updated models 
are then aggregated in the FL process at the central server to 
refine the global model and this is then sent back to the devices 
to ensure the network has adaptive and robust security while at 
the same time preserving data privacy. 

The network traffic data collected by IoT devices is 
segmented into three specific views: From the features it is 
possible to identify three main views namely Bi-Directional 
Flow Features (Bi-flow view), Uni-Directional Flow Features 
(Uniflow view), and Packet-Based Features (Packet view). 
These three different data views reflect different aspects of 
network activities, which helps the system to identify a large 
number of attack behaviors.
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Fig. 1. Architectural design of proposed model.

Each view is considered as a separate dataset and is used to 
train a model which is relevant to that kind of data. Such division 
into multi-view analysis is important for obtaining the most 
detailed coverage of known and unknown threats. These 
segmented views are then periodically transmitted to a Central 
Server so that their corresponding local models can be combined 
to form a global model. The global model is updated and 
redeployed to IoT devices for ongoing configuration to new and 
emerging threats. Data Pre-Processing and Multi-View Analysis 

Multi-view analysis is another activity of FusionSec-IoT, 
which employs three views to describe different aspects of 
network traffic. It enhances the detection accuracy of the system 
since it enables the system to pay equal attention to all the 
dimensions of traffic and therefore it is capable of detecting 
different and diverse patterns of attacks. Through the 
consideration of Bi-Directional Flow Features, Uni-Directional 
Flow Features, and Packet-Based Features, FusionSec-IoT can 
detect a number of attack types. 

1) Bi-Directional Flow Features (Bi-flow view): This view 

focuses on bidirectional traffic between devices which is for 

instance the communication between the client and server. 

Bidirectional traffic analysis is used if the attack is based on the 

multiple devices’ communication, for instance, botnet attack 

where infected devices are in contact with the C&C server. 

2) Uni-Directional Flow Features (Uniflow view): This 

perspective provides the traffic as a one way process with 

reference to the flow of packets in terms of transmitted and 

received. It is found that uniflow analysis is more useful to 

detect traffic flows related to Distributed Denial of Service 

(DDoS) attacks, where large numbers of traffic flows are sent 

to a particular destination to flood it. 

3) Packet-Based Features (Packet view): The third view 

involves the examination of various parameters that are 

inherent in individual packets including the size, time and the 

header information. Packet-based analysis is especially helpful 

in identifying low level attacks such as the port scanning or the 
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network probing since the packets will possess different 

characteristics from normal packets. 
 The multi-view approach enhances the result of the 

intrusion detection system since each kind of traffic is processed 
in a manner most effective in detecting certain kinds of attacks. 
This way the system is able to consider different aspects of the 
network traffic separately and hence is able to detect anomalies 
easier and faster than if all traffic was considered as one big 
entity. 

B. Hybrid Feature Selection Using PSO and GA 

Selecting the right features that will be used in the model is 
one of the most important processes in any learning model 
especially when dealing with the constrained environments like 
the IoT networks. One of the most important steps is the 
selection of features that can reduce the dimensionality of the 
data, which is not only beneficial in terms of shortening the time 
to train the model but also in terms of increasing the accuracy of 
the model’s ability to detect features that are not useful or 
redundant. In FusionSec-IoT, therefore, a Hybrid Feature 
Selection method is used, featuring PSO and GA to enhance the 
selection of features in the network traffic data. 

Particle Swarm Optimization (PSO) is a biologically 
inspired optimization algorithm which is based on the nature of 
bird flocking or shoaling. In PSO, every potential solution is 
regarded as a particle in the swarm where particles search the 
feature space by moving according to their own experience and 
the experience of their peers. The velocity update equation for 
PSO is defined as follows: The velocity update equation for PSO 
is defined as follows: 

𝑣𝑖
𝑡+1 =  𝑤𝑣𝑖

𝑡 + 𝐶1𝑟1 (𝑝𝑖 − 𝑥𝑖
𝑡) +  𝐶2𝑟2 (𝑔 − 𝑥𝑖

𝑡) (1) 

where 𝑣𝑖
𝑡+1  is the updated velocity of particle i, ω is the 

inertia weight which control the effect of the previous velocity, 
c1 and c2 are cognitive and social coefficients which represent 
the influence of personal best position and global best position 
respectively, r1 and r2. 

Although PSO is effective to search for the promising 
solution and to identify the best feature subset, there is a 
drawback in that the algorithm easily falls into a local optimal 
solution. To avoid such a limitation, FusionSec-IoT integrates 
PSO with a Genetic Algorithm (GA), which brings out more 
diversity to the feature selection process. GA optimizes feature 
selection through operations such as crossover that involves 
combining part of two parent solutions, mutation that results in 
random changes in the off springs and selection that involves 
selecting the best solutions to make the next generation. This 
makes it possible to use the exploration capability of PSO and 
the exploitation capability of GA so as to select the most relevant 
features and avoid getting local optima. 

Algorithm 1: Particle Swarm Optimization (PSO) 
Input: 

n_particles: Number of particles 

n_dimensions: Dimensionality of the search space (i.e., 

the number of features) 

max_iterations: Maximum number of iterations 

w: Inertia weight (controls exploration vs. exploitation) 

c1, c2: Cognitive and social acceleration constants 

Output: 

      gBest: Global best solution (optimal feature subset) 

Initialization: 

Initialize each particle’s position randomly in the search 

space. 

Initialize each particle’s velocity randomly. 

Set each particle’s personal best (pBest) to its initial position. 

Set global best (gBest) to the position of the particle with the 

best fitness. 

For each iteration from 1 to max_iterations do: 

|      For each particle i do: 

|      Evaluate fitness of the current position position[i]. 

|      Update personal best: 

|      If fitness(position[i]) is better than fitness(pBest[i]),         

 |    update pBest[i] = position[i]. 

 |     Update global best: 

 If fitness(pBest[i]) is better than fitness(gBest), update gBest 

= pBest[i]. 

 |   Update velocity for particle i: 

velocity[i]=w×velocity[i]+c1×r1×(pBest[i]−position[i])+

c2×r2×(gBest−position[i]) 

             Where r1 and r2 are random numbers between 0 and 

1. 

  |    Update position for particle i: 

  |           position[i]=position[i]+velocity[i] 

End iteration loop. 

Return gBest as the optimal solution. 

 

From the network traffic data, the hybrid feature selection 
process only selects a few important features hence minimizing 
the computational load on the IoT devices even as it enhances 
the detection accuracy. The main benefit of this approach is its 
suitability for processing data in IoT networks where devices are 
often resource-constrained, in terms of processing and energy 
capabilities. 

C. Reinforcement Learning for Dynamic Adaptation 

In dynamic and evolving network environment intrusion 
detection systems may have to learn new attacks that were not 
used in the learning phase. In order to overcome this challenge, 
FusionSec-IoT adopts Reinforcement Learning (RL), a machine 
learning approach where an agent learns to take actions in an 
environment in a way to optimize cumulative reward in the long 
run. In the context of FusionSec-IoT, the RL agent is positioned 
at the edge gateways and performs a number of interactions with 
the network environment in order to classify the traffic as normal 
or anomalous. 

The state in the RL framework refers to the current 
observation of the network traffic while the action is about 
classifying traffic into either normal or anomalous traffic. In this 
case, the reward is given depending on the correctness and the 
time taken in the classification. In this way, the RL agent is 
capable of updating the policy in order to receive feedback in a 
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form of a reward in order to make better decisions in the future. 
The policy update rule in RL is based on the Q-learning 
algorithm, which updates the action-value function Q(s,a) as 
follows: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]   (2) 

Here, Q(s,a)  is the action-value function representing the 
expected utility of taking action a in state s, α is the learning rate 
controlling the speed at which the agent learns, r is the reward, 
γ is the discount factor accounting for future rewards, and s′ and 
a′ are the next state and action, respectively. The agent's goal is 
to learn a policy that maximizes the cumulative reward over 
time, allowing it to adapt dynamically to evolving attack 
patterns. 

Reinforcement Learning is particularly useful in 
environments where the threat landscape is constantly changing, 
such as IoT networks. By enabling the system to continuously 
update its detection policy based on feedback from the 
environment, RL ensures that FusionSec-IoT remains effective 
in detecting new and emerging attack vectors, even those not 
encountered during initial training. 

D. Meta-Learning for Zero-Day Attack Detection 

Real-time threat identification is one of the main difficulties 
when it comes to cybersecurity, which include zero-day attacks, 
using unknown vulnerabilities that have not yet been fixed. 
Conventional methods of IDS, which employ supervised 
learning, may fail to notify of such an attack because the model 
has not learned of its similar precedent. In order to solve this 
problem, FusionSec-IoT adopts Meta-Learning, a machine 
learning framework that learns from few examples and can be 
easily adapted to new tasks. 

Algorithm 2: Meta-Learning for Zero-Day Attack 

Detection 

Initialize model parameters theta. 

 |   For each iteration (1 to n_iterations): 

 |    Sample tasks from T. 

 |     |   For each task: 

 |     |    |  Copy theta_i = theta. 

 |  |   Inner loop: Perform n_inner_updates using task data:                

θi′=θi−α⋅∇θiLTi(θi) 

 |     |     Compute loss on new data from task T_i. 

 |     |    Meta-update theta using task losses: 

θ=θ−β⋅∇θ∑LTi(θi′) 

Return optimized theta. 

 

In FusionSec-IoT the Meta-Learning technique is used for 
detection of zero-day attacks with limited training data. Meta-
learning algorithms are able to learn how to learn and therefore 
for the system to be able to learn new forms of attacks, the 
system only requires samples. This capability is particularly 
applicable in IoT settings where new devices and protocols are 
being released periodically and thus creating new types of attack 
paths. 

One of the most famous meta-learning approaches is Model-
Agnostic Meta-Learning (MAML) where the goal is to learn the 
model parameters which can be adapted for new tasks with a few 
gradient updates. As for Fu-sionSec-IoT, MAML may be used 
to train models that would be able to learn new types of attacks 
when the system received only a few samples of such attacks. 
Meta-learning in FusionSec-IoT further strengthens the 
system’s capability to identify the new or infrequent attack 
types, which gives the system an edge over the conventional 
systems that use only supervised learning. 

E. View-Specific Machine Learning Models 

To ensure maximum detection accuracy of each data view, 
FusionSec-IoT uses specific machine learning models for the 
Bi-flow, Uniflow and Packet views. Every model is trained in 
such a way that it can adapt well to the data it is fed with during 
its training process. 

 In the Bi-flow Model, the Convolutional Neural Network 
is used, which is appropriate for analyzing patterns in 
bidirectional traffic. CNNs work well in identifying 
spatial dependencies between the traffic flow dynamics 
in a network, for instance, those made by the botnets and 
other synchronized attacks. 

 The Uni-flow Model applies a Long Short-Term 
Memory (LSTM) network that is able to capturing 
temporal dependencies in unidirectional traffic. LSTMs 
are especially effective in detecting typical attack types 
such as DDoS because the time at which traffic is 
generated is a critical factor in determining an attack’s 
legitimacy. 

 The Packet Model employs a Fully Connected Neural 
Network (FCNN) for the identification of packet-level 
anomalies. FCNNs are designed to capture low level 
features such as the packet size, the flags or timing and 
thus are especially useful in low level attacks such as port 
scanning/probing. 

These view-specific models are trained separately on 
different views of the data set in order to prevent the system from 
wasting resources on the types of attacks not characteristic of a 
particular view. This approach makes sure that there is 
comprehensive detection of a session at various levels of 
network communication. Federated Learning Process 

Indeed, one of the essential aspects of the proposed 
FusionSec-IoT is Federated Learning (FL) that allows training 
models on IoT devices without transferring the data. It solves 
the privacy problems related to centralized data aggregation 
while at the same time decreasing the computational and 
communication burden. 

The central server in the federated learning process 
initializes base models for the data views and sends these models 
to the IoT devices. Every device then updates the local model 
with the segmented data of Bi-flow, Uniflow, or Packet view 
and transmits the new set of model parameters such as weights 
or gradients back to the central server. Federated Aggregation 
executed by the central server, the updates of all the devices are 
then aggregated to build a new global model. This process can 
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be formalized using the FedAvg algorithm, where the global 
model is computed as: 

f(w) = ∑
𝑛𝑘 

𝑛
 𝐹𝐾(𝑤)

𝐾

𝑘=1
         (3) 

Here, f(w) stands for the global model, 𝑛𝑘  denotes the 
number of data samples on device , and 𝐹𝐾(𝑤) denotes the local 
model’s loss function on device k. The global model is then 
broadcasted to the devices for them to perform local training 
with new model parameters. 

 It is a cyclic process that makes sure that the models are 
updated in accordance with the current trends in attacks while 
the devices do not have to exchange any sensitive data. As the 
data is kept locally within the FusionSec-IoT network traffic and 
only model up-dates are transmitted, the privacy of the network 
traffic data is maintained, while the models are updated with the 
current threat intelligence. 

F.  Differential Privacy 

 In a bid to complement DP during the federated learning 
process, FusionSec-IoT employs Differ-ential Privacy, a 
mathematical model that offers robust assurance on privacy of 
data records. In a differential privacy setting, noise is injected 
into the shared model updates to ensure that the attackers cannot 
identify sensitive information of individual data points. 

The amount of noise added is regulated by privacy budget 
(ϵ), that indicates how much accuracy is sacrificed for privacy. 
The noise is typically drawn from a Laplace distribution with 
scale parameter λ and the noise added to the model updates can 
be expressed as: 

𝑁𝑜𝑖𝑠𝑒 =
1 

𝜀
Laplace (λ)       (4) 

Here λ is the scale parameter of Laplace distribution and ϵ 
controls the privacy parameter. To prevent leakage of 
information during the model updates, FusionSec-IoT 
incorporates noise in the model updates to ensure that even if an 
attacker intercepts the conversation between the devices and the 
central server, he or she cannot infer anything from the 
information obtained. 

G. Ensemble Learning and Integration 

After the training of the models of each view, FusionSec-IoT 
uses Ensemble Learning to integrate the outputs of the multiple 
models to improve their accuracy and general robustness. In 
FusionSec-IoT the ensemble model is created by using Random 
Forest classifier, wherein the predictions from the Bi-flow, 
Uniflow and Packet models can be aggregated by using majority 
voting or weighted mean. 

More so, intrusion detection systems greatly benefit from 
ensemble learning since it combines several weak learners into 
a stronger learner. FusionSec-IoT then combines the predictions 
obtained from the various view-specific models to make the 
final decision and it is more accurate than each of the models. 

H. Graph Neural Networks (GNNs) 

 For example, to counter the problem of coordinated attacks 
through simultaneous use of multiple devices like the botnets, 
Fusion-Sec-IoT uses Graph Neural Networks. In the context of 

the IoT networks each device can be viewed as a node in the 
graph, where arcs denote the interaction between nodes. GNNs 
are developed to process graph-structured data, which means 
that they can well identify attacks which are performed by 
multiple devices collaboratively. 

 In FusionSec-IoT, graph neural networks are employed to 
capture the topology of the relationship between the IoT devices 
to capture patterns of coordinated attacks. The feature update 
equation for GNNs is defined as: 

ℎ𝑖
(𝑙+1)

= 𝜎(𝑊(𝑙). 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({ℎ𝑗
(𝑙)

 | 𝑗 ∈ 𝑁(𝑖)})) (5) 

 Here, ℎ𝑖
(𝑙+1)

 is an updated feature for node iii at layer L+ 1, 

𝑊(𝑙) is a weight matrix at layer 𝑙, Aggregate is a function for 
combining features of neighboring nodes j, and σ is an activation 
function. 

This is made possible through the use of GNNs, which 
allows FusionSec-IoT to detect even multiple devices attacks 
such as botnet where the devices are compromised to 
communicate and conduct large-scale attacks. This capability 
also expands the ability of the system to identify multi-device 
complex threats that may not be visible to IDS. 

IV. RESULTS 

This section shows the experimental results from assessing 
the proposed FusionSec-IoT system. The assessment focuses on 
the system's success in identifying a variety of cyberattacks in 
IoT networks, in comparison to existing techniques, and on 
measuring the effectiveness of different parts, such as federated 
learning, multi-view analysis, and the combination of 
reinforcement learning and differential privacy. The assessment 
metrics used consist of Accuracy, Precision, Recall, F1-Score, 
Detection Latency, and Communication Overhead. These 
metrics give a thorough view of the system's capability to 
identify attacks, maintain privacy, and operate smoothly in real-
time, limited resource IoT environments. 

A. Experimental Setup 

We created a complete IoT environment for evaluating 
FusionSec-IoT, leveraging actual datasets that include a variety 
of IoT traffic and several types of cyberattacks, which include 
Denial of Service (DoS), Distributed Denial of Service (DDoS), 
man-in-the-middle (MitM), and other network intrusions. The 
dataset was divided into three views: Presenting a network 
behavior multi-view representation are Bi-Directional Flow 
Features (Bi-flow view), Uni-Directional Flow Features 
(Uniflow view), and Packet-Based Features (Packet view). 
Configured to behave like smart home systems, industrial IoT, 
and consumer devices, the IoT devices were. 

All devices within the IoT network carried out local model 
training with the federated learning (FL) technique. To create a 
global model, the local training resulted in the aggregation of 
model parameters at a central server using the FedAvg 
technique. The model received periodic updates to detect 
currently known attack vectors and any that may be unknown, 
in real time. The assessment was performed using Python and 
PyTorch, with federated learning carried out using the PySyft 
library for secure machine learning. 
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B. Performance Metrics 

To evaluate the performance of FusionSec-IoT, we 
employed six key metrics: Accuracy, Precision, Recall, F1-
Score, Detection Latency, and Communication Overhead are the 
parameters used in this paper. Accuracy defines the overall right 
performance of the system while Precision and Recall defines 
the right identification of the attacks and the correct 
identification of all true attacks, respectively. The F1-Score 
integrates the precision and the recall to present a single figure 
for the system’s attack detection capacity. Detection Latency 
assesses the system’s ability to quickly respond to an attack and 
determine how long it takes for the system to detect an attack as 
it happens. Finally, the Communication Overhead captures the 
amount of data transferred during federated learning and 
demonstrates the system’s performance and adaptability, 
particularly in extensive IoT networks. Together, these metrics 
provide a balanced evaluation of FusionSec-IoT’s performance 
in terms of accuracy, speed, real time response and utilization of 
the resources.  

Accuracy: The percentage of correct attack and normal 
traffic classifications. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (6) 

Precision: The proportion of correctly identified attacks out 
of all predicted attack instances (see Fig. 3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (7) 

Recall: The proportion of actual attacks that were correctly 
identified by the system. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (8) 

F1-Score: The harmonic mean of Precision and Recall, 
providing a balanced measure of the system's ability to detect 
attacks. 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (9) 

Detection Latency: The time taken to detect an attack after it 
has occurred, measured in milliseconds. 

Detection Latency=Time of Attack Detection−Time of Atta
ck Occurrence (9) 

Communication Overhead: The amount of data transmitted 
between devices and the central server during the federated 
learning process. 

Communication Overhead=∑(Data Sent+Data Received)   (10) 

 

Fig. 2. Accuracy comparison of ID method. 

The FusionSec-IoT system exceeded existing intrusion 
detection systems by delivering high precision and efficiency in 
the recognition of a diverse range of attacks. Table I gives an 
overview of the system performance, in comparison to baseline 
methods. 

Fig. 2 also presents the comparative analysis of the accuracy 
of the various kinds of intrusion detection strategies such as 
Centralized IDS, Single-View Federated IDS, Multi-View 
Federated IDS and FusionSec-IoT. The centralized IDS method 
depicts the lowest accuracy of over 90 %. Single-View 
Federated increases the accuracy of identification to about 93 %, 
and by using the Multi-View Federated system, it is about 96 %. 
The proposed FusionSec-IoT model attains the best accuracy of 
over 98%, which proves its high efficacy in the detection of 
intrusions in IoT security. 

 

Fig. 3. Precision , Recall , F1-score comparison of baseline models with the 

proposed model. 

TABLE II.  RESULT COMPARISON OF PROPOSED MODEL WITH BASELINE 

MODELS 

Method 
Accura

cy 

Preci

sion 
Recall 

F1-

Scor

e 

Detecti

on 

Latenc

y (ms) 

Communica

tion 

Overhead 

Traditio

nal 

Centrali
zed IDS 

91.5% 
90.2

% 
89.0% 

89.6

% 
450 ms High 

Single-

View 
Federate

d 
Learning 

92.7% 
91.0

% 
90.4% 

90.7

% 
380 ms Medium 

Multi-

View 
Federate

d 

Learning 

96.1% 
94.5

% 
93.9% 

94.2

% 
330 ms Low 

FusionS

ec-IoT 
(Propose

d) 

98.3% 
97.6

% 
97.0% 

97.3

% 
257 ms Very Low 

In Table II, it is shown that FusionSec-IoT reached a 
precision of 98.3%, remarkably exceeding the traditional 
centralized IDS (91.5%) and the single-view federated learning 
approach (92.7%). The precision and recall of the system were 
considerably higher, showing that FusionSec-IoT is more 
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capable of identifying genuine attacks and lowering false 
positives. The F1-Score of 97.3% proves a balanced 
performance regarding both precision and recall. 

C. Detection Latency 

In IoT ecosystems, latency is an important element for real-
time detection, necessary for countering attacks that are 
currently in progress. Results demonstrate that FusionSec-IoT 
has a detection latency of 257 ms, which is 43% quicker than 
classic centralized IDS systems and 32% faster than single-view 
federated learning solutions. The combination of Edge 
Computing with Reinforcement Learning has enabled the 
system to reduce latency, allowing it to make faster decisions at 
the edge and thereby reducing the time needed to send data for 
central server analysis. 

 

Fig. 4. Detection latency comparison. 

Fig. 4 shows the detection latency comparison of four 
methods: Centralized IDS, Single-View Federated, Multi-View 
Federated, and FusionSec-IoT. Centralized IDS has the highest 
latency, over 400 ms, followed by Single-View at 350 ms, and 
Multi-View at 320 ms. FusionSec-IoT achieves the lowest 
latency at 250 ms, highlighting its superior efficiency. 

 

Fig. 5. Communication latency comparison. 

The Fig. 5 compares communication overhead for four 
methods: Centralized IDS, Single-View Federated, Multi-View 
Federated, and FusionSec-IoT. FusionSec-IoT shows the lowest 
overhead, while Centralized IDS has the highest. 

D. Effectiveness of Multi-View Learning 

A key innovation of FusionSec-IoT is its use of multi-view 
learning to capture different aspects of network traffic. Table II 
compares the performance of single-view and multi-view 
learning systems. 

TABLE III.  MODEL PERFORMANCE 

Model Type Accuracy F1-Score 

Single-View Federated Learning 92.7% 90.7% 

Multi-View Federated Learning 96.1% 94.2% 

FusionSec-IoT 98.3% 97.3% 

Results presented in Table III show that multi-view learning 
markedly improves both detection accuracy and the F1-Score. 
FusionSec-IoT managed to detect sophisticated attack patterns 
that single view systems failed to recognize by analyzing 
network traffic from three different angles (Bi-flow, Uniflow, 
and Packet views). The skill to record both broad (bi-directional 
communication) and granular (packet details) traffic features 
played a role in this improvement. The combination of Particle 
Swarm Optimization (PSO) with Genetic Algorithm (GA) 
served to improve the system’s performance by selecting the top 
relevant features from every data view. The computational 
efficiency improved while maintaining high accuracy thanks to 
FusionSec-IoT's reduction in dimensionality of the data. 

 

Fig. 6. Feature selection efficiency. 

In contrast to systems that do not incorporate hybrid feature 
selection (see Fig. 6), FusionSec-IoT observed a 15% 
improvement in feature selection efficiency along with a 22% 
reduction in processing time. The highlighted features served to 
both decrease redundant data and illuminate critical attributes 
that were most important for intrusion detection, which resulted 
in quicker and more correct model training. FusionSec-IoT 
benefits from the ability of federated learning to keep raw traffic 
data on IoT devices, thereby preserving data privacy. The 
system's privacy guarantees received a boost from the 
integration of Differential Privacy (DP). To stop attackers from 
extracting sensitive information from the compiled parameters, 
controlled noise was added to the shared model updates. Despite 
the fact that adding differential privacy may at times reduce 
model accuracy, FusionSec-IoT managed to keep high accuracy 
(98.3%) while giving solid privacy protection. Table I indicates 
that the communication overhead of the system was minor, 
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representing the lowest data transmission requirements 
compared to the other evaluated methods. Federated learning 
helped to accomplish this by eliminating the continuous 
requirement to transmit raw data to a central server. Instead, the 
transmission only involved updated models (parameters), which 
resulted in less bandwidth consumption and guaranteed 
scalability. 

E. Analysis in Relation to Baseline Models 

FusionSec-IoT provided a 10% greater detection accuracy 
than traditional IDS systems, as well as a reduction in detection 
latency of 39%.  

TABLE IV.  MODELS LATENCY AND COMPUTATIONAL OVERHEAD 

Method Accuracy Latency 
Communication 

Overhead 

Centralized 
IDS 

91.4% 410 ms High 

FusionSec-

IoT 
98.5% 250 ms Very Low 

The capability of the system to continuously learn from new 
attack patterns in a decentralized approach produced better 
results than static, centralized models. Table IV shows the 
models latency and computational overhead. 

To address external validity, the variety of IoT device 
configurations chosen and the range of attack types employed in 
the study increases the applicability of the findings in flesh and 
blood situations. Nevertheless, the evaluation is carried out only 
for some datasets and IoT scenarios, and although positive 
performance results are achieved, further experiments on larger 
and heterogeneous datasets and in various IoT applications (e.g., 
smart cities or health care) will be needed to evaluate the 
extensibility and versatility of FusionSec-IoT in broader IoT 
systems. Further, the study’s environment is artificial and as 
such, the real-world implementation may pose some different 
scenarios that are not apparent in this controlled environment 
such as device variability, network fluctuations and other forms 
of attacks. 

V. DISCUSSION 

Specifically, the FusionSec-IoT as introduced in this paper 
presents a new architecture and framework for intrusion 
detection in IoT networks based on federated learning, multi-
view learning, hybrid feature selection, reinforcement learning, 
and differential privacy. The primary motive of this system is in 
view of the growing challenges of IoT security, data privacy, 
scalability and real time performance. This section looks at how 
FusionSec-IoT enhances on existing systems, effect of its 
components, and the potential for enhancements. 

A. Comparison with existing systems 

Conventional IDS on IoT networks are centralized or single-
perspective in terms of their architecture and data processing. In 
a centralized IDS model the known threats can be easily 
detected; however, the scalability, privacy and latency issues are 
very challenging. Most of the conventional systems are also 
based on signature-based techniques that restrict their 
effectiveness in identifying new and emerging threats. 
FusionSec-IoT does not suffer from these limitations because it 

uses a decentralized federated learning approach for training on 
edge devices without moving raw data. This approach does not 
reveal the identity of sensitive information, and this is crucial in 
IoT networks, where data privacy is crucial. 

Unlike single-view IDS systems, FusionSec-IoT uses 
multiple view learning to improve the system’s capability of 
detecting intricate attack patterns. FusionSec-IoT can detect 
some attacks that are not detected by conventional systems due 
to the analysis of network traffic patterns which include 
bidirectional flow, unidirectional flow and packet level features. 
Hybrid feature selection using Particle Swarm Optimization 
(PSO) and Genetic Algorithms (GA) is also incorporated to 
improve the system efficiency by reducing the dimensionality 
with high detection accuracy. This hybrid model of feature 
selection enhances the performance of models in environments 
where resources are limited. 

In addition, reinforcement learning (RL) integration 
empowers FusionSec-IoT to shift its approach according to 
emerging threats, which makes the detection policy easily 
revisable in real-time. This is a more desirable situation than 
with traditional IDS systems that often use fixed models and 
cannot adapt to new attack patterns. When differential privacy 
is incorporated in the federated learning process of FusionSec-
IoT, then privacy of the updates is protected while providing 
useful updates to the global model even when there are 
adversaries who wish to infer privacy information. 

B. Key Findings 

Experimental evaluation results reveal that FusionSec-IoT is 
superior to conventional IDS systems in several aspects, such as 
detection rate and the response time as well as the ability to 
preserve user privacy. FusionSec-IoT achieved a detection 
accuracy of 98.3 percent for the given attacks than centralized 
IDS that has a detection accuracy of 91.5 percent. This shows 
the efficiency of the multi-view learning approach to capture the 
multiple view vectors, and improve the detection ability. Also, 
the system has a low detection latency of 257ms, which is far 
much better compared to typical IDS systems that undergo high 
latency because of the central data analysis. The latency is 
brought down by edge computing which processes data nearer 
to the source, meaning less time is taken to identify and address 
attacks. 

The main advantages of FusionSec-IoT are based on the 
application of a set of several state-of-art methods to address the 
specific issues of IoT security. Federated learning solves the 
problem of confidentiality while at the same time, achieving 
learning across devices. The multi-view learning approach 
increases the attack detection accuracy due to the use of multiple 
views of network traffic. The reinforcement learning makes the 
system able to learn new, never seen before attacks, while the 
hybrid feature selection process is computationally effective, 
which makes FusionSec-IoT appropriate for IoT devices with 
limited computational power. 

Moreover, due to federated learning and differential privacy, 
the proposed system has low communication overhead and can 
be scaled to the IoT large-scale real-world applications. The 
proposed system’s ability to analyze data at the periphery 
without requiring much interaction with the hub in the form of a 
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central server minimizes the bandwidth necessary for IoT 
networks. 

However, there are several limitations inherent to 
FusionSec-IoT which should be discussed in further research. 
The main drawback of using some of the proposed methods, 
particularly hybrid feature selection and reinforcement learning, 
is the increased computational cost. Although these techniques 
enhance the performance of the system, they also impose extra 
processing overhead especially on the IoT devices. Future work 
could be devoted to fine-tuning these components to decrease 
the computational load while increasing their accuracy. Further, 
differential privacy is also efficient in preserving the data 
privacy of individuals; however, it may cause a decline in the 
model’s quality. Further enhancements might be to strive to 
achieve a better trade-off between privacy and model 
performance while the loss of accuracy is negligible. 

VI. CONCLUSION 

In this paper, we proposed FusionSec-IoT, which is a novel 
and complex intrusion detection system for IoT networks. 
FusionSec-IoT contributes federated learning, multi-view 
analysis, hybrid feature selection, reinforcement learning, and 
graph neural networks to develop a comprehensive mechanism 
to detect multiple types of cyber threats with privacy-preserving 
and low computational complexity. This is due to the use of 
federated learning, this makes the system more permissive in the 
use of IoT devices for collaborative training of detection models 
without having to let private information through in the process. 
This is especially important in the IoT context as privacy and the 
scalability issue are high priorities. Moreover, the utilization of 
multi-view learning enables FusionSec-IoT for capturing and 
analyzing the network traffic based on the multiple viewpoints 
thus enhance the identification of attack. The outcome of our 
experiment shows that FusionSec-IoT surpasses the 
performance of centralized IDS and single-view FL systems. 
The system implemented here achieved 98.3% of detection 
accuracy only 257 milliseconds of delay making it more 
effective in real time IoT contexts. Moreover, the use of 
reinforcement learning helps the system learn new threats as 
they advance over time and use differential privacy to protect 
possible data breaches. 

Therefore, FusionSec-IoT offer a solution for intrusion 
detection that is efficient, private, and highly accurate with a 
potential for scaling, beyond current methods. Further research 
will be conducted to fine-tune resource utilization in low- power 
IoT nodes and look into the use of the system in a much larger 
sense in Industrial IoT and smart cities. 
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