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Abstract—In order to intelligently analyze tennis movements 

and improve evaluation efficiency, a counter clockwise rotation 

angle of limbs is proposed to solve the direction problem of tennis 

movements. A dynamic time regularization algorithm is 

optimized by combining global time weighting and adjacent 

frame weighting. The results indicated that the proposed counter 

clockwise rotation angle feature of limbs could effectively 

represent changes in limb direction and clearly distinguish action 

postures. The average accuracy of this method in action 

classification on the Tennis Stroke Dataset was 97.60%. In the 

action evaluation mode, the average frame rate of the client was 

between 17.35FPS and 17.49FPS, and the overall average frame 

rate was about 17.40FPS. The server exhibits higher efficiency in 

action processing and evaluation, which can process video frames 

faster. It is more efficient in processing data capabilities and 

utilizing data resources. This indicates that the performance of 

the system is relatively consistent in different modes and has 

stability. The optimized method has a higher generalization 

ability in recognizing non-tennis movements on different 

datasets. When dealing with fine movements, the optimized 

method performs excellently and can better capture subtle 

differences in the movements. Meanwhile, this enhances the real-

time performance of the system, making it suitable for evaluating 

tennis movements in practical application scenarios. This 

provides a new technical path for analyzing tennis movements 

and also serves as a reference for evaluating movements in other 

sports. 
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I. INTRODUCTION 

With the rapid development of artificial intelligence, the 
combination of computer technology and tennis has become 
one of the hot topics in the field of sports. As a popular 
competitive sport, the analysis and evaluation of tennis 
technique movements are of great significance for athlete 
training and competition [1]. The Tennis Movement Evaluation 
System (TME) helps to obtain more accurate match and 
training data, which can improve athletes' performance and 
training efficiency, and more scientifically analyze the 
movement posture during tennis sports [2]. The data 
representation in tennis videos is in the form of time series. For 
time series processing, a common task is to compare the 
similarity between two sequences. Comparing the similarity of 
time series is more conducive to identifying patterns and 
trends, which is of great significance for discovering patterns in 

action data and predicting future behavior. As one of the most 
important similarity measurement methods in time series 
analysis, Dynamic Time Warping (DTW) is the process of 
elongating or shortening unknown variables until they match 
the length of the reference template. The time axis of unknown 
data is distorted or bent, so that its feature quantities 
correspond to the standard pattern. However, traditional action 
evaluation methods often rely on manual observation and 
analysis, which have problems such as low efficiency and 
strong subjectivity [3]. 

Regarding the evaluation and classification of tennis 
movements, many researchers have adopted different 
algorithms and techniques for in-depth optimization, and have 
achieved certain results. To analyze the performance of the 
tennis evaluation platform, Wu et al. collected data through 
wearable devices and selected the Z-score normalized Support 
Vector Machine (SVM) to classify hitting actions. The 
accuracy reached 98.4% [4]. Giles et al. proposed a 
hierarchical clustering method and tennis directional change 
technique to distinguish tennis movement styles, identify 
movement features, and analyze temporal movement 
characteristics such as change speed and directionality. The 
results showed that this method was feasible [5]. Perri et al. 
considered the hitting situation in tennis training and used 
wearable devices and prototype learning to detect different 
movements to determine exercise load. The results showed that 
this technology had high accuracy [6]. Wood et al. used 
Krippendorffs alpha analysis to evaluate the reliability of tennis 
serve features in 2D videos. This method had high 
measurement accuracy [7]. Liu et al. extracted different 
features through the acceleration of the action and the deep 
mode data. The spatial and temporal convolutional neural 
network were combined to realize the specific action 
recognition. The results showed that the accuracy of this 
method was more than 99% [8]. In order to analyze the 
trajectory of tennis serve, Hu et al. combined SVM with frame 
difference technology and median filtering algorithm to locate 
targets and recognize trajectories. The results showed that the 
classification accuracy was 97.5% [9]. Perri et al. used 
wearable GPS devices to record the training serving load for 
tennis serving information recording. The results showed that 
this method had good detection performance [10]. Setyawan et 
al. evaluated the serving movements of athletes of different 
genders to improve the success rate of serving and evaluate the 
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differences in tennis serving performance. The results showed 
that this method was effective [11]. 

Some scholars have attempted to improve the DTW method 
in identifying abnormal charging, time series analysis, and 
image change detection, and have achieved good results. Shuai 
et al. developed a DTW model with the longest similar 
substring to identify abnormal charging situations and avoid 
excessive regularization of DTW for the safety of electric 
bicycle charging. The average recognition accuracy reached 
94% [12]. Deriso et al. proposed a method that combined DTW 
and iterative refinement techniques to address the trade-off 
between time regularization characteristics in traditional DTW 
signal alignment errors. The results showed that this method 
was feasible [13]. Zhang et al. designed a fast DTW and 
sequence decomposition method to analyze different 
components in time series. The time series was decomposed 
and the similarity between different components was 
measured. The results showed that this method had high 
classification accuracy [14]. Xing et al. detected changes in 
satellite image time series using remote sensing image time 
series values and DTW to calculate the change amplitude map. 
The change results were detected in advance. The accuracy 
was improved by up to 5.10% [15]. Froese et al. proposed two 
run length encoding time series to improve DTW calculation 
speed, which shortened the running time and reduced the 
factors affecting time. The results shows that this method was 
effective [16]. Kumawat et al. developed a new framework for 
DTW and adversarial training to enhance the robustness of 
deep neural networks. Different adversarial examples were 
created and random alignment paths were implemented. The 
framework had high efficiency [17]. He et al. proposed Anticor 
to improve DTW similarity calculation to identify differences 
between different sequences. The results showed that the 
algorithm has good practicality [18]. Vorpe et al. introduced 
non-parametric DTW to capture the leading and trailing 
relationships between time series for obesity rate prediction. 
The results showed that this method had good predictive 
performance [19]. 

In summary, both the evaluation of tennis movements and 
the improvement of DTW have shown high accuracy and 
effectiveness. However, due to the directional information 
involved in tennis movements and the large computational 
complexity of DTW, an innovative TME system is developed 
for this purpose. The feature of Counter Clockwise Rotation 
Angle (CRA) of limbs is used to quantify and analyze action 
direction, and global time weighting and adjacent frame 
weighting are selected to optimize DTW. The research aims to 
improve computational efficiency and enhance the real-time 
performance of the system, thereby providing technical support 
for the field of tennis movement analysis. This study consists 
of four main parts. Section II is methods and materials. Among 
them, Part A introduces the physical CRA of tennis actions. 
The content of Part B is WCRA between adjacent frameworks 
and global time. Section III is the results of the study. Among 
them, Part A analyzes the TME system based on WCRA 
similarity measurement method. Part B introduces the 
performance analysis of the TME system. Section IV is 
discussion and conclusion. 

II. METHODS AND MATERIALS 

A. Physical CRA of Tennis Actions 

Tennis action videos are captured using cameras that can 
only capture images from one perspective, and these videos are 
processed and evaluated [20-21]. Considering that tennis courts 
include both indoor and outdoor environments, factors such as 
color and lighting affect video images. To cope with 
environmental impacts, video images need to be preprocessed. 
This includes adjusting the brightness of the image and 
performing noise reduction to improve image quality and 
ensure accuracy in subsequent processing. Monocular cameras 
can only capture channel information for the red, green, and 
blue colors of an image, but do not include distance 
information. Therefore, Two-Dimensional pose estimation is 
used to identify human skeletal joint points in images, that is, 
to determine the position information of each joint point. Each 
joint not only contains positional information, i.e. coordinates, 
but also semantic information, such as which joint is the 
shoulder and which is the knee. Simultaneously, the 
coordinates of joint points are extracted as the basis for 
subsequent action evaluation [22]. Because tennis movements 
are dynamic, there may be some joint points obscured in 
certain frames of the video, which can affect the accuracy of 
pose estimation. At this point, if the coordinates of the 

undetected joint point are set as the origin  0,0O , the 

horizontal and vertical coordinate pair 
ip  for the i -th joint 

point is displayed in Eq. (1). 

  
 

 

, , if  detected
,

0,0 , if  not detected

i i
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p x y

O p


 


 

Due to significant differences in body shape among 
individuals, even if two people perform the same action, the 
overlap rate of their contours may be low, resulting in 
inaccurate similarity calculation. However, in 2D skeleton 
nodes, only considering the angle between limbs has certain 
limitations. Because when the angle between two adjacent 

limbs formed by three adjacent joints is the same, i.e. 
1 2  , 

the actual movement posture is not the same, which cannot 
accurately describe the movement characteristics [23-24]. The 
angle and CRA of the tennis movement limbs are shown in 
Fig. 1. 

(a) Action 1 (b) Action 2

1

1
2

2

 
Fig. 1. The angle between tennis limbs and CRA. 

In the TME system, to overcome the shortcomings of 
traditional contour overlap rate and simple angle analysis, this 
study aims to more accurately describe and evaluate human 
movements by combining directional information of limb 
angles. The CRA of the right wrist-right elbow-right shoulder 

in Fig. 1 (a) is denoted as 
1 . The CRA of the right wrist-right 
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elbow-right shoulder in Fig. 1 (b) is denoted as 
2 . The 

difference between angles 
1  and 

2  is obvious and will not 

be confused, so the CRA is used to more accurately describe 
the angle and human posture of the angle. The angle value 
range of CRA is between 0° and 360°. According to the cosine 
theorem, the angle between two vectors is calculated. Then, the 
vector product is used to determine their positional relationship 
[25]. The tennis movements exclude detailed changes in the 
head. The distribution of joint points and CRA in the limbs is 
shown in Fig. 2. 
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Fig. 2. Schematic diagram of limb joint points and CRA distribution. 

In Fig. 2, there are 14 joint points in the limbs. In the 
template video, OpenPose is used to detect the human joint 
points of each frame image of two random tennis movements, 
obtaining 13 limb CRAs. The function of OpenPose is real-
time multi person pose estimation and keypoint detection, 
which can detect the 2D poses of multiple people in images or 
videos in real time. It is suitable for single person and multi-
person scenes and has excellent robustness. The input image or 
video uses a pre-trained model to identify key points in the 
human body, including the head, shoulders, elbows, wrists, 
hips, knees, and other key positions. By identifying and 
connecting these key points, OpenPose can generate a 
complete multi-person pose estimation result, thereby 
recognizing human actions [26-27]. The definition of partial 
limb CRA is displayed in Table I. 

TABLE I.  DEFINITION OF LIMB CRA 

RA number 
Joint number 

representation 
CRA 

0 0-1-2 Nose-neck-right shoulder 

1 2-1-8 Left shoulder-neck-nose 

2 8-1-11 Right Shoulder-neck-right Hip 

3 11-1-5 Right Hip-neck-left Hip 

4 5-1-0 Left Hip-neck-left Shoulder 

5 3-2-1 Right elbow-right shoulder-neck 

B. WCRA Between Adjacent Frames and Global Time 

In tennis, athletes' movements and scenes change very 
quickly. Single frame real-time evaluation can quickly adapt to 
these changes, update evaluation results in a timely manner, 
and ensure accurate evaluation and feedback in dynamic 
scenes. Meanwhile, real-time processing of single frame data 
requires relatively less computation and can effectively utilize 
computing resources. Compared with processing the entire 
video stream, single frame evaluation can distribute the 
computational burden, avoid delays and lags, and ensure the 
real-time and smooth performance of the system [28]. The 
single frame evaluation is displayed in Fig. 3. 
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Fig. 3. Flowchart of single frame evaluation. 

In Fig. 3, after inputting video frames with a resolution of 
656×368, joint points and number of people are detected. If a 
joint is detected, the evaluation score is calculated from the 
Rotation Angle (RA), weight, and score to determine the joint 
points and score. If no joints are detected, it is marked as blank. 
To facilitate the evaluation of tennis movements in single 
frame videos, the frame rate of the template video and the input 
video are set to be the same [29]. The relationship between RA 
in various limbs of the human body is analyzed to obtain 

evaluation scores for each frame. The similarity score 
ts  of t -

th frame has a value range of [0, 1], as shown in Eq. (2). 


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In Eq. (2), n  is the number of RAs. 
t

i  is the difference 

between the t -th frame input video and the i -th RA of 

template video. C  is the maximum value of RA. When 
ts , it 

indicates that the actions of the template and the input video 

are completely consistent. When 
ts  is 0, it indicates that the 

actions of the template and the input video are completely 

different. The weight 
iW  for the i -th RA is expressed as Eq. 

(3). 

 i i iW aW bW    

In Eq. (3), a  and b  are both parameters, with a value of 

0.5. 
iW

 is the inter frame RA weight of i -th RA input video 
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actions. 
iW

 is the global time RA weight of the template 

video action for the i -th RA. To analyze TME more 

comprehensively, the study considers the action situation of the 
input video. Adjacent Frame Weighting (AFW) focuses on the 
change details between adjacent frames in the action sequence, 
which can capture small changes in the action and enhance the 
matching precision [30-31]. During the DTW process, weight 
allocation is performed on adjacent frame pairs. AFW 
considers the changes and interrelationships between adjacent 
frames, which is suitable for capturing local dynamic changes 
in sequences. In TME, subtle movement changes can also 
affect technical evaluation, and AFW can improve the 
sensitivity of DTW in details. AFW needs to first calculate the 
cumulative change in limb RA, with a required range between 
adjacent frames of the current frame, in order to obtain the RA 

weights between adjacent frames. 
iW

 is shown in Eq. (4). 


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In Eq. (4), 
ct  is the current frame. T  is between adjacent 

frames, and  0, cT t  . 
'

i  signifies the T  cumulative 

change of the i -th RA in the input video from the previous 
ct . 

i

  is the smoothing term, as shown in Eq. (5). 

 1c

c

t t

i t t T i T      

'

i  is shown in Eq. (6). 
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1' 1

1
c

c

t t t
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Global Time Weighting (GTW) is used to allocate 
reasonable weights to the entire action sequence in the time 
dimension, ensuring that each stage of the entire action process 
receives appropriate attention. It considers the temporal 
characteristics of the entire sequence and assigns higher 
weights to certain key moments or key action points. GTW can 
balance the importance of different time periods in action 
sequences, making the DTW algorithm more accurate in 
matching actions and avoiding certain important time periods 

from being ignored or underestimated. 
iW

 is shown in Eq. (7). 


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In Eq. (7), 
i

  is the smoothing term, which serves to avoid 

a weight of 0. If the weight is 0, the corresponding RA 

information will be ignored, affecting the result. i

  is shown 

in Eq. (8). 

 1

T t

i t i T   

In Eq. (8), T  signifies the frame number of the template 

video. 
i  is the degree of change of a specific RA in the time 

series in the template video. By calculating 
i , the dynamic 

variation characteristics of the angle during the action process 
can be captured. If a certain RA changes dramatically between 

different frames, 
i  will be larger, indicating that the action 

point has high dynamism in the entire action sequence and may 

need to be given higher weight. 
i  is shown in Eq. (9). 

 1 1

1

T t t

i t i i   

   

To better reflect the true 
ts , AFW and GTW are applied to 

the data. The overall evaluation score S  for a certain tennis 

action is shown in Eq. (10). 

  1 1, 1T T

t t t t tS w s w      

In Eq. (10), 
tw  is the weighted score, and  0,1tw  . AFW 

focuses more on local changes, emphasizes the dynamic 
relationship between adjacent frames, and improves the 
precision and smoothness of matching. GTW focuses more on 
the temporal characteristics of the entire sequence, 
emphasizing the matching of critical moments to improve the 
accuracy and robustness of overall evaluation. Combining 
these two weighting methods can capture the importance of 
global key moments in action evaluation while not ignoring the 
details of local dynamic changes, achieving higher evaluation 
accuracy and robustness. 

C. TME System Based on SDTW 

There are multiple similarity or distance functions in time 
series data in videos. DTW is used to calculate the similarity 
between two time series. DTW minimizes the cumulative 
distance between one time series and another by calculating the 
nonlinear mapping relationship between the two. DTW may 
not be able to output results in a timely manner, as it requires 
traversing a large amount of frame data to find the path with 
the minimum cumulative distance. To solve the real-time of the 
DTW algorithm, an improved algorithm called Segmented 
DTW (SDTW) is proposed. The core idea of SDTW is to 
segment the actions in the template video and perform path 
search within each segment. This method reduces time 
complexity and improves computational efficiency by limiting 
the search range. By segmenting and reducing computational 
complexity, SDTW can output calculation results in a timely 
manner at the end of frame processing in action videos, thus 
meeting real-time requirements. The schematic diagram of path 
search for DTW and the search area for SDTW with a step size 

of 2stepR   are shown in Fig. 4. 

In Fig. 4 (a), a 2D distance matrix D  is constructed, with 
the total frame numbers of the input video and template video 

being n  and m , respectively. The matrix element  ,i j
d  at the 

current position  ,i j  is displayed in Eq. (11). 

    
2

min 1,

n

k ki j
d d     
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Fig. 4. DTW path search and SDTW search area. 

In Eq. (11), 
mind  signifies the minimum distance value 

obtained in the previous step. 
k  is the difference between 

the k -th CRA of the input video and the template video. At the 

initial position (1,1), 
mind  is 0. At different positions, 

mind  is 

shown in Eq. (12). 

       min 1, , 1 1, 1
min , ,

i j i j i j
d d d d

   
  

In Eq. (12),  1,i j  and  , 1i j   are the adjacent 

positions on the upper and left sides of  ,i j , respectively. 

 1, 1i j   is the upper left corner position of  ,i j . DTW 

first starts from the initial position  1,1  of the time series 

matrix, gradually accumulates and calculates the distance of 
each step by moving to the right, down, and right adjacent 
positions in the matrix, and finds the path in this process to 
minimize the total accumulated distance. Finally, the DTW 
algorithm uses this path to find the minimum cumulative 

distance at the endpoint position  ,n m  of the matrix, which 

represents the minimum similarity distance between two time 
series. A small distance indicates that the two sequences are 
more similar in the time dimension, demonstrating that the 
shapes or patterns of the two sequences are closer. In Fig. 4 (b), 
when the template video time series is segmented, the step size 

is set to stepR . To better limit the range of path search, the 

width on both sides of the diagonal is specified to ensure that 
the search path is concentrated near the diagonal rather than 

spreading throughout the entire matrix stepR . In the case of 

segmented processing, the total width range of path search is 

determined by the step size 
stepR , with a maximum width of 

2 1stepR   and a minimum width of 1stepR  . This means that 

the path search range will be limited to the diagonal and its left 

and right range stepR , thereby reducing computation and 

complexity. The endpoint position of the first segment of 

SDTW is  , en j , and the vertical axis satisfies 

 1 , 1e step stepj m R m R     . At this time, the search range 

of the path is on the diagonal, with a width of 2 1stepR  . The 

computational workload is reduced to avoid global search. 

Subsequently, by moving stepR  steps each time, different path 

searches can be achieved. The average distance d  for each 

step is shown in Eq. (13). 


c

d


  

In Eq. (13), c  and   are the distance and length of the 

path. The conversion score 
ds  is shown in Eq. (14). 


1

1
ds

hd



 

In Eq. (14), h  is the coefficient that adjusts the magnitude 

of the score decrease, and 0.25h  . As d  increases, the 

similarity between two time series decreases. At this time, the 

result of 
ds  is closer to 0. Two time series are completely 

identical, and 1ds  . To evaluate human movements in a 

single frame video, it is necessary to ensure that the input video 
and the template video have equal frame rates. Analyzing the 
relationship between RA in various limbs of the human body 
can obtain a single frame calculation evaluation score. In 
practical operation, extracting human joint information is a 
time-consuming process and may cause delays during network 
transmission. To alleviate these issues, an offline processing 
module is added to the TME system. The function of this 
module is to process the template video in advance, extract and 
save the joint coordinates of each frame to the local file. 
Therefore, in the actual real-time evaluation process, the 
system only needs to read the stored joint information from the 
local file without recalculating and extracting, greatly reducing 
the time required for evaluation and improving efficiency. 
Therefore, the constructed architecture diagram of the TME 
system is shown in Fig. 5. 

In Fig. 5, the client and server of the TME system use 
Socket to achieve data transmission. The client is connected to 
the monocular camera through USB, and can display a video 
interface and collect video data. Meanwhile, customers can 
preprocess video frame data and then transmit it to the server. 
The focus of the server is on extracting joint points and 
evaluating actions. The monocular camera is transmitted to the 
server via USB connection, and the server receives the data 
information and transmits the results to the client. 
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Fig. 5. TME system architecture diagram. 

III. RESULTS 

A. Analysis of TME System Based on WCRA Similarity 

Measurement Method 

The experimental datasets are the Tennis Videos Dataset 
and the Tennis Stroke Dataset, with the former containing a 
large number of tennis matches and training videos, typically 
used for video analysis, action recognition, and strategy 
analysis. The latter includes data on various tennis hitting 
movements, such as smashes, Forehand Strokes (FS), 
Backhand Strokes (BS), Forehand Cut (FC), and Backhand Cut 
(BC). The experimental setup is displayed in Table II. 

TABLE II.  HARDWARE EQUIPMENT AND SOFTWARE ENVIRONMENT FOR 

EXPERIMENTAL SETUP 

Hardware 

device 
Device type 

Software 

environment 

Configuration 

information 

GPU server 
NVIDIA Tesla 

P40 
Operating system 

Ubuntu 14.04.5 

LTS 

GPU 

architecture 

NVIDIA 

Pascal 

Deep learning 

framework 
Caffe 

High definition 
digital camera 

SONY HDR-
CX405 

GPU parallel 

computing 

architecture 

CUDA 8.0 

Monocular 

camera 

RER-

USBFHD01M 

Computer vision 

library 
OpenCV 2.4.13 

The research indicators include similarity evaluation scores 
and accuracy. The similarity evaluation score is used to assess 
the similarity between actions of the same type (such as 
multiple backhands) and actions of different types (such as 
backhands and smashes). By calculating and comparing these 
scores, the similarity between different action types before and 
after improvement can be analyzed to evaluate the accuracy 
and effectiveness of the algorithm. Accuracy is used to 
measure the performance of algorithms in identifying and 
classifying action types, such as kill actions. By comparing the 
accuracy and average accuracy of different methods, the 
effectiveness and reliability of each method can be evaluated 
under different levels of action performance. To evaluate the 
impact of different algorithms on real-time performance when 
processing monocular camera videos using OpenPose. A 
monocular camera is conFig.d, with a video frame rate of 

60FPS and a resolution of 1280×720. The required algorithm 

environment is set on the server, including OpenPose. 
Different algorithms are run sequentially and combined with 

OpenPose to process video streams, recording the actual frame 
rate per second during the processing. The experiment is 
conducted 20 times to ensure reliability and statistical 
significance, with each experiment lasting 10 minutes. In each 
experiment, the processed video frame rate and changes in 
frame rate are analyzed, as shown in Fig. 6. 

Number of experiments

F
ra

m
e 

ra
te

 (
F

P
S

)

201612840 2 6 10 14 18

20

0

6

10

2

12

8

4

14

16

18

DTW
SDTW
WCR-SDTW
DTW+OpenPose
SDTW+OpenPose

WCR-SDTW+OpenPose

 
Fig. 6. The frame rate variation of different methods. 

In Fig. 6, the average frame rate of DTW without 
OpenPose processing was the lowest, only 0.5FPS. The 
average frame rate under the action of WCR and SDTW 
was19.1FPS, while the average frame rate processed by 
OpenPose was 19.5FPS, which was time-consuming, but 
achieved high accuracy. The proposed algorithm, combined 
with OpenPose, can better maintain the real-time frame rate of 
the video. 

To verify the effectiveness of the designed limb CRA, an 
analysis is conducted on the changes in CRA values of BS 
action and smash action, and a comparison between the two 
was obtained, as shown in Fig. 7. 

In Fig. 7 (a), the angle value of CRA 8 fluctuated the most 
within 30 frames, indicating a more drastic change in the left 
arm. In Fig. 7 (b), there was a significant fluctuation in the 
angle value of the right arm CRA 6 during the smash action, 
ranging from 36° to 260°. Therefore, the proposed limb CRA 
can effectively represent changes in limb direction, clearly 
distinguishing between movement and posture situations. 
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Fig. 7. Comparison of CRA value changes in backhand and smash 

movements. 

To verify the proposed improvement method, the similarity 
scores between different action types are evaluated to analyze 
the performance of the improved method. The study randomly 
selects 250 tennis training videos from the dataset and selects 
five types of movements: FS, BS, FC, BC, and smash. The 
similarity scores are analyzed by action type. The similarity 
scores of same action types and different action types are 
calculated. The similarity of different action types before and 
after improvement is compared, as shown in Fig. 8. 

In Fig. 8 (a), the similarity scores between actions of the 
same type and between actions of different types both 
exceeded 0.75 points. However, according to the similarity 
score results, the method before improvement was not able to 
distinguish action similarity scores well. The difference 
between the maximum and minimum scores for actions of the 
same type ranged from 0.02 to 0.16 points. In Fig. 8 (b), there 
was a clear distinction between the five types of actions, with a 
score difference ranging from 0.27 to 0.49 points. Therefore, 
the improved method has better discrimination than before. 
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Fig. 8. The similarity score between different action types before and after 

improvement. 

To analyze the accuracy of the improved method, different 
methods are selected for comparison, including 3D motion 
capture technology [32], Gaussian Distance-Improved DTW 
(GD-IDTW) [33], and Joint Angles and Movement Similarity 
(JA-MS) [34]. The action performance of the dataset is divided 
into three levels: good, average, and poor. The score for poor 
action performance ranges from 0.0 to 0.6, the score for 
average action performance ranges from 0.6 to 0.8, and the 
score for good action performance ranges from 0.8 to 1.0. The 
accuracy and average accuracy of different methods of smash 
actions among the three levels of performance are shown in 
Fig. 9. 

In Fig. 9 (a), the accuracy of the improved method for the 
smash action was 98.12%, 100.00%, and 100.00% for good, 
average, and poor performance, respectively. The accuracy of 
GD-IDTW was relatively close to the improved method, with 
accuracy rate of 96.97%, 85.77%, and 100.00% for good, 
average, and poor action performance, respectively. The 
overall accuracy of the improved method was higher than other 
methods, because the improved method was significantly better 
than the GD-IDTW in handling fine actions, which could better 
capture subtle differences in these actions. In Fig. 9 (b), in the 
similarity evaluation with good action performance, the 
improved method had an average accuracy close to GD-IDTW, 
with 88.15% and 88.01% respectively, showing superior 
performance. In terms of average action performance, the 
improved method had an average accuracy of 90.12% in action 
performance, which was higher than other methods. In the 
similarity evaluation of poor action performance, the average 
accuracy of the improved method was 92.55%. The improved 
method not only enhances computational efficiency, but also 
improves the accuracy of similarity evaluation. 
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Fig. 9. Comparison of accuracy of different methods. 

To verify the accuracy of the improved method for 
classifying tennis movements, the experiment selects five 
different types of movements from two datasets, the Tennis 
Videos Dataset and the Tennis Stroke Dataset, for analysis. 
The matrix element is the ratio of the number of recognized 
actions to the number of tested actions. The confusion matrix 
obtained for the five types of tennis movements is shown in 
Fig. 10. 
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Fig. 10. Comparison of confusion matrices for different datasets. 

In Fig. 10 (a), the five columns represent the five 
recognized action types, and the 5 rows represent the 5 tested 
action types. The average accuracy of action classification in 
the Tennis Stroke Dataset was 97.60%. In Fig. 10 (b), there 
were many classification errors between FS and FC actions in 
the Tennis Videos Dataset, with an average accuracy of 
78.00% for action classification. 

To analyze the generalization of the improved method, the 
study identifies non-tennis movements in two datasets. The 
number of tests for each type of action is 9, and duplicate 
videos are filtered out to obtain the recognition accuracy, as 
displayed in Table III. 

TABLE III.  RECOGNITION ACCURACY OF NON TENNIS MOVEMENTS 

Dataset Action Type Bending Capriole Running Walking High five 

Tennis Videos Dataset 
Correct number 7 8 7 9 7 

Accuracy 0.78 0.89 0.78 1.00 0.78 

Tennis Stroke Dataset 
Correct number 6 7 6 8 9 

Accuracy 0.67 0.78 0.67 0.89 1.00 
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In Table III, for the five movements of bending, Capriole, 
running, walking, and high five, the average accuracy obtained 
using the improved method reached 82%. The recognition 
accuracy of the Tennis Videos Dataset was generally high, 
with walking movements achieving 100%, and the high five 
movements of the Tennis Stroke Dataset also achieving 100%. 
The proposed method has a certain degree of generalization 
ability in recognizing non-tennis movements on different 
datasets. 

B. Performance Analysis of TME System 

Client performance evaluates the real-time performance of 
video capture and transmission, ensuring that video frames 
captured by monocular cameras can be transmitted to the 
server in a timely manner. This includes the frame rate of the 
camera, data transmission delay, and stability of network 
transmission. Server performance refers to evaluating the real-
time performance of the server in receiving, processing, and 
analyzing video frames. The server needs to quickly perform 
algorithm processing and return results after receiving video 
frames to ensure the overall system response speed. To 
comprehensively evaluate and optimize the performance of the 
system, and ensure that the entire TME system can run 
efficiently and stably in practical applications, real-time testing 

is conducted on the client and server of the TME system. Five 
tennis movements are selected for the experiment, and tested 
five times on both the client and server sides of the system. The 
average frame rate obtained is presented in Table IV. 

In Table IV, the average frame rates of the server in action 
evaluation and action recognition were 18.52FPS and 
18.51FPS, respectively, both higher than those of the client. In 
the action evaluation mode, the average frame rate of the client 
was between 17.35FPS and 17.49FPS, and the overall average 
frame rate was about 17.40FPS. The server exhibited higher 
efficiency in action processing and evaluation, which could 
process video frames faster. It is more efficient in processing 
data capabilities and utilizing data resources. In both modes, 
there is not much difference in frame rate between the client 
and server, but the overall trend is consistent. This indicates 
that the performance of the system is relatively consistent in 
different modes and has a certain degree of stability. 

In the TME system, three individuals are selected for 
testing. Among the five types of tennis movements, three sets 
of imitative movements are tested for each movement. The 
performance levels are good, average, and poor. The similarity 
evaluation scores for different action types are shown in Fig. 
11. 

TABLE IV.  COMPARISON OF AVERAGE FRAME RATES BETWEEN SERVER AND CLIENT 

Mode type Action Type FS FC Smash BS BC Average frame rate (FPS) 

Average frame rate of action 

evaluation mode (FPS) 

Client 17.38 17.35 17.37 17.39 17.49 17.40 

Server 18.50 18.57 18.56 18.43 18.54 18.52 

Average frame rate of action 

recognition mode (FPS) 

Client 17.24 17.28 17.38 17.28 17.27 17.29 

Server 18.53 18.51 18.48 18.51 18.49 18.51 
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Fig. 11. Similarity evaluation scores for different action types. 

In Fig. 11, the similarity evaluation score for the smash 
action with good performance was the highest, at 0.94, while 
the similarity evaluation score for this action with poor 
performance was the lowest, at 0.5. The evaluation scores for 
smash, BS, and BC actions were relatively high, while the 
similarity evaluation scores for FS and FC actions were 
relatively close, resulting in a lower degree of differentiation 
between the two. 

IV. DISCUSSION AND CONCLUSION 

There are significant challenges in efficiently and 
accurately evaluating tennis movements at present. In order to 
improve computational efficiency and real-time performance 
of the system, a TME system was developed. The limb CRA 
was used to quantify and analyze action direction. Then, AFW 
and GTW weighting were used to optimize DTW. The results 
showed that the angle value of CRA 8 fluctuated the most 
within 30 frames, indicating that the changes in the left arm 
were more severe. The angle value of CRA 6 in the right arm 
of the smash action fluctuated greatly, ranging from 36° to 
260°. The similarity scores between actions of the same type 
and between actions of different types both exceeded 0.75 
points. However, according to the similarity score results, the 
method before improvement was not able to distinguish action 
similarity scores well. To address this issue, Zhang et al. 
focused on evaluating the quality of actions in videos by using 
distributed autoencoders, likelihood loss sampling scores, and 
learning uncertainty parameters [35]. The difference between 
the maximum and minimum scores for actions of the same type 
ranged from 0.02 to 0.16 points. There was a clear distinction 
between the five types of actions, with a score difference of 
0.27-0.49 points. Therefore, the improved method had better 
discrimination than before. For the smash action, the accuracy 
rates of the improved method for good, average, and poor 
performance were 98.12%, 100.00%, and 100.00%, 
respectively. The accuracy of GD-IDTW was relatively close 
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to the improved method, with accuracy rates of 96.97%, 
85.77%, and 100.00% for good, average, and poor action 
performance, respectively. The overall accuracy of the 
improved method outperformed other methods, because the 
improved method was significantly better than the GD-IDTW 
in handling fine actions, which could better capture subtle 
differences in these actions. In the similarity evaluation of good 
action performance, the improved method had an average 
accuracy close to GD-IDTW, with 88.15% and 88.01%, 
respectively, showing superior performance. As for average 
action performance, the improved method had an average 
accuracy of 90.12%, which was higher than other methods. In 
the similarity evaluation of poor action performance, the 
average accuracy of the improved method was 92.55%. The 
improved method not only enhances computational efficiency, 
but also improves the accuracy of similarity evaluation. This 
method has a certain positive effect on the Estevam team in 
obtaining semantic information from videos for recognizing 
actions [36]. The improved method effectively achieves 
accurate and real-time action similarity evaluation, which is of 
great significance for various training and evaluation systems 
that require real-time feedback. Meanwhile, this innovative 
method will make significant contributions to the development 
of sports science research and intelligent sports evaluation 
systems. However, this study does not consider the impact of 
lighting environmental factors on the evaluation results. 
Excessive or insufficient lighting can lead to the loss of details 
in the image, which in turn affects the accuracy of action 
recognition and the reliability of similarity evaluation. In the 
future, experiments can be extended to different lighting 
environments, including natural light, artificial light sources, 
and changes in lighting intensity. By testing the performance of 
the algorithm under various lighting conditions, the robustness 
of the algorithm in different lighting environments can be 
identified and optimized. 
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