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Abstract—Currently, there are issues with low efficiency and 

outdated Internet of Things resource allocation. To study real 

Internet of Things user behavior data, a Bayesian optimization 

algorithm is used to automatically select hyperparameter 

combinations and construct an Internet of Things user behavior 

analysis model based on long short-term memory. The results 

showed that the prediction accuracy of the model reached 96.8% 

and 97.53% on the training and validation sets, while in the set 50 

maximum iterations, the model achieved 80.78% on the test set. In 

comparing the performance between the research model and the 

traditional recurrent network model, it was found that the optimal 

prediction accuracy of the research model was 80.78%, which was 

better than the comparison model. The application results of the 

research model in short-term power load forecasting also 

indicated that the prediction accuracy of the Internet of Things 

user behavior analysis model based on the improved recurrent 

network has reached a good level, far superior to the comparative 

model. The results have important application value for allocating 

energy and resources in Internet of Things systems. 
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I. INTRODUCTION 

The continuous progress of science and technology has led 
to an exponential growth trend in the amount of information, 
and the Internet of Things (IoT) technology has also been 
further developed. In recent years, the further popularization of 
5G technology, the further reduction of hardware costs, and the 
development of big data technology have led to a significant 
advancement in the IoT. At this stage, the IoT is no longer 
merely a network of objects and systems; it has evolved into a 
comprehensive system that connects all the people, processes, 
and resources involved, forming a seamless and automated 
interaction process [1-2]. At the current stage of development, 
the IoT integrates the interactive factors related to people. The 
data types and quantities involved in the whole IoT system have 
greatly increased, and the traditional processing system 
technology has been unable to meet the actual needs of [3-4]. 
At this time, artificial intelligence (AI) technologies have 
emerged as the optimal avenue for industrial advancement 
within the IoT domain. Furthermore, the integration of AI has 
become pervasive across various production and operational 
processes. However, the practical application of AI technology 
in the IoT often has the problem of poor timing [5-6]. Given 
this, many scholars have researched the analysis of IoT user 
behavior, and methods such as mathematics, data mining, and 
machine learning (ML) have emerged [7-8]. Mathematical 
methods are characterized by high complexity, limited 

interpretability, and greater difficulty in achieving results. In 
contrast, data mining and simple calculation technology are 
relatively straightforward, yet they often prove ineffective in 
predicting user behavior. Based on this, the long and short-term 
memory (LSTM) recurrent neural network (RNN) method in 
the ML method is used to construct the prediction model. At the 
same time, to solve the problems of high complexity and 
optimization difficulty of ML methods, the Bayesian 
optimization algorithm (BOA) is studied based on the 
prediction model of LSTM-RNN, which can realize the 
automatic optimization of the prediction model. This study first 
hopes to find out the correlation and the implied behavior mode 
of the user behavior data of the IoT, aiming to provide more 
temporal data for more accurate, fast, and convenient IoT 
services. Secondly, the study is expected to construct a user 
behavior prediction model for the IoT that can adapt to different 
environmental characteristics. This will provide a basis for user 
behavior information that can be used to improve the quality of 
system services in the IoT and further improve the efficiency of 
resource allocation in the system. Finally, the study validates 
the model through training in terms of losses, effects, and load 
forecasting. Through these verification methods, the 
performance and practical application of the proposed method 
can be effectively analyzed. 

II. LITERATURE REVIEW 

In the context of IoT research pertaining to user behavior 
analysis (UBA), to promote the application of big data in 
various fields, Hou et al. proposed an IoT unstructured big data 
analysis online client algorithm built on ML algorithm. The 
algorithm was used in other big data analysis scenarios and 
verified to be more efficient than other comparative algorithms 
[9]. Abdelmoumin et al. conducted research on the performance 
of IoT-based anomaly-based intelligent intrusion detection 
system (IDS) ML model. Compared with deep learning-based 
IDS, anomaly-based ML-based IDS exhibited lower 
performance and prediction accuracy (PA) in detecting 
intrusions in IoT [10]. Xu et al. proposed a data-driven intrusion 
and anomaly detection method using IoT automatic ML to 
address the current issues of IoT network attacks and intrusions. 
This algorithm technology not only saved the computational 
cost of runtime test data, but also solved a multi-class 
classification problem with an accuracy of 99.7%, with 
significant advantages over existing algorithms [11]. To solve 
the optimal pricing and bundling problem of ML-based IoT 
services, Alsheikh et al. defined data value and service quality 
from the perspective of ML and proposed an IoT market model. 
Compared to independent sales, bundling IoT services could 
maximize the profits of service providers [12]. Woźniak et al. 
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analyzed the network traffic of various IoT solutions based on 
deep learning models to address network security issues in 
network physical systems. The results confirmed that even 
when the number of evaluated network features decreased, the 
model was very effective in identifying potential threats, with 
an accuracy rate of over 99% [13]. Zhao et al. proposed an IoT 
intrusion detection method based on lightweight deep neural 
networks. On two real NID datasets, this method had good 
classification performance, lower model complexity, and 
smaller model size, making it suitable for IoT traffic 
classification in both normal and attack scenarios [14]. 

In studies employing LSTM networks for behavioral 
prediction, the LSTM network will also be utilized to conduct 
such studies based on the most abundant user purchase and 
social behavior data available on the Internet. For example, 
Sakar et al. used a multi-layer perceptron for feature 
classification and trained a LSTM-RNN to predict the 
probability of the user leaving the current site. The purpose was 
to take corresponding measures to improve the purchase 
conversion rate of the website [15]. LSTM networks are also 
used in some prediction studies of action and behavioral 
trajectories. To estimate the movement intention of people in 
intelligent manufacturing service of human-robot cooperation, 
Liu et al. used LSTM network to extract the time pattern of 
human movement and automatically output the prediction 
results before the movement. This approach was taken to ensure 
the efficiency and safety of the system [16]. Huang et al. 
proposed three properties of asymmetric driving behavior and 
constructed a vehicle following model based on a LSTM-RNN 
[17]. Yimin et al proposed a human-centered trajectory tracking 
control strategy, using a LSTM network to design a model 
predictive control method considering insertion vehicle driver 
behavior to track the reference trajectory [18]. 

In conclusion, many scholars have achieved notable 
advancements in the enhancement of IoT-UBA performance, 
economic value, and network security. However, existing IoT-
UBA research focuses on predicting whether a certain 
behavioral action will occur, without considering the usage 
characteristics of items in IoT and the relationships between 
users and items. In addition, existing research only considers 
the sequence relationship between user behavior occurrence, 
that is, using pre-order behavior to analyze the possible 
behaviors that may occur in the post-order. This merely 
indicates the potential for future behavior without specifying 
the timing of subsequent actions. Consequently, it is unable to 
enhance the precision, speed, and accessibility of IoT services 
or provide more detailed temporal data. Based on this, this 
study innovatively proposes the use of BOA for model 
hyperparameter selection, improves RNN, and constructs an 
IoT-UBA model that can adapt to different environmental 
characteristics. The model can provide more time-series data 
for more accurate, fast, and convenient IoT services. 
Furthermore, it can enhance the efficiency of resource 
allocation within the system. 

III. METHODS AND MATERIALS 

This study first conducts relevant data mining and 
preprocessing based on real IoT user behavior data. 
Subsequently, the user behavior dataset is employed to train an 
IoT-UBA model founded upon LSTM-RNN, and BOA is 
utilized to automatically select model hyper-parameter 
combinations. 

A. Research Data Mining and Preprocessing 

The dataset used contains sensor activation data from 
00:00:00 to 23:59:59 every second within 30 days in an IoT 
environment for TWO family members. 86,400s of data are 
generated every day, with a total of 2,592,000 pieces of data 
included in the 30 day period. The activation of each sensor 
represents the use of a certain item, so the activation data of 
sensors can to some extent represent the behavior of residents 
in the IoT environment. Table I shows the location, type, and 
ID of the sensors. 

In Table I, the dataset folder "ARAS" contains two folders: 
"HouseA" and "HouseB", representing two different 
households. Each household folder contains 30 text files in the 
format "DAY_x" and one "Readme" text file to explain the 
basic information of data, sensor information, and activity 
instructions. Before mining and further processing data, the first 
is to compress and merge the data. Considering that the IoT-
UBA model constructed using RNN is used, this study uses a 
total of 30 days of monthly data for merging and compression. 
After conducting a series of pre-experiments, the dataset 
compressed in units of 20s performs the best in three candidate 
scenarios: 10s, 20s, and 30s. Therefore, this study will 
compress the data in units of 20 seconds, meaning that every 20 
rows of data will be merged into one row. The merged data in 
this row will take the maximum activation data of all sensors 
within 20 seconds, that is, all activated sensors within 20 
seconds will be marked as "1". Subsequently, this study formats 
the data based on the time step determined during the data 
mining auto-correlation analysis process. The time window 
processed sequence dataset is shown in Fig. 1. 

Dataset  1 2, ,..., nx x x  is processed into the format shown 

in Fig. 1 using a time window of length t . The n sequence data 
are processed into n-t+1 sequence data with a time step of 1. 
Among them, in the data used, size is to be determined as the 
hyper-parameter of the model, and the input data dimension is 
20 dimensions. The time step is determined by auto-correlation 
analysis to be 60, which means that the behavior of IoT users in 
the first 60 time units will have an impact on the current IoT 
user behavior. The original data consist of 129,600 20 
dimensional sensor activation data, with a data format of 
(129,600*20). After processing through a time window of 60 in 
length, it has been transformed into a 3D dataset in the shape of 
(129,541*60*20). Among them, 129,541 is calculated by 
(129,600-60+1). 
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TABLE I. ID, TYPE, AND LOCATION OF SENSORS 

Sensor ID Sensor Type Place 

Ph1 Photocell Wardrobe 

Ph2 Photocell Convertible Couch (Used as bed for Resident 2) 

lr1 IR TV receive 

Fol Force Sensor Couch 

Fo2 Force Sensor Couch 

Di3 Distance Chan 

Di4 Distance Chair 

Ph3 Photocell Fridge 

Ph4 Photocell Kitchen Drawer 

Ph5 Photocell Wardrobe 

Ph6 Photocell Bathroom Cabinet 

Co1 Contact Sensor House Door 

Co2 Contact Sensor Bathroom Door 

Co3 Contact Sensor Shower Cabinet Door 

So1 Sonar Distance Hall 

So2 Sonar Distance Kitchen 

Di1 Distance Tap 

Di2 Distance Water Closet 

Te1 Temperature Kitchen 

Fa3 Force Sensor Bed 
 

x1x2x3x4x5x6……xtxt+1xt+2xt+3xt+4……xn

x1x2x3x4x5x6……xtxt+1xt+2xt+3xt+4……xn

x1x2x3x4x5x6……xtxt+1xt+2xt+3xt+4……xn

Time window 1

Time window 2

Time window 3

 

Fig. 1. Time window processed sequential dataset. 

The data used in this study is relatively large (greater than 
10,000 but less than 100,000), so the data are segmented into a 
60% training set, a 20% validation set, and a 20% testing set. 
After format transformation, 129,541 pieces of data will be 
divided into the first 77,727, middle 25,907, and last 25,907 
pieces according to the time series for model construction. 
Among them, 77,727 pieces of data are used for the preliminary 
construction and optimization of the model, and 25,907 pieces 
of data are used to verify the model's generalization ability 
during the optimization process. After the model construction 

is completed, the generalization ability of the final model is 
tested using the last 25907 pieces of data. 

B. Building an IoT-UBA Model Based on Improved RNN 

In solving problems related to time series data, complete 
and continuous strings, images, etc., there is a certain degree of 
correlation between the front and back data of the dataset 
involved. That is to say, in model training, the data cannot only 
enter the neural network unilaterally and independently for 
parameter training . To build a better IoT-UBA model, it is 
necessary to fully consider the information carried by the pre-
order data in the process of drawing conclusions. Among them, 
RNN is used to solve sequence related problems. In RNN, the 
parameter W used for information transmission in hidden states 
is the same. In the backpropagation gradient descent method 
used to solve parameters, the chain rule of differentiation will 
result in the solved gradient containing the multiplication of 
weights. When the weight value is greater than or less than 1, 
multiplication will cause the gradient to expand infinitely or 
approach zero infinitely. The former is called gradient 
explosion, while the latter is called gradient disappearance. The 
gradient explosion problem can be solved using gradient 
truncation, which limits the maximum value of gradients [19-
21]. Similarly, if the gradient vanishing problem is to be solved 
by restricting the minimum value of the gradient, it will result 
in the obtained weights not reflecting the actual impact of the 
node well. This study proposes to use LSTM network to solve 
this problem, and its network structure is shown in Fig. 2. 
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Fig. 2. Internal structure of LSTM unit. 

The LSTM unit has three parts: input gate, output gate, and 
forget gate. The activation function corresponding to the three 
control gates is the sigmoid function. The output of sigmoid is 
between 0 and 1. The activation function can be understood as 
a control valve in the layman's sense, where "0" represents the 
control valve being closed and the information being 
completely filtered. "1" represents the control valve closing, 
and the information is completely retained. By controlling the 
opening and closing of the valve, important information can be 

filtered. If the tx , the previous unit state 1tS  , and the long-

term state (LTS) 1tC   that was memorized in the previous 

time are input, the unit is entered first and the forget gate is 

entered next. At this point, a vector tf  composed of numbers 

is obtained, as shown in Eq. (1). 

 1t f t f t ff W S U x b               (1) 

In Eq. (1),  0,1tf  . fW , fU , and fb  represent the 

weights of the forget gate. The multiplication of tf  and the 

LTS 1tC   from the previous moment determines how much 

information in 1tC   enters tC , as shown in Eq. (2). 

1t t tK f C                  (2) 

In Eq. (2), tK  represents the need to retain the information 

of the LTS tC  at this moment, and this result will be used as 

one of the inputs to the input gate. In the input gate, tx  and 

1tS   are processed by a tanh function to obtain the 

information 
tC


 of the LTS to be added, as shown in Eq. (3). 

 tanh 1t C t C t CC W S U x b


           (3) 

In Eq. (3), CW , CU , and Cb  represent the weights of 

long-term unit states, similar to forgetting gates. tx  and 1tS   

will also pass through a signoid function to obtain a vector ti  

composed of numbers. This vector is multiplied by 
tC


 to 

determine how much information needs to be added to the LTS 

tC  at this moment, as shown in Eq. (4). 

 1t i t i t ii W S U x b                (4) 

In Eq. (1),  0,1ti  . iW , iU , and ib  are the weights of 

the input gate. By combining the calculation results of the forget 

and input gates, the LTS tC  is obtained, as shown in Eq. (5). 

tt t tC K i C


                  (5) 

In Eq. (5), tC  is only transmitted within the network and 

will be passed to the next unit as one of the inputs to the next 
unit. Similarly, passing through the signoid function will 

generate a numerical vector to , as shown in Eq. (6). 

 1tt o o t oo W S U x b                (6) 

The LTS tC  at this moment is processed by the tanh 

function and multiplied by to  to determine how much 

information in the LTS tC  is output as the unit state tS  at 

that moment, as shown in Eq. (7). 

 tanht t tS o C                (7) 

Among them, the unit state tS  on the last time step is the 

final output of the model. After each batch of data is transmitted 
into the network, parameters are updated through gradient 
descent to reduce the loss between actual and predicted values. 
This study uses binary cross entropy as the loss function M , 

as shown in Eq. (8). 

 
20

1

1
log 1 log 1

20
i ii i

I

M y y y y
 



    
        

    
    (8) 

In Eq. (8), y  represents the numerical vector of the true 

value. y


 represents the numerical vector of the predicted 

value. In relatively fixed and bounded usage scenarios like IoT, 
user behavior interacts with relatively fixed objects within a 
certain range, with limited influencing factors and following 
certain patterns. To this end, an IoT-UBA model is constructed 
based on LSTM, as shown in Fig. 3. 
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Fig. 3. Schematic diagram of the research model. 

This model is a neural network model consisting of two 
LSTM layers, one Dense layer, and one output layer. On the 

data of each time step t (t∈[1,T])) with a total of T time steps, 

the hidden state 
 1

t
h  (t∈[1, T]) of the first layer LSTM layer 

and the hidden state 
 2

t
h  (t∈[1,T])) of the second layer LSTM 

layer will be passed to the next LSTM layer at the next time 

step. Moreover, the hidden state includes LTS 
t

iC  (i∈[1,2],t

∈[1,T]) and short-term state 
t

iS  (i∈[1,2],t∈[1,T]), thereby 

achieving the effect of memorizing the hidden information in 
the preceding data. In addition, this study relies on experience 
to select hyperparameters that may have a better analytical 
effect on the model (Table II). 

TABLE II. SELECTION OF MODEL HYPERPARAMETERS 

Hyper-parameter Value Type 

Lstm_layer 2 int 

Activation_lstm Tanh string 

Lstm_output_dim 110 int 

Dense_layer 2 int 

Activation_dense Softsign string 

Activation last Sigmoid string 

Drop_out 0.2 float 

Batch_size 64 int 

Nb_epoch 4 int 

Optimizer Rmsprop string 

Loss Binary cross entropy string 
 

C. Optimization of Hyperparameters Based on BOA 

After constructing an IoT-UBA model based on LSTM, it is 
found that having too many hyperparameters can lead to an 
increase in model complexity and easily lead to overfitting. To 
solve overfitting problems and improve model generalization 
ability, ML engineers generally adjust hyper-parameter 
combinations based on experience to achieve a better level of 
generalization [22]. However, manual parameter tuning is 
difficult to fully consider all relevant influencing factors and 
historical performance. Even though time and manpower are 
spent manually adjusting parameters and achieved good results, 
the constructed prediction model only performs well in the IoT-
UBA corresponding to specific datasets. The predictive ability 
of this hyperparameter combination among more IoT users is 
still unknown [23]. This study proposes using BOA to construct 
an adaptive hyperparameter selection algorithm, selecting 

personalized hyperparameter combinations that perform best 
for different users. The purpose of hyperparameter optimization 
(HPO) in ML is to find the hyper-parameters of a given ML, 
which returns the best performance measured on the validation 
set. Unlike model parameters, hyperparameters need to be set 
before training. The HPO equation is shown in Eq. (9). 

 argmin x f               (9) 

In Eq. (9),   represents the hyperparameter and  f   

represents the minimum objective score evaluated on the 
validation set, which is also the loss that needs to be optimized 
for the model. BOA combines the advantages of manual 
parameter tuning with manual experience and grid search, as 
well as automatic selection through random search, to track past 
evaluation results. It forms a probability model by using these 
results, seeking a combination of hyperparameters in the 
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probability model that can minimize losses. Before using 
automatic optimization algorithms to search for the optimal 
combination of hyperparameters, it is necessary to define the 
domain space for hyperparameter search. This study constructs 
a large-scale hyperparameter domain space based on the 
research model. HPO requires defining the objective of BOA 
optimization, which is the loss of the objective function. The 
ultimate goal of selecting hyperparameter combinations in this 
study is to improve the model's generalization ability. The 
greater the generalization ability of the model, the better, but 
the loss of the BOA function can only be the minimum value, 

so the loss value Q  of BIA is shown in Eq. (9). 

1Q Pa  (9) 

In Eq. (9), Pa  represents the PA of the test set. To learn 

the "black box" between hyperparameter combinations and 
optimization objectives, this study uses tree-structured Parzen 
estimator (TPE) to construct optimization algorithms. The TPE 

algorithm can construct a probability model for optimization 
objectives by combining existing hyperparameters and their 
corresponding loss values. Through this probability model, it is 
possible to find the hyperparameter combination that minimizes 
the optimization objective and maximizes the probability. Then, 
based on the selected hyperparameter combination, the trained 
model updates the input-output pairs and continues to construct 
a new probability model. Cycling the above process until the 
loss value reaches its lowest point, and thus completing the 
construction of the IoT-UBA model based on improved RNN. 
The construction process of the model is shown in Fig. 4. 

The research model construction in Fig. 4 first involves data 
mining and preprocessing based on real IoT user behavior data. 
Then, a prediction model needs to be constructed based on 
LSTM network, and hyperparameters need to be selected based 
on experience. Finally, BOA is used to automatically select 
model hyperparameter combinations. 

Test set
Verification 
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Training set

Model 

training

Model 

building

Hyperparameter 

selection

Model 
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Prediction effect

Validation of 

generalization ability

Generalization ability

Model 

construction 

completed

Yes

No

No

Yes

Preprocessed 

data

 

Fig. 4. Model construction process. 

IV. RESULTS 

A. Training and Validation of Research Models 

To test the model effectiveness, this experiment uses the 
processed training and validation sets for model training and 
validation and uses the test set to test the model's generalization 
ability. Table III shows the relevant experimental environments. 

This experiment is conducted using XiaoXinPro 14ITL 
2021, with a processor environment of 11th GenIntel(R)Core 
(TM)i5-1135G7@2.40GHz-2.42GHz, a memory capacity of 
16.0GB, and the operating system of Windows10. The software 
used in data mining is SPSS Modeler18.0. The programming 
environment involved is Python 3.8.3 and the programming 
IDE used is Anaconda3. Python is used for data preprocessing, 

model construction, and optimization algorithms. The divided 
training set and validation set are put into the constructed model. 
Based on research data and model characteristics, binary 
classification accuracy is used as a measure of model PA and 
binary classification cross entropy is adopted as a loss function. 
The training results of the research model are displayed in Fig. 
5. 

In Fig. 5, as the training iteration progresses, the loss of the 
research model on the training and validation sets decreases 
continuously. At the completion of the last epoch of training, 
the loss on the training set decreases from the initial 0.1800 to 
0.1084, and on the validation set from the initial 0.1362 to 
0.0915. The learning ability of the model continues to improve. 
The PA of the model on both the training and validation sets 
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surpasses 90%, and as the iteration process continues to rise, 
the final accuracy reaches 96.8% and 97.53%. The dataset, 
hyperparameter domain space, and objective function are input 
into BOA, and the hyperparameter combinations selected for 

each iteration of BOA, their corresponding training time, and 
loss values are recorded for tracking optimization history. The 
optimal combination of hyperparameters for localization 
prediction is shown in Fig. 6. 

TABLE III. EXPERIMENTAL OPERATING ENVIRONMENT 

Parameter Experimental Environment 

Tool XiaoXinPro 14ITL 2021 

Processor 11th GenIntel(R)Core (TM)i5-1135G7@2.40GHz-2.42GHz 

Memory capacity 16.0GB 

Operating system Windows10 

Data mining software SPSS Modeler18.0 

Programming environment Python3.8.3 

Programming IDE Anaconda3 

model building Python3.8.3 

1 2 3 4 1 2 3 4

0.98

0.97

0.96

0.95

0.940.08

0.10

0.12

0.14

0.16

0.18
Train-loss

Val-loss

Train-accuracy

Val-accuracy

(a) Model loss (b) Model accuracy
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A
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Fig. 5. Model training results. 
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Fig. 6. Iteration loss and training time. 

In Fig. 6, the loss shows a significant downward trend with 
the number of iterations, indicating that when selecting 
hyperparameter combinations, BOA will choose 
hyperparameters that are more likely to perform better based on 
the probability model of the loss with respect to 
hyperparameters. In the set maximum of 50 iterations, the loss 
of the objective function reaches its minimum value in the 45th 
iteration, and the optimal model loss trains under the 
corresponding hyperparameter combination conditions in this 

iteration is 0.19. The model’s PA on the test set reaches 80.78%, 
showing that BOA enhances its generalization ability, and 
searches for a model hyperparameter combination with better 
prediction ability based on the user behavior characteristics in 
the IoT environment. To further validate the improved RNN in 
IoT-UBA, a similar neural network model is constructed using 
traditional RNN, and BOA is also used to select the optimal 
hyper-parameter combination. The experimental results are 
shown in Fig. 7. 
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Fig. 7. Comparison of research model and RNN model effects. 

Fig. 7 (a) shows the comparison of the loss value changes 
between the traditional RNN model iteration process and the 
research model. Both models show a spiral downward trend as 
the iterations increase. Among them, the minimum loss value 
of the traditional RNN is 0.34, which means its best PA is only 
66.01%, lower than the 80.78% of the research model. Fig. 7 (b) 
shows the comparison of training time between LSTM and 
RNN models. The research model reaches the minimum loss 
value in the 31st iteration, while RNN only selects the optimal 
hyper-parameter combination in the 45th iteration. The average 
training time for the research model is 338 seconds, and this 
value for the RNN model reaches 614 seconds. In terms of 
iteration times and training time, the research model is 
significantly better than the RNN model. 

B. Application of Research Models in Short-term Power Load 

Forecasting 

To test the practicality of the IoT-UBA built on improved 

RNN, this study selects two benchmark models, auto-
regression model (AR) and back propagation neural network 
(BPNN), to validate the proposed improved RNN model. This 
study selects three different datasets, namely three load datasets 
provided by official websites in three foreign regions. The first 
one is the electricity load data of region A from February 1, 
2023 to August 31, 2023, with a sampling rate of 1 hour and a 
sample size of 5112. The second one is the electricity load data 
of region B for the whole year of 2023, with a sampling rate of 
1 hour and a sample size of 8760. The third one is the electricity 
load data of region C for the whole year of 2023, with a 
sampling rate of 1 hour and a sample size of 8760. The power 
load data of these three regions are processed through data 
preprocessing and the processed data are divided into datasets. 
The daily load forecasting results of each model on three 
different datasets are displayed in Fig. 8. 
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Fig. 8. Daily load forecasting results of each model on three different datasets. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

209 | P a g e  

www.ijacsa.thesai.org 

From Fig. 8 (a), in region A, the prediction effect of each 
model is overall and the load prediction curve in the figure 
almost coincides with the actual situation. However, Fig. 8 (a) 
shows that the prediction effect of the research model is better 
than that of other comparison models. In particular, in the two 
periods of 13:00 and 17:00, the error rate of the research model 
is only 0.13% and 0.09%, which is small and has more accurate 
PA than the comparison model. In the data set of Fig. 8 (b) in 
region B, in general, at the very beginning, each model has a 
good prediction effect. However, with the increase of mean 
absolute percentage error (MAPE), the deviation between the 
prediction of various models and the reality are increasing, 
which leads to the decrease of the accuracy of the prediction. 
Especially in the period of 20:00, each model prediction 
deviation reaches the largest. The AR model, BPNN model, and 
acting model of daily load prediction error rates reach 12.13%, 
5.72%, and 1.39%, respectively. Among them, the research 
model error rate is lower than other contrast model. The 

prediction results and the actual load change trend are the most 
consistent and the performance effect is better. In region C of 
Fig. 8 (c), in general, the prediction effect of each model is not 
good. With the increase of MAPE, the deviation between the 
prediction of various models and the reality are increasing, 
leading to a decrease in the accuracy of the prediction. Among 
them, the period of 2:00 appears the largest prediction error. In 
the 17:00 period, the AR model reaches the largest error in the 
prediction. In both 2:00 and 17:00, the prediction effect of the 
research model is relatively excellent. This indicates that 
although traditional power system modeling methods can 
describe the overall trend of the power system, as the 
complexity of the system increases, the operational efficiency 
of the power system also decreases, resulting in huge economic 
losses to the power system. The root mean square error (RMSE) 
and MAPE of load forecasting for each model within seven 
days are exhibited in Fig. 9. 
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Fig. 9. Comparison of weekly load prediction errors among different models. 

In Fig. 9, the weekly load PA of the IoT-UBA is much better 
than that of BPNN and AR, and BPNN is higher than AR. The 
comparison between its predicted load value and the actual load 
value shows that through more accurate prediction of user 
behavior, the prediction of load value has completed a good 
level. 

V. DISCUSSION 

As the IoT technology becomes increasingly pervasive in 
all aspects of people's daily lives, the collection of user data 
within IoT systems will become more comprehensive. The data 
accurately reflect the behavioral patterns and living habits of 
users. Providing better services and timely responses to users, 
effectively utilizing this information to predict user behavior 
and needs, and systematically improving management and 
service quality are key to enhancing the competitiveness and 
service level of various industries in the future. The proposed 
method sets a maximum of 50 iterations. At 45 iterations, the 
objective function has the smallest loss, and the optimal model 
has a loss of only 0.19 (test set), with an accuracy of 80.78%. 
The results of this study are consistent with the predictions of 
the lightweight dense random neural network proposed by Latif 
et al. [24] for IoT intrusion detection, and the model performs 
well. This is because when selecting appropriate inputs for the 
research model, BOA selects a more promising hyperparameter 
based on loss estimation. This can search for super parameter 
combinations with higher predictive performance based on user 
behavior characteristics in IoT scenarios, thereby enhancing the 

performance of the model. In this study, the model lost the 
smallest loss in 31 cycles, the best PA was 80.78%, and the 
learning time was 338s, which showed better performance. 
However, the accuracy of the industrial IoT detection method 
based on graph neural network proposed by Wu et al. [25] can 
only reached 79.71%. This is because the hyperparameters have 
been optimized, shortening the iteration and learning time of 
the model, thereby improving its generalization ability. In 
summary, the analysis shows that using BOA to select model 
hyperparameter combinations further improves the 
generalization ability of the prediction model, enabling the 
model to construct adaptive prediction models based on the 
characteristics of different users in different IoT environments. 

VI. CONCLUSION 

In response to the current problems in the application of IoT 
technology, this study utilized BOA to construct an IoT-UBA 
model based on an improved RNN that can adapt to different 
environmental characteristics. The results demonstrated that the 
PA of the research model on both the training and validation 
sets was greater than 90%, and as the iteration process 
continued to increase, the final accuracy reached 96.8% and 
97.53%. In 50 maximum iterations, the model achieved a PA of 
80.78% on the test set. In the comparison of the performance 
between the research model and RNN, the minimum loss value 
of traditional RNN was 0.34, which meat its best PA was only 
66.01%, lower than the 80.78% of the research model. The 
research model reached the minimum loss value in the 31st 
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iteration, while RNN only selected the optimal hyper-parameter 
combination in the 45th iteration. The average training time for 
the research model was 338 seconds, and this value for the RNN 
model reached 614 seconds. In terms of iteration times and 
training time, the research model was significantly better than 
the RNN model. The application results of the research model 
in short-term power load forecasting also indicated that the PA 
of the IoT-UBA model based on improved RNN has reached a 
good level, far superior to other comparative models. However, 
this study is based on a sufficient amount of historical user 
behavior data. In practical use, the IoT-UBA model will 
inevitably face the situation of insufficient historical user 
behavior data at the initial startup of the system. In the future, 
in-depth research will be conducted in this area. 
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