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Abstract—To enhance the quality and effectiveness of image 

restoration in landscape design, this study optimizes the existing 

methods for low efficiency and incomplete feature extraction in 

processing high-resolution and detail rich landscape design 

images. Firstly, based on the traditional generative adversarial 

network (GAN), a novel deep convolutional generative adversarial 

network (DCGAN) model is proposed. Subsequently, the model's 

ability to extract detailed features was enhanced by integrating 

dense connected networks (DenseNet) and compressed excitation 

networks (SENet) into the network architecture. An improved 

DCGAN is designed for the restoration of landscape design 

images. According to the results, the optimized model had a 

restoration precision and repair recall rate of 0.97 in benchmark 

performance testing, which was significantly better than 

traditional deep convolutional generative adversarial network 

models. In practical applications, the model had an average 

accuracy of over 97% in repairing four different styles of 

landscape images, with an average repair time as low as 0.06s. 

From this, it can be seen that the designed model can provide a 

more efficient technical means for the restoration and digital 

preservation of landscape design images. 

Keywords—Deep convolutional generative adversarial network; 
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I. INTRODUCTION 

Influenced by social economy and urbanization, landscape 
design has gradually become important in urban planning. As a 
crucial component of urban green infrastructure, landscape 
architecture not only exerts a crucial function in beautifying the 
environment and improving ecology, but also has a significant 
impact on enhancing the quality of life of citizens and the 
cultural taste of the city [1-2]. However, landscape design 
images with a long history are often eroded by environmental 
factors, resulting in image damage and information loss, which 
affects the research and protection of landscape architecture and 
challenges its ability of digital preservation and inheritance. 

The damaged landscape art images not only affect the 
research and protection of landscape architecture, but also pose 
challenges to the digital preservation and inheritance of 
landscape architecture [3-4]. Generative Adversarial Networks 
(GANs) have demonstrate strong potential and broad 
application prospects in image generation and restoration. 
Traditional image restoration methods mainly rely on manual 
or rule-based techniques, which often inadequate when dealing 
with complex scenes and details. In contrast, GAN can 
effectively capture complex texture and structural features in 
images through adversarial training mechanisms of generators 

and discriminators, achieving high-quality image generation 
and restoration. 

However, traditional GAN still faces some specific 
challenges in landscape image restoration. First of all, in the 
training process, traditional GAN often has the problem of high 
training difficulty, and its training process is easily affected by 
mode collapse and instability, resulting in unstable image 
quality. Secondly, traditional image restoration techniques are 
often inadequate in processing complex textures and detailed 
features, and cannot fully retain the fine features and details in 
high-resolution landscape design images [5-6]. The main goal 
of this study is to improve the quality and effectiveness of 
landscape design image restoration by improving the traditional 
GAN optimization algorithm, especially in the aspects of 
feature extraction and restoration efficiency. 

Therefore, a deep Convolutional generative adversarial 
network (DCGAN) model combining DenseNet and SENet is 
proposed. This new model aims to enhance the ability of the 
network to extract detailed features, so as to achieve more 
accurate image recovery in practical applications. The research 
innovatively introduces Dense Connected Convolutional 
Networks (DenseNet) and Squeeze-and-Excitation Networks 
(SENet) as generators, and uses Deep Convolutional 
Generative Adversarial Networks (DCGAN) as discriminators, 
ultimately enabling the constructed model to extract more 
detailed features, reduce computational complexity, and 
effectively restore the original image. The potential benefit of 
the research is that the successful implementation of this 
approach will have a profound impact in several fields. First of 
all, in urban planning and management, high-quality image 
restoration can provide more accurate visual basis for decision-
making and support more effective land use and environmental 
design. Secondly, in the field of cultural heritage protection, it 
can help preserve and restore historical documents and artistic 
works to ensure the long-term preservation and transmission of 
cultural heritage. Finally, in the practice of digital preservation, 
the research results can provide strong technical support for the 
maintenance of various digital archives and promote the 
sustainable management and utilization of digital content. 

The structure of this paper is divided into six sections. 
Section II, literature review, summarizes the achievements and 
shortcomings of domestic image restoration research. Section 
III introduces the proposed method, including the DCGAN 
architecture and the integration of DenseNet and SENet, to 
improve image restoration performance. Section IV presents 
the experimental results, verifies the performance of the model, 
and compares the performance of DS-DCGAN with other 
models. Section V discusses the advantages and potential 
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applications of DS-DCGAN. Finally, the research contributions 
were summarized and future research directions were proposed 
in Section VI. 

II. RELATED WORKS 

GAN is a deep learning approach, which includes a 
generator and a discriminator, which can generate realistic data 
through adversarial training between the two. Image restoration 
adopts computer technology to restore damaged or degraded 
images, to improve image quality or restore their original state. 
In image restoration, Liu G et al. designed an image restoration 
algorithm on the basis of GAN to address the low accuracy of 
traditional algorithms in restoring large-area damaged images. 
By extracting multi-scale edge details of the damaged area and 
constructing a GAN model, the model was trained to generate 
the best fake image. The results showed that the model could 
effectively combine contextual and perceptual information, 
significantly improve image restoration accuracy and image 
quality, and outperform existing algorithms [7]. In response to 
the significant impact of equipment and operators on the quality 
of retinal images, Deng Z et al. explored the retinal image 
restoration method in real clinical environments. Firstly, a 
clinical dataset Real Fundus was established, which included 
120 pairs images. Secondly, a Transformer-based GAN was 
proposed to restore the clinical fundus images. The proposed 
model was helpful for in-depth analysis of clinical fundus 
images [8]. Yang J et al. proposed a new approach for restoring 
private facial images on the basis of semantic features and 
adversarial samples to address the serious threat posed by facial 
image feature leakage to user information security. Firstly, 
Segnet network was used for semantic segmentation of facial 
images, and then GAN was used to generate adversarial 
samples and perturb the semantic features of facial images. 
Compared with other advanced technologies, the generated 
private facial images had stronger median filtering defense 
capability [9]. 

In response to the limitations of Wasserstein-GAN in 
simulating complex distributions such as natural image 
distributions, Ma H et al. proposed a method to improve 
Wasserstein-GAN training by introducing pairwise constraints 
to optimize image restoration tasks. The research results 
showed that the Wasserstein-GAN model with paired 
constraints had better consistency and perceptual quality than 
existing technical methods [10]. Considering that artworks can 
be damaged over time due to changes in humidity, temperature, 
and improper storage, Kumar P et al. designed a new virtual 
restoration strategy for artworks based on GAN. This method 
adopted an improved U-Net as the generator part. A pre-trained 
residual network was used to construct the encoder to generate 
higher quality feature embeddings, improving the quality of 
image restoration. The research results indicated that this 
method performed well in performance indicators [11]. Liang 
M et al. designed a multi-scale self attention GAN to address 
the common local cross contamination or data loss in the 
acquisition and processing of pathological digital images. Then 
this network was applied to restore pathological images of 
tissue. The research results showed that this network structure 

could achieve pixel level realistic restoration of tissue 
pathological images, effectively restoring the detailed features 
of the images [12]. 

In summary, although the existing GAN optimization 
algorithm has made some progress in the field of image 
restoration, it still has shortcomings in processing high-
resolution and detail-rich landscape design images. Therefore, 
a DCGAN model combining DenseNet and SENet optimization 
is proposed in this paper, which aims to further improve the 
quality and effect of image restoration by improving the 
structure of generator and discriminator. Compared with the 
current methods, the research method has improved the 
efficiency of feature extraction and processing. Traditional 
GAN models often face the problem of insufficient feature 
extraction when processing complex landscape design images, 
especially when recovering high-resolution images, fine texture 
and structural features are easy to ignore. By integrating 
DenseNet, DS-DCGAN can realize the close connection of 
features, so that the network can use the feature information 
from different levels more effectively, and enhance the ability 
to extract detailed features. At the same time, the introduction 
of SENet optimizes the channel incentive mechanism and 
makes the network focus more on important features by 
adaptively adjusting the weight of the feature map. This channel 
attention mechanism significantly improves the ability of the 
generator and discriminator to respond to key features, thereby 
reducing unnecessary computational overhead while 
maintaining image quality. Compared with traditional DCGAN, 
DS-DCGAN has been optimized by deep learning technology 
to reduce the computational complexity and improve the overall 
operating efficiency. 

III. LANDSCAPE IMAGE RESTORATION BASED ON IMPROVED 

DCGAN 

To improve the restoration effect of landscape images, the 
DCGAN is first introduced to generate clear landscape images. 
Secondly, a new generative network is generated by combining 
DenseNet and SENet, and DCGAN is used as the 
discriminative network to compensate for the insufficient 
feature extraction of traditional DCGAN models in repairing 
landscape images. 

A. Design of Landscape Image Restoration Algorithm Based 

on DCGAN 

GAN is a deep learning model proposed in 2014, which 
introduces two networks, namely a generator and a 
discriminator, so that these two networks compete with each 
other during the training process to generate realistic data [13]. 
The generator is to produce fake data that is close to the true 
data distribution. It obtains a random noise vector as input and 
outputs a data point with the same dimension as the training 
data. The discriminator is to distinguish whether the input data 
is real or generated by a generator. It can receive data produced 
by the generator or real data as input and output a probability 
value to represent the probability that the input data is real. The 
GAN is displayed in Fig. 1. 
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Fig. 1. GAN structure. 

In Fig. 1, when training GAN, the generator first receives a 
random noise vector as input, and then uses this noise to 
generate a fake image, with the aim of making this image 
visually indistinguishable from the real image. Next, the 
discriminator may receive a fake image or a real image 
generated by the generator, and output a probability value to 
determine whether the image is real or produced by the 
generator. Through this adversarial learning, the generator 
gradually improves its ability to generate high-quality fake 
images to deceive the discriminator. The discriminator is 
constantly improving its accuracy in distinguishing between 
real and fake images. The dynamic confrontation between the 
two drives the continuous improvement of their performance 
until the generator can generate images that are almost 
unrecognizable as fake by the discriminator, while the 
discriminator accurately identifies the real and generated 
images as much as possible. The objective loss function of 
GAN is displayed in Eq. (1) [14-15]. 

~ ~ ( )log ( ]min max ( , ) [ ] [log(1) ( ( )))
data zx p z p z

G D
EDD xV G E D G z  

 (1) 

In Eq. (1), G  signifies the generator. D  signifies the 

discriminator. z  represents noise. x  and ( )G z  signify real 

samples and produced samples. ( )D x  and ( )G x  signify the 

discriminant function and the generative function, respectively. 

E  represents the expected value. 
datap  and ( )zp z  

represent the real and the produced distributions. ( ( ))D G z  

signifies the probability that D  will distinguish the data 

generated by G  as real samples. According to Eq. (1), to train 

GAN, G  and D  are trained separately. The training process 

of D  is shown in Eq. (2). 

~ ~ ( )log ( ) ]max ( , ) [ ] [log(1 ( ( )))
data zx p z p z

D
V D G E E D GD zx  

 
(2) 

In Eq. (2), the meanings of x  and z  are the same as those 

in Eq. (1). At this point, if D  can recognize x  as a true 

sample, then the value of log ( )D x  will be larger. Similarly, if 

D  can identify ( )G z  as a false sample, then the value of 

log(1 ( ( )))D G z  will also be as large as possible. When the 

values of log ( )D x  and log(1 ( ( )))D G z  are both larger, 

D  remains unchanged and G  is trained to confuse D . 

Similarly, when training G , it is hoped that D  in GAN 

cannot recognize false samples. The training process of G  is 

displayed in Eq. (3). 

~ ( )min ( , ) [log(1 ( ( )))]
zz p z

G
V D G E D G z 

     (3) 

In Eq. (3), the closer the ( ( )))D G z  is to 1, the smaller the 

training value of the entire G . DCGAN is a special type of 

GAN that combines the advantages of GAN and convolutional 
neural networks. Convolutional layers are used to construct 
generators and discriminators, enabling the network to obtain 
local and global features and generate more refined and realistic 
images. Firstly, in DCGAN, stride convolution is used in the 
discriminator to reduce image size, while fractional stride 
convolution is used in the generator to increase image size. Two 
convolution methods are shown in Fig. 2. 

(b) Fractional stride convolution(a) Stride convolution  
Fig. 2. The convolution processes of stride convolution and fractional stride convolution. 
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Fig. 2(a) and 2(b) show the convolution processes of stride 
convolution and fractional stride convolution, respectively. In 
Fig. 2(a), stride convolution reduces the output feature map size 
by setting the convolutional kernel movement step size. In 
ordinary convolution operations, the convolution kernel 
typically slides over the input feature map at stride of 1, 
resulting in output feature maps of the same size. However, by 
setting a larger stride value, such as 2 or 3, the convolution 
kernel will skip multiple pixels each time it slides on the input 
feature map, effectively reducing its size. This operation not 
only reduces computational complexity, but also has a down-
sampling effect to some extent, allowing subsequent layers to 
process smaller feature maps, and improving the efficiency of 

the network. In Fig. 2(b), fractional stride convolution, also 
known as transpose convolution or deconvolution. This type of 
convolution is applied to increase the size of the output feature 
map. Unlike stride convolution, fractional stride convolution 
inserts zero padding before the convolution operation, allowing 
the convolution kernel to produce larger output feature maps 
than the original size when sliding on the input feature map. 
This operation essentially involves inserting blank spaces 
between input feature maps, and then performing standard 
convolution on the expanded image to increase its size. The 
DCGAN structure combining these two convolution operations 
is shown in Fig. 3. 

CONV1 CONV2 CONV3 CONV4

(a) Generator structure of DCGAN

Conv5×5

64×64×3
32×32×64

16×16×128
8×8×256

4×4×512 1

Conv5×5
Conv5×5 Conv5×5

Conv5×5

(b) Discriminator structure of DCGAN

4×4×1024
8×8×512

16×16×256

32×32×128

64×64×3

 

Fig. 3. DCGAN structure diagram. 

The DCGAN in Fig. 3 consists of two main parts, namely 
the generator in Fig. 3(a) and the discriminator in Fig. 3(b). 
Among them, the former produces fake images. The later 
distinguishes between real images and generated fake images. 
The process of using DCGAN for image restoration includes 
the following key steps. Firstly, the generator takes a random 
noise vector as input and gradually enlarges the feature map 
through fractional stride convolutional layers, converting the 
noise into a fake image. Secondly, the discriminator will 
receive fake and real images generated by the generator, 
gradually reduce the size of the feature map through stride 
convolution layers, extract key features of the image, and 
output a probability value to represent the possibility that the 
input image is a real image. In this process, the generator and 
discriminator are continuously optimized through adversarial 
training. The generator attempts to generate increasingly 

realistic images to deceive the discriminator. The discriminator 
continuously distinguishes between real and fake images. After 
multiple rounds of iterative training, the generator is able to 
generate high-quality and realistic images, achieving the image 
restoration. 

B. Construction of an Optimized DCGAN Model Combining 

DenseNet and SENet 

Although DCGAN has better image feature extraction 
capabilities compared with GAN, there are still some 
shortcomings in using DCGAN for landscape design image 
restoration, such as unstable image quality, easy pattern 
collapse, high training difficulty, and poor feature extraction of 
some landscape images [16-17]. To address these issues, the 
DenseNet is combined with SENet to optimize the DCGAN. 
The structure of DenseNet is shown in Fig. 4. 

Convolution

Input Output

PoolingTransition 
layer

Transition 
layer

Dense blocks Dense blocks Dense blocks

Convolution PoolingDense blocks

 
Fig. 4. DenseNet structure diagram. 
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The DenseNet in Fig. 4 is an innovative CNN structure 
characterized by the added densely connected modules. 
DenseNet consists of multiple dense convolutional blocks and 
transition layers. The layers in each dense convolutional block 
are directly connected to each other, meaning that the output of 
each preceding layer is the input of all subsequent layers. This 
design not only efficiently utilizes feature information, but also 
alleviates the gradient vanishing, thereby improving network 
performance. Another significant feature of DenseNet is to 
implement down-sampling through transition layers. The 
bottleneck layer in the transition layer can remove redundant 
information by reducing the number of feature maps, thereby 
reducing computational complexity and decreasing the 
parameters. 

0x  represents the feature map obtained after 

convolution processing, which is the input of the dense 

convolution block to obtain the l -th layer output, as shown in 

Eq. (4) [18-19]. 

  0 1 1, , ,l l lx H x x x 
 (4) 

In Eq. (4),  lH   represents the transformation function 

of the l -th layer.  0 1 1, , , lx x x 
 signifies the feature input 

composed of feature maps from layer 0 to 1l  . 
lx  signifies 

the output of the l -th layer. In addition to using DenseNet to 

optimize the parameters of DCGAN and reduce the frequency 
of gradient vanishing, the study also adds SENet module to 
enhance channel sensitivity and lightweight the DCGAN 
structure. The SENet is displayed in Fig. 5. 
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Feature 
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process

2c
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21 1 c  21 1 c 
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Fig. 5. SENet structure diagram. 

In Fig. 5, the key component in the SENet structure is the 
excitation module, which can perform Squeeze and Excitation 
operations on the feature maps of the convolutional layer. 
Firstly, the feature map is compressed into a single value 
through global average pooling, which represents the global 
spatial information of the entire feature map. Then, this value is 
passed through a Fully Connected Layer (FCL) and ReLU 
function is used to learn the interrelationships between channels. 
Finally, this value through another FCL, and the Sigmoid is 
applied to output the weights of each channel. These weights 
will be used to re-weight the channels of the original feature 
map. The weights obtained through the incentive module will 
be multiplied with the corresponding channels to achieve 
feature re-calibration. After the above processing, the network 
can adaptively emphasize important features and suppress 
unimportant features. In the Squeeze operation, the original 

image feature size is H W C  , where H , W , and C  

signify the height, width, and channels. Each channel is 
subjected to a global mean pooling operation to obtain a 
compressed feature map, which not only has a global receptive 

field but also has a size of 1 1 C  . The Squeeze operation is 

shown in Eq. (5). 

   
1 1

1
,

H W

c sq c c

i j

z F u u i j
H W  

 



 (5) 

In Eq. (5), 
cz  signifies the compressed feature map. 

cu  

represents the feature map extracted by convolution operation. 

 sqF   represents the feature compression function. i  and 

j  represent the horizontal and vertical axes of the feature map, 

respectively. The expression for the Excitation operation is 
shown in Eq. (6). 

       2 1, , Rec exs F z W g z W W LU W z    
 (6) 

In Eq. (6), 
cs  represents the weight coefficient with 

attention mechanism.  exF   represents the characteristic 

excitation function. z  represents the compressed feature map. 
g  represents the gating function.   represents the reshape 

function. W  , 
1W  and 

2W  respectively represent the weight 

coefficients of the attention mechanism, the first FCL, and the 
second FCL. The weight coefficients obtained through Squeeze 
and Excitation operations are applied to each channel, as shown 
in Eq. (7). 

 ,c scale c cx F u s
 (7) 

In Eq. (7),  scaleF   represents the feature re-scaling 

function. cx  represents the weight coefficients applied to 

each channel. The DCGAN optimized by combining DenseNet 
and SENet is referred to as DS-DCGAN, and its structure is 
shown in Fig. 6. 
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Fig. 6. DS-DCGAN structure. 

In Fig. 6, the entire DS-DCGAN structure has the generator 
and the discriminator. DenseNet organizes the convolutional 
layers in a densely connected manner, meaning that each layer 
is directly connected to all the layers above it. In the generator, 
this dense connection can effectively transmit feature 
information, reduce information loss, and enable the network to 
better retain detailed features when generating images. The 
structure of DenseNet effectively alleviates the common 
phenomenon of gradient disappearance in deep networks. Since 
each layer is directly connected to the others, gradients can be 
passed more smoothly through the layers, ensuring that the 
generator can quickly learn effective feature representations 
during training. In the discriminator, by connecting the features 
of the front layer with the back layer, DenseNet can maximize 
the use of the features extracted from the front layer and form a 
stronger feature representation to judge the authenticity of the 
image. This enhanced feature utilization capability greatly 
improves the performance of the discriminator, which can more 
accurately distinguish the real image from the generated image. 
SENet enables the network to adaptively re-calibrate each 
channel by introducing a channel attention mechanism. 
Specifically, SENet acquires a global feature representation for 
each channel through global average pooling and generates 
channel weights through two fully connected layers. These 
weights are used to realign the importance of each channel in 
the input feature map. In the generator, the introduction of 
SENet enables the generated images to better highlight 
important feature channels, thus making the details of the 
generated images richer and more realistic. In the discriminator, 
SENet can effectively enhance the perception of key feature 
channels, making the discriminator pay more attention to the 
key features that may distinguish between real and generated 
images. SENet reduces the computational complexity and 
avoids the processing of meaningless features by cutting out 
unimportant feature channels. This not only improves 
computational efficiency, but also helps reduce overfitting and 
improves the network's ability to generalize on unseen data. In 

the DS-DCGAN structure, the loss function during training is 
shown in Eq. (8). 

train MSE MSE adv adv TV TVLoss L L L    
 (8) 

In Eq. (8), 
trainLoss , 

MSEL , 
advL , and 

TVL  respectively 

represent the training set loss function, Mean Squared Error 
(MSE) function, adversarial loss function, and total variation 
loss function. 

MSE , 
adv  and 

TV  represent the weights 

corresponding to the MSE function, adversarial loss function, 
and total variation loss function, respectively. The 

MSEL  is 

displayed in Eq. (9). 

  
2

MSEL x G M x  
 (9) 

In Eq. (9), M  represents the binary mask.   represents 

multiplication between corresponding elements, while the 
meanings of other parameters remain consistent with those 
mentioned earlier. The 

advL  is shown in Eq. (10). 

     log logadvL D x G M x  
 (10) 

In Eq. (10), the meanings of each parameter remain 
consistent with the previous text. The 

TVL  is shown in Eq. (11). 

       1, , , 1 ,

,

TV i j i j i j i j

i j

L G M x G M x G M x G M x        

 (11) 

In Eq. (11), i  and j  still represent the horizontal-axis 

and longitudinal-axis of the feature map. The test set loss 
function is shown in Eq. (12). 

val context context prior priorL L L  
 (12) 
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In Eq. (12), 
valL , 

contextL , and 
priorL  represent the training 

set loss function, text loss function, and prior loss function, 
respectively. 

context  and 
prior  represent the weights of 

contextL  and 
priorL , respectively. 

IV. RESTORATION EFFECT TESTING OF LANDSCAPE DESIGN 

IMAGES BASED ON DS-DCGAN 

To exhibit the effectiveness of the DS-DCGAN model, the 
study selects DCGAN, Generative Adversarial Network-
variant (GAN-variant), and Conditional GAN (CGAN) as 
comparison models. The benchmark performance and actual 
application effects of the four models are compared. 

A. DS-DCGAN Model Benchmark Performance Testing 

To validate the benchmark performance of the DS-DCGAN, 
two publicly available datasets for landscape architecture and 
landscape image restoration are selected for testing. Among 
them, the Places2 dataset contains over 10 million images of 
various natural scenes and buildings, widely used for image 
restoration and generation tasks. The Paris StreetView dataset 
contains high-resolution images of street view buildings, 
suitable for evaluating the performance of models in landscape 
architecture and landscape image restoration. The two datasets 
are separated into training and testing sets in an 8:2 to 
comprehensively assess the effectiveness and robustness in 
different types of image restoration tasks. The loss function 

value is used as a criterion to determine the stability of the 
model. The stability of the four models in two datasets is shown 
in Fig. 7. 

Fig. 7(a) and 7(b) show the loss curves of CGAN, DCGAN, 
GAN-variant, and DS-DCGAN models. According to Fig. 7(a), 
CGAN, DCGAN, GAN-variant, and DS-DCGAN reached a 
stable state after 325, 278, 251, and 216 iterations, respectively. 
Similarly, in Fig. 7(b), CGAN, DCGAN, GAN-variant, and 
DS-DCGAN also reached a stable state after 296, 268, 223, and 
172 iterations, respectively. Based on the two sub-graphs in Fig. 
7, DS-DCGAN can iterate to a stable state faster compared with 
the other three comparison models, indicating its high training 
efficiency and strong adaptability of the model. The average 
time consumption of the four models in the decoding and 
encoding process is compared, as shown in Fig. 8. 

Fig. 8(a) and 8(b) show the average encryption time and 
average decryption time of the four models during the training 
process, respectively. Based on Fig. 8, the CGAN model during 
training was 0.63 and 0.70, respectively. Its encryption and 
decryption process took the longest time, far higher than the 
DS-DCGAN model. In addition, the GAN-variant model was 
0.35, the DCGAN model was 0.46 and 0.48, respectively, and 
the DS-DCGAN model was 0.21 and 0.19, respectively. 
Overall, the DS-DCGAN model has the shortest encryption and 
decryption time and the highest processing efficiency in image 
processing. The MSE and Mean Absolute Error (MAE) during 
the training process are displayed in Fig. 9. 
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Fig. 7. Loss curve iteration of different models in two datasets. 
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Fig. 8. Average encryption time and decryption time of various models. 
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Fig. 9. Error representation of different models. 

Fig. 9(a) and Fig. 9(b) respectively show the MSE and MAE 
values of the four models. MSE is a common index to measure 
the difference between the restored image and the real image, 
and is defined as the average of the square of the difference 
between the pixel values of the corresponding position of the 
restored image and the original image. MAE is another measure 
of the difference between the recovered image and the real 
image, and it is the average of the absolute values of the 
difference between the pixel values. According to Fig. 9(a), the 

MSE values of CGAN, DCGAN, GAN-variant, and DS-
DCGAN models after reaching stability were 0.24, 0.21, 0.16, 
and 0.08, respectively. According to Fig. 9(b), the MAE values 
of CGAN, DCGAN, GAN-variant, and DS-DCGAN models 
after reaching stability were 0.21, 0.17, 0.14, and 0.07, 
respectively. Overall, the DS-DCGAN model performs better 
in terms of error during training, with lower MSE and MAE 
values. The repair precision and recall values during the 
training are compared, as displayed in Fig. 10. 
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Fig. 10. Repair precision and repair recall rate of different models. 

Fig. 10(a) and Fig. 10(b) respectively show the repair 
accuracy and repair recall rate of CGAN, DCGAN, GAN-
variant and DS-DCGAN. The repair accuracy is used to 
evaluate the accuracy of images recovered by the model, and it 
represents the ratio of the number of pixels successfully 
recovered to the total number of pixels. The repair recall rate 
reflects the ability of the model to identify and recover the 
actual damaged part, and it represents the ratio of the true 
positives of successful recovery to the actual damaged part. In 
Fig. 10(a), the maximum repair precision of CGAN, DCGAN, 
GAN-variant, and DS-DCGAN was 0.84, 0.86, 0.93, and 0.97, 
respectively. In Fig. 10(b), the maximum repair recall rate of 
CGAN, DCGAN, GAN-variant, and DS-DCGAN was 0.81, 

0.85, 0.93, and 0.97, respectively. From this, the benchmark 
performance test results of DS-DCGAN are good, which has 
high repair precision and recall. 

B. Application Effect Analysis of DS-DCGAN in Landscape 

Design Image Restoration 

In addition to comparing the benchmark performance of 
several models, the study also applies four models to practical 
problems. The application effects in landscape design image 
restoration are compared. Four different styles of landscape 
images are selected as the research objects. The restoration time 
and accuracy of four models for restoring these four real 
landscape images are obtained, as shown in Table I. 
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TABLE I. ACTUAL REPAIR EFFECT OF THE MODEL 

Image Type Evaluation index CGAN DCGAN GAN-variant DS-DCGAN 

Image 1 
Repair time /s 0.36 0.21 0.14 0.08 

Repair accuracy rate /% 88.23 91.05 95.18 98.15 

Image 2 
Repair time /s 0.31 0.23 0.18 0.11 

Repair accuracy rate /% 89.94 92.10 96.65 98.57 

Image 3 
Repair time /s 0.25 0.16 0.09 0.06 

Repair accuracy rate /% 89.69 92.17 95.04 99.03 

Image 4 
Repair time /s 0.41 0.30 0.24 0.15 

Repair accuracy rate /% 85.74 89.43 93.38 97.96 
 

According to Table I, the repair time for four images using 
the DS-DCGAN model was controlled within 0.20s, with a 
minimum of 0.06s required to complete the repair work. At the 
same time, the accuracy of repairing images 1, 2, 3, and 4 based 
on the DS-DCGAN model was higher than that of comparison 
models, reaching 98.15%, 98.57%, 99.03%, and 97.96%, 

respectively. Among the four models, the CGAN model has the 
worst performance in practical applications, with a repair time 
of up to 0.41s and a repair accuracy of only 85.74%. The 
restoration effects of four models on real landscape images are 
further compared, as shown in Fig. 11. 

(a) Master drawing (b) DS-DCGAN

(c) GAN-variant (d) DCGAN

(e) CGAN  

Fig. 11. Actual restoration effects of landscape design images under different models. 

Fig. 11 shows the effectiveness of four models in restoring 
actual landscape design images. Based on Fig. 11, the CGAN, 
DCGAN, and GAN-variant models all generated features that 
did not match the original image when repairing images, while 
DS-DCGAN fully restored the true situation of the actual image 

without problems such as feature transfer or feature duplication. 
Overall, DS-DCGAN has the best restoration effect in practical 
applications. Based on the analysis of experimental results, the 
performance of the research method is shown in Table II. 

TABLE II. PERFORMANCE RESULTS OF DS-DCGAN MODEL 

Model Repair accuracy (%) Repair recall rate (%) MSE MAE Average repair time (s) 

CGAN 84 81 0.24 0.21 0.63 

DCGAN 86 85 0.21 0.17 0.46 

GAN-variant 93 93 0.16 0.14 0.35 

DS-DCGAN 97 97 0.08 0.07 0.19 
 

In Table II, DS-DCGAN's repair accuracy and recall rate 
are both as high as 97%, demonstrating excellent capabilities in 

detail recovery and extraction of important data. The high repair 
accuracy and recall rate indicate that DS-DCGAN is able to 
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capture critical information in images more comprehensively, 
thus providing more reliable image recovery results. DS-
DCGAN has a MSE and MAE of 0.08 and 0.07, respectively, 
which are the lowest of all models and significantly reduce 
errors during image recovery. This shows that DS-DCGAN is 
able to reconstruct the original image more accurately, retaining 
more detailed information. The average repair time of DS-
DCGAN is 0.19 seconds, which makes DS-DCGAN have good 
real-time performance in practical applications, especially 
suitable for scenarios that require fast recovery. The results 
show that DS-DCGAN provides higher recovery accuracy and 
speed, and provides effective support for practical applications 
that need to process high-definition images or large-scale data 
sets. Using DenseNet and SENet structure optimization, the 
model not only shows strong ability in processing complex 
image features, but also reduces the computational complexity 
after training, which lays a good foundation for the subsequent 
model iteration and application. 

V. DISCUSSION 

In the above experimental results, the improved DCGAN 
model has a good performance and has obvious advantages in 
the field of image restoration. Therefore, this method also has 
certain application potential in other fields. In medical imaging, 
medical imaging technology is highly dependent on image 
quality. Images are often distorted by noise, motion artifacts, or 
equipment limitations. By applying the improved DCGAN 
model, damaged medical images can be effectively restored, 
enhancing the contrast and detail of the images, thereby helping 
doctors obtain more accurate diagnoses. DS-DCGAN can be 
used to process noise reduction and enhance image quality, 
improving the recognition and classification accuracy of 
pathology images, which is essential for early diagnosis. In 
medical image analysis, DS-DCGAN can be used to generate 
diverse training samples, help train other deep learning models, 
and promote the accuracy of cancer lesion detection or tissue 
classification. By generating high-quality composite images, 
the sample pool can be increased, helping to reduce overfitting 
and training time for the model. Medical imaging systems 
usually produce a large number of scanned images. As time 
goes on, storing and managing these images becomes 
increasingly important. DS-DCGAN can help digitally preserve 
expired and damaged medical images, making important 
historical medical records and records continuously accessible 
and usable. 

In terms of digital heritage protection, many important 
historical documents, artworks and images of cultural assets 
face wear and degradation. DS-DCGAN can be used to 
effectively repair these damaged images, improve their visual 
effect, and help retain historical information and cultural 
memory. The improved DCGAN model can be applied in 3D 
reconstruction to generate 3D assets with a high degree of detail 
by restoring flat images. In addition, this restoration method can 
be combined with augmented reality technology to provide 
visitors with a more vivid experience of cultural heritage. In a 
virtual museum or exhibition, DS-DCGAN is capable of 
recreating historical scenes to provide a more immersive and 
informative presentation. 

In other potential areas, such as in film and television post-
production, it is often necessary to recover damaged footage or 
enhance the details of a scene. DS-DCGAN helps production 
teams quickly fix scenes and generate additional effects, saving 
processing time and money. In security monitoring, the images 
captured by cameras are often difficult to provide effective 
information because of insufficient illumination and blurred 
motion. DS-DCGAN applications improve the clarity of 
surveillance images and help analyze and identify potential 
security threats. In the intelligent traffic management system, 
DS-DCGAN can optimize traffic monitoring images and 
recover important road condition information. This can enhance 
the real-time processing of images and optimize the 
management and control of traffic flow. 

VI. CONCLUSION 

In order to effectively restore landscape design images, a 
landscape design image restoration model was constructed by 
combining DenseNet, SENet, and DCGAN. Compared with 
DCGAN, GAN-variant, and CGAN, the results showed that 
DS-DCGAN maintained stability after 216 iterations in the 
training set and 172 iterations in the testing set, with faster 
iteration speed. In addition, the MSE and MAE of DS-DCGAN 
were the smallest in stable state, which were 0.08 and 0.07, 
respectively, indicating that the algorithm had low error. The 
repair accuracy and recall rate of four algorithms were tested. It 
was found that the repair precision and recall rate of DS-
DCGAN were both as high as 0.97, indicating that this method 
could better preserve the detailed information during the repair 
process. In practical applications, the average repair accuracy 
of this model was as high as 99.03%, and the average repair 
time was as low as 0.06s. From this, the proposed DS-DCGAN 
model has good repair performance and application 
effectiveness. By introducing an improved DCGAN model and 
combining DenseNet and SENet, a new approach is provided 
to process and restore landscape design images. This method 
not only improves the ability of feature extraction, but also 
significantly improves the accuracy and efficiency of image 
recovery. The implementation and results of the research will 
have a profound impact on related fields. Landscape design 
image restoration can provide more accurate data support for 
urban planning and management, and help decision makers to 
better carry out land planning, environmental management and 
public facilities layout. It provides a new methodology and 
direction for the field of image restoration, promotes academic 
accumulation in the field, and promotes the expansion of 
subsequent research into more complex and diverse image 
processing tasks. At the same time, due to the complexity of 
landscape design images and the diversity of their damage types, 
subsequent research can analyze more types of damaged image 
restoration. As a result, follow-up studies can add repair 
analysis for more types of damaged images. At the same time, 
multiple approaches can be explored to further generalize and 
adapt the DS-DCGAN model to different types of image 
restoration tasks. For example, exploring the application of DS-
DCGAN to multimodal image restoration, such as combining 
different types of medical imaging to achieve more 
comprehensive image restoration; DS-DCGAN is extended to 
video processing and dynamic scene recovery to improve the 
image quality under the condition of motion blur and motion 
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artifact. DS-DCGAN is applied to super-resolution 
reconstruction tasks, especially scenarios where high-
resolution images are recovered from low-resolution images. 
By exploring these directions in depth, the DS-DCGAN model 
can not only meet the needs of challenging image restoration, 
but also show greater value in diverse fields. 
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