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Abstract—In the field of image Super-Resolution reconstruc-
tion (SR), traditional SR techniques such as regression-based
methods and CNN-based models fail to retain texture details
in the reconstructed images. Conversely, Generative Adversarial
Networks (GANs) have significantly enhanced the visual qual-
ity of image reconstruction through their adversarial training
architecture. However, existing GANs still exhibit limitations
in capturing local details and efficiently utilizing features. To
address these challenges, we have proposed a super-resolution
reconstruction method leveraging local texture adversarial and
hybrid attention mechanisms. Firstly, a Local Texture Sampling
Module (LTSM) is designed to precisely locate small regions with
strong texture features within an image, and a local discriminator
then performs pixel-by-pixel evaluation on these regions to
enhance local texture details. Secondly, a hybrid attention module
is integrated into the generator’s residual module to improve
feature utilization and representativeness. Finally, we conducted
extensive experiments to validate the effectiveness of our method.
The results demonstrate that our method surpasses other super-
resolution reconstruction methods in terms of PSNR and SSIM
on four benchmark datasets. Furthermore, our method visually
generates high-resolution images with richer details and more
realistic textures.

Keywords—Super-resolution reconstruction; generative adver-
sarial network; hybrid attention; local texture sampling

I. INTRODUCTION

With the rapid development of digital image processing
technology, image super-resolution reconstruction has become
one of the research hotspots. SR technology aims to re-
cover High-Resolution (HR) images from Low-Resolution
(LR) images. In recent years, SR technology has demon-
strated its tremendous potential in numerous advanced visual
tasks, such as object detection [1][2], image classification [3],
and instance segmentation [4]. Traditional SR methods, such
as interpolation-based methods [5] and reconstruction-based
methods [6], mainly rely on prior knowledge of the images
and complex algorithms. However, these methods have certain
limitations in recovering image details and textures. Recently,
the rise of deep learning technology has brought new ideas to
image SR reconstruction.

Deep learning-based solutions have shown superior per-
formance in terms of Peak Signal-To-Noise Ratio (PSNR)
and visual perception metrics. For example, Dong et al. [7].
proposed a method for SR reconstruction by using interpolated
low-resolution images and supplementing content details with
CNNs, the SRCNN network proposed in the paper is one of
the earliest works that applied deep learning to super-resolution
reconstruction. The EDSR network [8], the champion solution

of the NTIRE2017 super-resolution challenge, streamlined the
network by removing some unnecessary structures in the resid-
ual structure and proposed a multi-scale deep super-resolution
system, which performs well under different super-resolution
scales. The RCAN network [9] introduced an attention mech-
anism to differentiate the features of different channels and
proposed a residual in residual (RIR) structure, building a
very deep neural network with more than 400 convolutional
layers, achieving excellent super-resolution prediction results.
Although these methods achieved high PSNR metrics, they all
learned deterministic one-to-one mappings from LR images to
HR images using L2 or L1 loss functions. Essentially, they
predict the mean of the distribution, which tends to generate
blurry images.

To produce more visually appealing results, genera-
tive super-resolution reconstruction models have been pro-
posed, such as Generative Adversarial Networks (GANSs)
[1OJ[11][12][13][14][15], diffusion models [16][17][18][19],
and flow models [20][21]. Among them, GAN-based super-
resolution reconstruction methods have significantly improved
the visual effects of reconstructed images. Despite the sig-
nificant achievements of GANs in the field of image super-
resolution, some challenges and areas for improvement remain.
For instance, how to better utilize the feature information in
images, improve the generalization ability and stability of the
model, and more accurately restore local details of images are
current research focuses. To address these issues, researchers
have proposed various improvement strategies, such as intro-
ducing attention mechanisms to enhance the model’s focus
on important features, adjusting network structures to improve
feature extraction efficiency, and adopting new regularization
techniques to stabilize the training process.

In response to the issues of insufficient feature uti-
lization and blurred local texture details in existing image
super-resolution reconstruction methods, we propose a super-
resolution reconstruction method based on local texture ad-
versarial and hybrid attention generative adversarial networks.
The hybrid attention module is added to the residual modules
of the generator to enhance the model’s utilization of features
and the representativeness of each feature. To improve the
quality of detail textures in generated images, we introduces
LTSM, which can accurately locate patches with strong texture
features based on the edge texture intensity of each local
region in the input image, serving as a key reference for
further processing. Along with the LTSM, a local discriminator
is also employed, whose structure is identical to that of
the global discriminator. Furthermore, the local discriminator
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needs to make pixel-by-pixel judgments on the patches with the
strongest texture information extracted by LTSM, making the
local texture details of the reconstructed images more realistic
and greatly enhancing the visual perception of the images.

The remainder of this paper is structured as follows:
Section II provides a comprehensive review of related work,
highlighting existing advancements and limitations in GAN-
based and hybrid attention mechanisms for image super-
resolution. Section III details the proposed method, including
the generator and LTSM. Section IV presents extensive experi-
mental results and analysis, comparing the proposed approach
with state-of-the-art models on benchmark datasets. Finally,
Section V concludes the paper, summarizing the contributions
and discussing potential directions for future research.

II. RELATED WORKS
A. Single Image Super-Resolution Based on GANs

The goal of single SR is to enhance the resolution of a
LR image to produce a corresponding HR image. Typically,
LR images are obtained through a degradation process involv-
ing blurring and down-sampling. In classical image super-
resolution reconstruction, bicubic down-sampling is widely
used to simulate this degradation. By using it as a benchmark,
different SR methods can be evaluated and directly compared,
thereby verifying the effectiveness of new SR methods.

GANs [22] provide a principled approach to enhance
the generator’s ability to produce realistic images through
adversarial training between the generator and discriminator.
To improve perceptual quality, Johnson et al. [23] proposed
a perceptual loss. Ledig et al. [10] introduced SRGAN,
which performed adversarial training alongside the SRResNet
generator, marking the first use of GANs for image super-
resolution reconstruction. Subsequent improvements to gen-
erator architectures include Wang et al. [13], who proposed
ESRGAN with a Residual-in-Residual Dense Block (RRDB)
architecture, which has become a standard backbone for many
state-of-the-art GAN-based super-resolution methods. Later,
Rakotorinira et al. [24] enhanced ESRGAN with additional
noise injection, presenting ESRGAN+ Zhang et al. [14] intro-
duced a Ranker that learns perceptual metrics in RankSRGAN.
For discriminator improvements, the relativistic discriminator
concept proposed by RelativisticGAN [25] and the multi-
discriminator strategy used by MPD-GAN [26] have provided
greater training stability and better reconstruction image qual-
ity for GAN-based super-resolution methods.

Although the aforementioned GAN-based single image SR
methods have made significant improvements in PSNR metrics
and visual effects compared to interpolation- and regression-
based methods, there is still considerable room for improve-
ment in reconstructing local and highly textured regions of
images.

B. Hybrid Attention Mechanism

In recent years, Transformer-based methods [27][28] have
demonstrated remarkable performance in image restoration
tasks, particularly in image SR and denoising. Despite these
breakthroughs, attribution analysis reveals that existing net-
works have limited spatial utilization of input information. This
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indicates that the potential of transformers in current networks
has not been fully exploited.

To better reconstruct images and activate more input pixels,
Chen et al. proposed Hybrid Attention Transformer (HAT)
[29]. HAT not only incorporates a channel attention mech-
anism to enhance the interaction efficiency between features
but also introduces a window-based self-attention mechanism,
further improving the model’s ability to handle multi-scale
features. This method effectively combines the global and
local advantages of transformers, enhancing its performance
in image restoration tasks. HAT can more meticulously focus
on important features within the image, providing richer and
more precise information for image restoration. However,
Transformer-based SR reconstruction models often produce
images with less realistic textures, whereas GANs can generate
more visually appealing images. In terms of subjective visual
effects, SR models based on GANs typically achieve better
results. Additionally, GANs can combine various loss functions
to adjust outputs, allowing them to perform well in different
scenarios. Nevertheless existing models failed to effectively
combined the advantages of transformer and GANs based
approaches.

C. Existing Solutions and Limitations

Despite notable progress in image super-resolution (SR)
research, existing methods still face critical limitations that
hinder their effectiveness in addressing texture and detail re-
construction challenges. Table I summarizes the key limitations
of prominent SR approaches and their unsuitability for the
problem at hand.

The above limitations highlight the gaps in existing SR
methods, particularly their inability to balance global structure
preservation with detailed texture restoration. These shortcom-
ings directly impact the visual realism and structural fidelity
of reconstructed images. To address these challenges, the
proposed approach introduces:

1) Hybrid Attention Residual Blocks (HARB): Combines
window-based self-attention and channel attention to capture
both global and local features, improving feature utilization
and structural preservation.

2) Local Texture Sampling Module (LTSM): Targets high-
frequency texture-rich regions for focused adversarial learning,
enhancing detail realism and mitigating blurriness.

3) Dual adversarial branches: Integrates global and local
discriminators to balance structural consistency and texture
enhancement.

By addressing these gaps, the proposed method is par-
ticularly suited for generating high-resolution images with
enhanced texture detail and structural fidelity, overcoming the
limitations of existing approaches.

III. PROPOSED METHOD

The most distinctive feature of HR images is their intricate
local texture patterns, which represent the distribution of local
pixels. Specifically, high-frequency pixels concentrate around
local edges, while low-frequency pixels smoothly spread ad-
jacent to these edges. This separation pattern between high
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TABLE I. LIMITATIONS IN EXISTING METHODS

Method Advantages Limitations Suitability Issues for Current Problem
X X X Limited ability to capture Over-smooth outputs; insufficient texture restoration
SRCNN]|7] Simple, pioneering CNN-based SR
high-frequency textures and complex details in high-resolution demands.
. X High computational cost; Struggles with highly textured regions critical
RCANIS] Channel attention for feature focus
limited enhancement of localized textures for detailed reconstructions.
. Artifacts in outputs; Insufficient detail fidelity in texture-rich
SRGANI[9] First GAN-based SR approach
struggles with preserving structural consistency and edge-dense areas.
. . . . . Unable to accurately enhance localized,
ESRGANT[13] Improved GAN design Lacks mechanisms for enhancing localized texture details
high-frequency textures.
. o . . . Limited capability in generating realistic textures
SwinIR[27] Transformer-based SR model Effective global attention; high computational demand

in local image regions.

and low-frequency elements starkly contrasts with LR im-
ages where high-frequency elements are either not distinctly
separated or missing altogether. To address this, this study
extends the framework of GANs by adding a patch-level
learning branch. This branch adaptively applies adversarial
learning to different local regions based on their edge char-
acteristics, thereby enhancing the model’s ability to capture
texture patterns in HR images. Furthermore, to address the
issue of insufficient feature utilization by existing models,
we introduce a hybrid attention residual block in place of
the original dense residual blocks within the generator. These
hybrid attention blocks combine window-based multi-head
self-attention mechanisms with channel attention mechanisms.
This approach aims to activate more effective pixels for
SR reconstruction tasks, thereby improving the utilization of
features in input images. By integrating these advancements,
the proposed method enhances the capability of GAN-based
models to accurately reconstruct HR images while preserving
and enhancing intricate local texture patterns.

A. Network Structure Overview

The network structure is depicted in Fig. 1, where IHF

represents the HR image;I“% represents the LR image that
obtained by bicubic interpolation and downsampling from;I°%
denotes the super-resolution image reconstructed by the gen-
erator. The high-resolution image are first input into the
generator based on hybrid attention blocks to output super-
resolution image, 77 and I°" are simultaneously input into
the global discriminator, which outputs a grayscale image of
the same height and width as the input image to determine
whether the input image is a real high-resolution image or a
super-resolution image generated by the generator, 777 will
also be sent into a pre-trained VGG-19 network, where the
perceptual loss is calculated on the feature maps output from
the middle convolutional layers of the network.

To better capture texture patterns that are more noticeable
in local areas, a local adversarial learning branch is added. In
this branch, LTSM is proposed, which constrains adversarial
learning only in the local regions with the highest intensity.
The LTSM takes mini-batches of % and I°F as input
and outputs the top N patches Igfeh and Il‘fa}fch with the
highest pixel intensities from these two mini-batches respec-
tively. A local discriminator, which has the same structure as
the global discriminator, simultaneously we established local

discriminator to differentiate between the patches from I Iflﬁh

and Iﬁﬁch forming local adversarial learning, which has the
same structure as the global discriminator. This promotes the

generator to produce more realistic local texture details.

B. Generator

The existing model structure does not fully utilize the input
features, leading to a loss of detail in the reconstructed images.
we integrated Hybrid Attention Residual Blocks (HARB)
into the Residual in Residual Dense Block(RRDB) structure.
Specifically, an Hybrid Attention block(HAB) is embedded
before the output of the RRDB module. The HAB combines
channel attention and window-based multi-head self-attention
in a parallel manner. Channel attention leverages global infor-
mation, and self-attention has strong representation capabili-
ties, ensuring that the network activates more effective pixels
and extracts more input feature information. The structure of
HARB is shown in Fig. 2. In the generator, only the last six
RRDB blocks are replaced with HARB blocks.

The overall network structure of the generator is shown
in Fig. 3. Since Batch Normalization (BN) layers can easily
cause unwanted artifacts in SR reconstructed images, the
entire generator structure does not use BN layers. All con-
volutional layers use LeakyReLU as the activation function,
which addresses the zero-gradient issue for negative values,
stabilizes model training, and accelerates model convergence.
In the generator, a convolutional layer is first used to extract
edge information from LR images, which is then fed into m
RRDB blocks. The dense residual blocks and residual scaling
techniques used in the RRDB blocks help train deeper network
models, further improving the network’s ability to capture
semantic information. The intermediate feature maps produced
by the RRDB blocks are then fed into n HARB blocks. These
blocks use window-based multi-head self-attention to capture
long-range dependencies in the sequence while focusing on
important parts of the input feature information by paying
attention to channel information. The upsampling part of the
generator consists of two consecutive PixelShuffle [30], each
of which doubles the resolution of the feature maps. Finally,
two convolutional layers adjust the channels to output the SR
reconstructed results.

C. Local Texture Sampling Module

In GANs, images reconstructed by the generator often
exhibit blurriness and lack of detail. To improve the quality
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Fig. 1. The overall architecture of the proposed method, which consists of a global adversarial branch and a local adversarial branch. The LTSM is applied in
the local branch to enhance the model’s learning of texture details.

Fig. 2. The overall structure of the HARB is shown above the dashed line,

consisting of Dense Residual Blocks and a Hybrid Attention Block (HAB).

Below the dashed line is the structure of the HAB, which is composed of
Channel Attention and Window-based Self-Attention mechanisms.
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Fig. 3. The core of the generator consists of 17 RRDB and 6 HARB, after
these blocks, an upsampling process using PixelShuffle is applied to increase
the resolution of the image, followed by additional convolutional layers to
produce the final HR image.
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of local texture details in generated images, we proposes the
LTSM. The LTSM is designed to extract local texture features
from images. It uses an improved Sobel operator to calculate
the edge strength of each local region in the input image and
evaluates the texture features of these local regions based on
their edge strength. The specific details of the LTSM are shown
in Fig. 4. Specifically, in the preprocessing part of the LTSM,
the input tensors 77/ and I are first converted into ndarray
format. Then, based on the hyperparameter patchSize, each
group of images is divided into M patches I* atch and ISR

here M= BQtCh_SiZﬁX(’m‘ —+ 1) X (‘mr—F 1)
H and W represent the height and width of the image,
respectively. At the same time, we also obtains a list of
coordinates patchCoordinates corresponding to the top-left
corner of each patch in the original image. These segmented
patches are processed through a guided-filter [31] F, ¢, which
filters out noise from the image while retaining as much edge
information as possible.

= Fyp(IP*eh [P¥°hy i =1, ..., Batch_Size. (1)

The denoised images are then fed into the improved Sobel
operator, where the resulting four scores are squared and
summed. Finally, the square root of the summed result is
calculated, and the average value is taken to obtain the edge
pixel intensity scores for all patches in an image. These scores
serve as the keys for patch selection, and their values are
calculated as follows:

patch
I'L'

4

Patch N2
;(Ij,k ® Kl) >7 (2)
j=1...Batch_Size,k=1,....M

The symbol @ represents the convolution operation. The Key
values for all patches in a batch are calculated and sorted
accordingly. Finally, the top N patches with the highest edge
pixel intensity scores and their corresponding patch coordi-
nates are obtained. Based on these coordinates, the correspond-

Key; . = Mean(’
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ing tensor patches are extracted from the original input tensors
ISR and TR preserving the original gradient information of
the tensors. The architecture of LTSM is shown in Fig. 4:

D. Loss Function

1) Pixel-wise loss: traditional image super-resolution (SR)
reconstruction methods are mostly based on the L2 pixel-level
loss function mean-square error (MSE). Although this achieves
a high PSNR value, using MSE tends to drive the solution
towards a pixel-averaged result, which is overly smooth and
perceptually poor. Therefore, in the pre-training phase, we only
uses L1 loss to accelerate the convergence of the model. The
pixel-wise loss is defined as shown in Eq. (3):

, AW
7 2 G ey IR )

i=1 j=1
where G represents the generator.

2) Perception loss: we uses a pre-trained VGG-19 network
to extract features. The perceptual loss is calculated using the
feature maps before the LeakyReL U activation, as these feature
maps contain more detailed information compared to the more
sparse features after activation, providing stronger supervision.
Features are extracted from the convl-2, conv2-2, conv3-4,
conv4-4, and conv5-4 layers, and the perceptual loss from each
layer is weighted and summed to obtain the final perceptual
loss. The perceptual loss is defined as shown in Eq. (4):
G(I"Y) —

Lpercep = ||90( IHR ||1 4)

Where (-) represents the pre-trained VGG-19 network.

3) Global adversarial loss: The global adversarial loss
aims to capture global content feature information. The super-
resolution images generated by the generator are input into the
global discriminator to obtain a score for each pixel. Compared
to the traditional VGG-style discriminator, which outputs a
scalar for loss calculation, the discriminator is based on the
idea of a U-Net style discriminator. The discriminator’s loss is
defined as the average decision of all pixels. Pixel-level loss
calculation can make the texture details of the reconstructed
image more precise. The least squares loss function (LSGAN)
[32] is used instead of the cross-entropy loss function to
achieve better training stability. The global adversarial loss
function is defined as shown in Eq. (7):

L&iopar = Erur[(Daiopar(I77) — 1)

AN

+ Erer[(Dgiobar (G(I77)))7]
Liopar = Errn[(Daiovar(G(I'1)) = 1)%] (©)
LadvGiobal = L81opar + LE1opar (M

4) Local adversarial loss: The local adversarial loss con-
strains adversarial training in small local regions with the
highest edge texture intensity in the image, better promot-
ing the generator to capture local texture features of high-
resolution images. The output of the local discriminator is the
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average decision of all pixels in these small regions. The local
adversarial loss is defined as shown in Eq. (10):

4_

1 n
LLocal - Ehp I;{;}Ch [ Z DLocal 1)
=1

n
ElPNILR [ E DLocal ‘|
patch
=1

®)

G
LLocal

1 n
ElPNJLR [NZ(DLocal(l ) 1) ‘| (9)

patch
=1

LLocal + LLocal (10)

Here h? and ¥ are the i-th small reg1ons extracted by the
LTSM from the high-resolution image I’ and the super-
resolution image I°%. Since LTSM extracts the top N small
regions with the highest edge texture intensity from each input
image, the local adversarial loss is calculated by summing the
loss over these N regions and then taking the average.

Ladeocal

5) Pre-training and training loss function: The pre-training
loss and training loss are based on the aforementioned loss
functions. In the pre-training phase, only the generator is
trained. The generator’s pre-training loss is defined as shown
in Eq. (11):

Lpre =1 (11)

The training phase includes both generator loss and dis-
criminator loss. The total loss function of the generator is
defined as shown in Eq. (12):

Lg = ’ylLl + ’YQLglobal + 73Lgocal + 74LP€TC€P (12)

where the weights of the generator’s loss functions are v; =
0.08,7%2 = 0.04,v3 = 0.02,74 = 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

The experiments were conducted on two NVIDIA GeForce
RTX 3090 GPUs. The experiment used 800 HR images from
the DIV2K dataset [33] and the corresponding LR images,
obtained by bicubic interpolation with a scaling factor of 4,
as the training dataset. The test sets are four standard datasets
commonly used in the field of image super-resolution recon-
struction: Set5, Setl4, BSD100 and Urban100. The experiment
used PSNR and SSIM as evaluation metrics. The settings and
hyperparameter selection for the model during the training
process are as follows: During training, the DIV2K dataset
was randomly cropped into 128x128 images and subjected
to random rotation and random flipping. The batch size for
each input was 64. The number of RRDB blocks m was 16,
and the number of HARB blocks n was 6. In the pre-training
phase, only the PSNR-oriented pixel-wise loss defined in Eq.
(3) was used to update the generator. The pre-training phase
consisted of a total 6.25x 10* iterations, with an initial learning
rate of 2 x 10™* The learning rate was halved after every
1.25 x 10* iterations.After the pre-training phase, the official
training phase used Exponential Moving Average(EMA) to
stabilize the training, with a weighting factor 5 = 0.999, In the
official training phase, the initial learning rate for the generator
was 1 x 10~%, and the initial learning rate for the discriminator
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Fig. 4. Details of Local Texture Sampling Module (LTSM) which adaptively extracts local image patches with most salient texture features from each
mini-batch of input images.

was 4 x 10~4, The official training phase consisted of 7.5 x 10*
iterations. with the learning rates for both the generator and
the discriminator halved after every 1.25 x 10* iteration. Adam
optimizer was used for all training phases, where 81 = 0.9,
B2 =0.999, ¢ =1 x 1078,

B. The Effects of Hybrid Attention Residual Blocks

The generator is implemented based on Hybrid Attention
Residual Blocks. To validate the effectiveness of these blocks
in extracting more feature information and activating more
effective pixels, this section conducts experiments on the pre-
trained generator and compares the changes in PSNR values.
As shown in Table II, increasing the number of Hybrid
Attention Residual Blocks from 8 to 16 resulted in PSNR
improvements of 0.22 dB and 0.13 dB on the Set5 and Set14
test sets, respectively. Further increasing the blocks from 16 to
24 resulted in a PSNR improvement of 0.05 dB on the Set5 test
set and 0.01 dB on the Set14 test set. However, with more than
16 Hybrid Attention Residual Blocks, the generator’s network
parameters became excessively large. Therefore, we ultimately
used 16 Hybrid Attention Residual Blocks to construct the
generator, ensuring a high PSNR value while keeping the
network parameter size manageable.

TABLE II. THE EFFECTS OF HYBRID ATTENTION RESIDUAL BLOCKS

The Number of HARB ~ SET5 PSNR(dB) ~ SET14 PSNR(dB)

0 30.12 27.8
8 31.11 28.1
16 31.93 28.23
32 31.98 28.24

C. The Effects of Local Adversarial Branch and LTSM

To verify the effectiveness of the LTSM and its impact on
the generator, this section conducts quantitative and qualitative

comparisons based on PSNR metrics and the quality of super-
resolution reconstructed images. Specifically, we compare
models using only the global adversarial module, models
without LTSM extracting patches but using all patches, and
the complete model.

As shown in Table III, introducing the local adversarial
branch results in improvements in PSNR and SSIM metrics
on each dataset, indicating that the local adversarial branch
effectively enhances the structural similarity of images. Fur-
thermore, not using the LTSM and training with all patches
led to decreases in both PSNR and SSIM metrics, further
validating the importance of the LTSM in extracting criti-
cal texture information. Comparing the reconstruction results
shown in Fig. 5, we can visually observe differences in
detail preservation and edge handling among different models.
The complete model using the local adversarial branch and
LTSM excels in restoring edge textures, producing clearer
images with richer details. In contrast, models using only
the global adversarial module show blurrier edge handling,
and those not using the LTSM exhibit deficiencies in detail
representation. This visual improvement vividly reflects the
contribution of the local adversarial branch and LTSM in
enhancing the effectiveness of super-resolution reconstruction.
By comparing the reconstruction results under different model
configurations, this study concludes that the local adversarial
branch and LTSM are crucial for enhancing the performance
of super-resolution reconstruction. They not only improve
quantitative evaluation metrics but also demonstrate significant
visual improvements in qualitative analysis. These findings
underscore the importance of considering local texture features
in the design of super-resolution reconstruction models.

D. Comparison with Existing SR Models

1) Quantitative comparison: In this section, our model is
compared with several existing super-resolution (SR) models.
The models chosen for comparison include traditional bicubic
interpolation, as well as several deep learning-based methods
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TABLE III. EFFECTS OF LOCAL ADVERSARIAL BRANCH AND LTSM ON PSNR AND SSIM METRICS

W/O Local Adversarial Branch

‘W/O LTSM(AII patches) ours(full model)

Datasets
PSNR SSIM PSNR SSIM PSNR SSIM
Set5 32.30 0.9073 31.22 0.8987 32.32 0.9110
Setl4 28.12 0.8025 27.92 0.7829 28.15 0.8231
BSD100 27.92 0.6882 27.12 0.6801 28.31 0.7012
Urban100 26.66 0.8029 26.85 0.8012 27.18 0.8206

img_091 from Urban100  W/O Local Adversarial Branch W/O LTSM(AII patches)

ours(full model)

Fig. 5. Urban100 dataset img_091 Reconstruction Comparison, the results
show that compared to model trained without the local adversarial branch
and trained using all patches in the local branch, the model trained with the
LTSM produces more realistic texture details.

such as SRCNN [7], RCAN [9], SRGAN [10], ESRGAN [13],
and SwinIR [27]. Additionally, we incorporate the recently
proposed Semantic-aware Discriminator (SeD) [34] into ES-
RGAN and SwinlR, a recent approach designed to enhance
texture generation quality by leveraging semantic information.
The improved versions of these models are denoted as ESR-
GAN+ and SwinIR+, respectively. Comparative experiments
are conducted on four commonly used benchmark datasets:
Set5 [35], Setl4 [36], BSD100 [37], and Urban100 [38], with
primary evaluation metrics being PSNR (Peak Signal-to-Noise
Ratio) and SSIM (Structural Similarity Index).

In Table IV, our model demonstrates best performance
across four commonly used datasets at all scales, especially
achieves average improvement of 0.15 dB on PSNR compared
to SwinlR+ [27][34] at x4 scale. From the SSIM results, it
is evident that our model consistently achieves optimal perfor-
mance across most datasets except for SSIM on BSD100(x4).
Compared to other models, our model shows an average SSIM
improvement of 0.053 over SRCNN [7], 0.014 over RCAN
[9], 0.047 over SRGAN [10], 0.056 over ESRGAN+ [13][34],
and 0.003 over SwinIR+ [27][34]. These findings indicate that
our model not only excels in image clarity (PSNR) but also
performs exceptionally well in preserving image structure and
details (SSIM).

In summary, through comparisons with various existing
SR models, our proposed Generative Adversarial Network
super-resolution reconstruction method based on local texture
adversarial learning and hybrid attention demonstrates out-
standing performance in both PSNR and SSIM metrics. This
validates its effectiveness and superiority across different types
of images.

2) Qualitative comparison: In terms of qualitative compar-
ison, this study selected typical images from different datasets
to visually assess the reconstruction results of various models.
The specific results are shown in Fig. 6, 7 and 8.

Regarding image details and texture restoration, the pro-
posed model demonstrates significant advantages Compared
to other models, it preserves the details and textures of the
original images better during reconstruction, the patches high-
lighted in red boxes represent critical regions for evaluating
detail preservation and texture fidelity. For instance, in urban
street scene images Img_014 and Img_087 from the Urban100
dataset, the proposed model not only reconstructs building
edges and textures clearly but also presents more natural and
realistic details. In contrast, other models like SRCNN [7],
RCAN [9], and SRGAN [10] may exhibit blurriness or dis-
tortion in some details, which the proposed model effectively
avoids.

Furthermore, on datasets like Set5 and Set14, the proposed
model shows strong robustness and capability in restoring de-
tails in natural scenes and facial images. In Baboo from Set14,
the proposed model performs a more natural reconstruction
effect on facial details such as eyes and beard.

In comparison with existing SR models, the proposed
model demonstrates superior performance in both quantitative
metrics and qualitative effects. By integrating local texture
adversarial learning and hybrid attention mechanisms, the
proposed model not only enhances the accuracy of image
reconstruction but also achieves a higher level of visual fidelity.

N N
. N

L
HR (PSNR/SSIM) Bicubic (20.3/0.43) SRCNN (20.6/0.48) SRGAN (20.4/0.50)

NN

Baboo from Set14 RCAN (20.8/0.53) ESRGAN+ (20.9/0.53) SwinIR+ (21.1/0.52) OURS (21.25/0.56)

Fig. 6. Baboo from Setl4 Reconstruction Comparison, the patches for
comparison are marked with red boxes in the original images. PSNR/SSIM is
calculated based on the patches to better reflect the performance difference.

S (28.3/0.87)

img_087 from Urban100

Fig. 7. Img_087 from Urban100 reconstruction comparison.
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TABLE IV. QUANTITATIVE COMPARISONS (PSNR/SSIM) BEST PERFORMANCES ARE MARKED IN BOLD AND “+” INDICATES THAT METHODS
INCORPORATE SED

Method Scale Set5 Setl14 BSD100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic X2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403
SRCNN[7] X2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946
RCAN[9] x2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384
SRGANT[10] x2 36.86 0.9560 33.56 0.9156 32.12 0.8996 32.36 0.9196
ESRGAN+[13][34] x2 37.45 0.9592 33.76 0.9175 32.30 0.9075 32.56 0.9315
SwinIR+[27][34] X2 38.39 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9393
Ours X2 38.41 0.9652 3422 09231 32.55 0.9038 33.47 0.9425
Bicubic x3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349
SRCNN([7] x3 32.75 0.9090 29.28 0.8209 28.41 0.7863 26.24 0.7989
RCANI[9] x3 3474 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702
SRGANTI10] x3 3320  0.9101 29.89 0.8322 29.13 0.7850 2891 0.8577
ESRGAN+[13][34] x3 34.75 0.9223 30.44  0.8455 29.30 0.8128 28.99 0.8679
SwinIR+[27][34] x3 34.89 0.9312 30.89 0.8503 29.35 0.8124 29.29 0.8744
Ours x3 34.93 0.9388  30.90 0.8521 29.40 0.8155 29.47 0.8782
Bicubic x4 28.40  0.7854 26.09 0.7486 24.98 0.6935 23.12 0.6577
SRCNN([7] x4 29.07 0.8504 26.64  0.7602 26.90 0.7101 23.98 0.7213
RCANI[9] x4 30.83 0.8878 26.75 0.7889 27.77 0.7236 25.92 0.7985
SRGANI10] x4 29.40  0.8213 26.21 0.7428 27.1 0.7223 24.37 0.7802
ESRGAN+[13][34] x4 30.46 0.8525 26.86 0.7905 27.85 0.6528 26.15 0.7328
SwinIR+[27][34] x4 32.25 0.9012 28.12 0.7914 28.29 0.7311 26.71 0.8164
Ours x4 3232 09110 28.15 0.8231 28.31 0.7012 27.18 0.8206

img_014 from Urban100 RCAN (20.8/0.65) ESRGAN+ (19.4/0.64) SwinIR+ (21.4/0.72)OURS (20.8/0.68)

Fig. 8. Img_014 from Urban100 reconstruction comparison.

V. CONCLUSION

We had proposed a GAN based method for image SR
reconstruction, leveraging local texture adversarial and hybrid
attention residual block. LTSM is introduced to compute edge
intensity in local image regions, this module effectively ad-
dresses issues of blurriness and detail loss commonly observed
in traditional GAN-generated images. Additionally, a generator
equipped with HARB is incorporated to enhance the utilization
of input features during generation. This approach ensures
better preservation of image structure and details, thereby
improving overall image quality in reconstruction. Experi-
mental validation on multiple standard datasets (Set5, Setl4,
BSD100, and Urban100) demonstrates superior performance in
terms of PSNR and SSIM metrics, surpassing various existing
super-resolution methods and exhibiting notable advantages
in image detail and texture restoration. However it is not
without limitations. One key limitation is the computational
cost associated with the HARB and LTSM, which may limit its
deployment in real-time applications or on devices with con-

strained resources. Additionally, while the LTSM effectively
enhances local texture details, its reliance on patch selection
based on edge intensity might overlook non-edge regions with
critical texture information, leading to potential gaps in detail
preservation in less textured areas.

For future work, we will explore optimizing the compu-
tational efficiency of the proposed framework by leveraging
lightweight architectures or pruning techniques. Furthermore,
incorporating adaptive mechanisms for selecting texture-rich
regions, beyond edge intensity, could enhance the model’s
ability to generalize across diverse image types. Extending
the current method to handle multi-frame super-resolution
or domain-specific applications, such as medical imaging or
satellite imagery, could also provide new directions for further
exploration.
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