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Abstract—Scalp disorders, affecting millions worldwide, 

significantly impact both physical and mental health. Deep 

learning has emerged as a promising tool for automated diagnosis, 

but ensuring model transparency and reliability is crucial. This 

review explores the integration of explainable AI (XAI) techniques 

to enhance the interpretability of deep learning models in scalp 

disorder diagnosis. We analyzed recent studies employing deep 

learning models to classify scalp disorders from image data and 

used XAI methods to understand the models' decision-making 

processes and identify potential biases. While deep learning has 

shown promising results, challenges such as data quality and 

model interpretability persist. Future research should focus on 

expanding the capabilities of deep learning models for real-time 

detection and severity prediction, while addressing limitations in 

data diversity and ensuring the generalizability of models across 

different populations. The integration of XAI techniques is 

essential for fostering trust in AI-powered scalp disease diagnosis 

and facilitating their widespread adoption in clinical practice. 
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I. INTRODUCTION 

In recent times, the integration of AI in healthcare has 
transitioned from theoretical research to practical 
implementations in clinical settings. This includes areas such as 
telemedicine, the utilization of robots in surgical settings, and 
the management of electronic health records. Medical imaging 
stands out as one of the most recognized applications, 
constituting 90% of all healthcare data [1]. AI demonstrates 
promising capabilities in diagnosing and classifying various 
diseases, particularly in dermatological conditions, where it 
assists in the identification and categorization of skin issues, 
including conditions related to the scalp and hair. 

Despite these advances, a significant gap in research 
remains regarding the deployment of deep learning (DL) 
models in medical imaging, particularly in clinical settings. 
While current DL models, inspired by neural networks in the 
human brain, include notable architectures such as Faster R-
CNN [2], VGG-net [3], and those based on ImageNet [4] offer 
impressive accuracy in tasks such as image recognition and 
classification. their lack of interpretability presents a major 
challenge, especially in complex areas like dermatology and 
scalp and hair disorder diagnostics [5]. This issue has spurred 

growing interest in the role of eXplainable AI (XAI), which 
aims to make the decision processes of DL models transparent. 
XAI is not only beneficial for machine learning (ML) 
researchers but is also vital for clinicians and patients who rely 
on these models to make informed healthcare decisions. By 
making AI more interpretable, XAI fosters trust in clinical 
applications, addressing a crucial need for greater transparency 
in AI-driven diagnostics. 

This review aims to comprehensively examine the progress 
and challenges in utilizing XAI and DL methodologies for 
analyzing medical imaging data, specifically for scalp and hair 
disorder diagnostics. Through an extensive review of existing 
studies, this paper will highlight the contributions and 
limitations of various DL models applied to dermatological 
imaging and evaluate the effectiveness of XAI techniques in 
enhancing their interpretability and clinical relevance. This 
examination includes an analysis of how XAI techniques can 
improve transparency in AI-based diagnostics, particularly for 
non-expert stakeholders, such as clinicians and patients, who 
require comprehensible insights into AI-driven assessments. 

The significance of this review lies in addressing the critical 
need for interpretable AI systems in dermatology, with a focus 
on the largely unexplored domain of scalp and hair disorder 
imaging. By synthesizing existing findings, this paper aims to 
provide a reference for developing clinically applicable AI 
frameworks that enhance both accuracy and interpretability. 
Ultimately, this review not only consolidates current 
knowledge but also serves as a foundation for future research 
aimed at creating trustworthy and effective AI-driven 
diagnostic tools across dermatological and broader medical 
applications.  

The structure of this paper is organized as follows: Section 
II details the materials and methods applied in various studies, 
specifically focusing on the deep learning and XAI techniques 
employed in scalp and hair disorder diagnostics. Section III 
presents the results gathered from these studies, offering 
insights into the effectiveness of each approach. Section IV 
provides a discussion that highlights both the strengths and 
limitations of the reviewed studies, analyzing their 
contributions and identifying potential gaps. Finally, Section V 
concludes the paper, summarizing key findings and suggesting 
directions for future research. 
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II. MATERIALS AND METHOD 

A. Artificial Intelligence in Scalp Disorder Diagnosis 

Scalp disorders are recognized as dermatological or medical 
issues associated with the well-being of the scalp and hair, 
attributed to the abundance of hair follicles and elevated sebum 
production. These disorders may include dandruff, seborrheic, 
folliculitis, tinea capitis, psoriasis, are widespread conditions 
affecting adults globally. Scalp psoriasis, impacting 
approximately 2% of the Western population [6], and dandruff, 
with a global prevalence of around 50% [7], contribute 
significantly to these concerns. These conditions not only affect 
physical health but also exert a substantial influence on mental 
well-being, contributing to stress, anxiety, or depression [8], 
[9]. This impact is particularly noticeable in societies where 
significant of appearance holds considerable weight, as 
observed in places like South Korea, where lookism can have 
implications for health [10]. 

Therefore, the diagnosis and classification are crucial, as 
scalp disorders frequently exhibit similar clinical 
manifestations [11]. The way to diagnosis scalp related-
problems could be use various data type, including: medical 
imaging, clinical notes, and scalp biopsy laboratory test result; 
however, scalps biopsies can cause risk such as bleeding, pain, 
and infection meanwhile clinical notes may be subjective and 
vary in quality, potentially leading to biases or inaccuracies in 
the diagnostic process among these approaches, scalp imaging 
stands out as it offers a non-invasive and direct visualization of 
the scalp. Advanced imaging technologies like dermoscopy 
(trichoscopy) and optical coherence tomography (OCT), 
enhance the diagnostic capabilities by providing magnified 
insights into structural and morphological changes at a 
microscopic level [12]. For dermatologists, this means 
enhanced diagnostic capabilities without the associated risks of 
scalp biopsies. On the patient's side, the non-invasiveness and 
direct visual feedback contribute to a more comfortable and 
accessible diagnostic experience. However, a concerning trend 
is observed, where people frequently seek diagnoses from non-
professionals in hair salons rather than consulting 
dermatologists. This trend has contributed to a worsening state 
in the overall condition of scalp problems. 

In order to overcome these challenges, the advances of AI 
applications in dermatology have introduced a transformative 
model shift, revolutionizing how we approach the diagnosis and 
treatment of scalp hair-related problems. AI, including ML and 
DL, has become widespread components in any medical 
analysis workflows and facilitating the path for the real-world 
diagnostic integration of solutions based on AI [13]. In the 
context of scalp health, the application of AI holds the promise 
of not only enhancing precision in identifying and classifying 
various scalp conditions but also revolutionizing the therapeutic 
strategies employed, such as providing an opportunity for 
patients to engage in self-diagnosis [14]. This intersection of AI 
and dermatology prompts a renewed research interest, 
particularly in the early detection and diagnosis of scalp hair 
diseases. 

However, complex ML algorithms pose challenges in 
comprehending their decision-making processes, specifically in 
complicated tasks such as scalp hair imaging classification. In 

order to effectively tackle this issue, the implementation of XAI 
presents a distinctive opportunity, benefiting not only AI 
experts but also non-experts like medical doctors and patients 
[15]. 

B. Advanced Machine Learning in Scalp Imaging 

Scalp imaging can be categorized into various modalities, 
each offering unique insights into different aspects of scalp 
health. Dermoscopy, or surface microscopy [16], utilizes a 
handheld device with magnification and lighting to visualize 
pigmented cutaneous lesions and assess hair follicles, patterns 
of hair loss, and various scalp conditions. OCT captures high-
resolution, cross-sectional images of biological tissues, 
revealing structural changes in the skin and hair follicles. In 
Vivo Reflectance Confocal Microscopy (RCM) provides live 
visualization [17] of cellular structures in the scalp at a high 
resolution, generated high-quality images of the hair shaft 
junctions at 1µm spacing, facilitating a comprehensive analysis 
of the hair structure. In the field of ML and DL, several studies 
have predominantly utilized portable magnification imaging 
microscopes [2], [18], [19], [20] or dermoscopy data [21], [22], 
[23], in comparison to OCT studies [24] and RCM, due to 
higher costs and challenges in obtaining data. Additionally, 
limited training programs for RCM [25] contribute to subjective 
variability in diagnoses. 

C. Limitations of Machine Learning in Scalp Disorder 

Imaging 

Since 2014, studies employing ML for scalp imaging 
classification have evolved, transitioning from unsupervised 
learning approaches [26], [27] to more complex deep-learning 
based method [3], [18], [28]. These studies have utilized 
datasets ranging from small to mid-size, achieving accuracies 
typically in the mid-80s to low 90s. However, the domain of 
scalp disorder imaging still faces persistent challenges. Notably 
in contrast to research studies focused on other skin areas. In 
these areas, datasets commonly surpass 100,000 images [29], 
[30]. Moreover, the datasets within scalp disorder imaging 
exhibit imbalances, further compounded by a deficiency in 
interpretability and explainability.  

As a result, these challenges make it difficult to smoothly 
apply these technologies in a clinical setting. To address these 
issues, there is a pressing need to explore new research avenues, 
particularly in comparison to the advancements made in skin 
disease classification within the dermatology realm. 

D. Advancements in Integrating Deep Learning Models and 

Explainable AI for Scalp Disorder Imaging 

Numerous researchers have dedicated their efforts to 
advance the deployment of ML models for the classification of 
scalp hair disorders. The evolution of ML into DL models, 
including the integration of XAI has been revolutionary. This 
commitment involves implementing XAI to make it possible to 
identify and address any potential biases in the model's 
decision-making process, aiming to increase trust for clinical 
applications. The following showcases how these 
advancements can be presented: 

1) Convolutional neural network variations model: With 

the increasing use of DL models in imaging classification tasks, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

297 | P a g e  

www.ijacsa.thesai.org 

the foundational technique of Convolutional Neural Networks 

(CNNs) plays a pivotal role in developing recent models. CNNs 

consist of various layers, such as convolutional, activation, and 

pooling layers. The inclusion of one or more Fully-Connected 

layers (FC) in the network is essential for generating final 

output predictions. Additionally, dropout layers have been 

incorporated into the architecture to address the overfitting 

issue and enhance the model's robustness. The strategic use of 

dropout layers aids in preventing the network from relying too 

heavily on specific connections during training, promoting a 

more generalized and resilient model. 

To demonstrate how different models respond to scalp 
imaging disorder classification tasks, well-known models have 
been applied. These models can be categorized into two main 
architectures: one-stage architecture and two-stage 
architecture. In the two-stage approach, exemplified by Faster 
R-CNN (Region-based Convolutional Neural Network) [31], 
the Region Proposal Network (RPN) represents a significant 
advancement. By sharing convolutional layers with the object 
detection network, the RPN efficiently generates region 
proposals directly from the convolutional feature maps, 
avoiding the need for external proposal generation methods. 
The RPN evaluates a set of anchor boxes at different scales and 
aspect ratios, predicting their likelihood of containing an object 
and refining their coordinates. 

On the other hand, one-stage CNNs follow a more 
streamlined approach, performing simultaneous object 
detection and localization without a separate region proposal 
stage. These models directly predict object localization and 
classification within an image, making them efficient for real-
time object detection. However, it's essential to note that they 
may not always achieve the same level of accuracy as two-stage 
models in certain situations. One example of one-stage CNNs 
is the Single Shot MultiBox Detector (SSD) [32]. 

2) Vision transformers (ViTs): Traditional CNN 

architectures rely on convolutional layers to extract features 

from images. These layers progressively learn to identify low-

level features like edges and textures, ultimately building 

towards higher-level features for classification. However, a 

recent advancement in image classification is the emergence of 

Vision Transformers (ViTs) [33]. Unlike CNNs, ViTs forego 

convolutional layers entirely. Instead, they split the image into 

patches, process them using self-attention mechanisms, and 

progressively learn relationships between different image 

regions. This approach allows ViTs to potentially capture long-

range dependencies within images that might be missed by 

CNNs with localized filters. Fig. 1 represents the concept of 

ViT proposed in Dosovitskiy et al.’s study [33]. 

 

Fig. 1. The concept of vision transformers. 

3) Gradient-weighted class activation mapping (Grad-

CAM): Ramprasaath and his team [34] introduced a technique 

aimed at providing visual representations of the decision-

making process of deep neural networks, particularly 

convolutional network. At a high level, the approach involves 

processing an image as input data and creating a model that is 

truncated at a specific layer to generate visual representations 

of the areas in input images that have the most impact on the 

network's predictions. 

Operationally, the method conducts a forward pass of the 
input image through the network, and the subsequent prediction 
triggers a backward pass to the sensitivity of the predicted class 
score to changes in the feature maps. Global Average Pooling 
(GAP) is then applied to globally average these gradients across 
each feature map, generating a class-discriminative localization 
map. This map is utilized as weights to compute a weighted sum 
of the feature maps, emphasizing regions crucial for the 
prediction. Following a Rectified Linear Unit (ReLU) 
activation and up-sampling to match the input image's 
dimensions, the final heatmap is produced, producing visual 
maps to show important zones influencing the network's 
decision. 

Nevertheless, Grad-CAM faces limitations in highlighting 
fine-grained features due to its inability for pixel-level gradient 
visualization. The down-sampling during convolution and the 
subsequent need for up-sampling via bilinear interpolation 
result in a loss of resolution, impacting the accuracy of 
explanation results. Additionally, inconsistencies between 
Grad-CAM and the actual model behavior diminish the 
reliability of its interpretations. These challenges underscore 
the necessity for improvements in Grad-CAM to enhance 
precision and alignment with the intricacies of the original 
model. Fig. 2 represents the concept of Grad-CAM proposed in 
Ramprasaath et al.’s study [35]. 
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Fig. 2. The overview concept of Grad-CAM by Ramprasaath et al. [34]. 

4) Locally interpretable model-agnostic explanation 

(LIME): Local Interpretable Model-agnostic Explanations 

(LIME) was introduced in 2016 by Ribero et al. [35]. In the 

pursuit of model-agnostic interpretability, LIME adopts a 

unique approach by perturbing the input and observing how the 

predictions change. The essence of LIME lies in approximating 

the black-box model locally, in the vicinity of the prediction to 

be explained, by constructing an interpretable model (e.g., a 

linear model with only a few non-zero coefficients). This is 

achieved by generating perturbations of the original instance, 

such as removing words or hiding parts of an image. 

The key intuition behind LIME is rooted in the 
understanding that it is more suitable to approximate a black-
box model locally than globally. This involves weighting the 
perturbed instances based on their similarity to the instance 
being explained. Consider the scenario of explaining 
predictions in an image. LIME transforms the image into 
interpretable components, such as contiguous super-pixels. A 
collection of manipulated instances is created by switching off 
certain interpretable components. For each perturbed instance, 
the model's prediction is obtained. A locally weighted, simple 
(linear) model is then learned on this dataset, prioritizing 
instances that possess a greater similarity to the original image. 
The produced explanation highlights the interpretable 
components that contribute most heavily to the model's 
predictions, simultaneously downplaying the prominence of 
less relevant features. The illustration of the LIME concept is 
presented in Fig. 3. 

 

Fig. 3. LIME prediction explained by Ribero et al. 

5) Occlusion sensitivity: Occlusion Sensitivity, as 

introduced by Zeiler and Fergus [36] in their paper on 

visualization techniques for conventional neural networks, is a 

method centered around systematically occluding or blocking 

individual regions of an input image to determine their 

influence on the model's prediction. The primary concept 

involves assessing how the probability score of the network 

changes when specific regions of the image are obscured. 

By occluding various portions of the input image and 
observing corresponding shifts in the model's response, this 
technique facilitates the exploration of the model's reliance on 
particular regions or features for accurate predictions. If 
blocking certain areas significantly influences the model's 
accuracy, it suggests the importance of the occluded regions in 
the model's comprehension of the input. However, occlusion 
sensitivity might be computationally intensive, especially when 
evaluating multiple occlusions and it may not capture complex 
non-linear relationships. 

6) Attention rollout: Similar to occlusion sensitivity, 

attention rollout offers a window into the decision-making 

process of ViT models. However, unlike occlusion sensitivity 

which physically blocks parts of the image, attention rollout 

delves deeper into the model's internal computations. Central to 

the functionality of ViT models are "attention" mechanisms, 

which enable the model to assign importance scores to various 

image regions. Attention allows the model to understand the 

relationships between different parts of an image, assigning 

importance scores to various regions. Attention rollout builds 

upon this by iteratively analyzing these attention scores. 

Attention rollout starts with the final layer's attention maps, 
highlighting crucial image regions for the prediction. It then 
uses these maps to "roll back" through the network, revealing 
lower-level features (like edges or textures) that ultimately 
contributed to the final scores. By analyzing these intermediate 
maps, we gain insights into how the model builds its 
understanding of the image. Attention rollout offers advantages 
over occlusion sensitivity: it's computationally efficient and can 
capture intricate relationships between image regions. 
However, it doesn't provide a definitive explanation for the 
model's reasoning process. 

III. RESULTS 

A. Studies of Scalp Disorder Diagnosis based on XAI and 

Deep Learning 

Although the integration of DL and XAI has found 
extensive application in various healthcare research domains, 
its utilization in scalp imaging remains a gap in research. There 
is a clear necessity for additional research on the 
implementation of XAI in scalp imaging to advance its 
capabilities. As outlined in Table I, recent studies demonstrate 
a comparative analysis with conventional models, emphasizing 
the potential for enhancement and innovation in the domain of 
scalp disorder imaging. Table II illustrated Heng et al. research 
[37] based on two experiments. Tables III and IV display the 
results of the research conducted by Jeong et al. and Ha et al., 
respectively. 

IV. DISCUSSION 

The Shih et al.'s seminal study [26] introduces a pioneering 
system for automated hair counting in scalp images, addressing 
challenges such as oily spots, wavy or curly textures, and 
overlapping hairs through a morphology-based approach, 
multi-scale line detection, and relaxation labeling. Their 
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approach leverages a combination of techniques: morphology-
based filtering, multi-scale line detection, and relaxation 
labeling. While evaluated on a limited dataset of 40 images, the 
system achieves remarkable results with an average precision 
of 98.0% and recall of 85.6%. Despite the limitations in data 
size and algorithmic complexity, this study represents a 
significant pioneering effort in the field of medical image 
analysis using ML. It paves the way for further advancements 
in automated hair analysis.  

With more focus on telehealth as an application of scalp hair 
diagnosis, Su et al.’s study [3] introduces a system to 
automatically identify scalp conditions. The system offers 
potential benefits like faster diagnosis and utilizes a cloud 
platform for data collection and analysis, potentially improving 
accuracy over time. However, some limitations need to be 
addressed. The system focuses on surface-level conditions like 
dandruff and doesn't delve into potentially linked medical 
issues. Additionally, details about the training data used for the 
DL model are missing. Future work should explore 
incorporating analysis of potentially linked medical problems, 
increasing transparency in the system's decision-making 
process, and integrating with telehealth platforms for wider 
accessibility.  

In a simultaneous effort, Wang et al. utilized a dataset 
comprising 1000 images, with 880 designated for training and 
220 for testing. The scalp images were captured using a 200x 
magnification camera and categorized into four types of 
diseases. The researchers also introduced a novel model named 
ImageNet-VGG-f Bag of Words (BOW), which employ 
ImageNet-VGG pre-trained model[42] to evaluate its 
predictive capabilities in comparison to other ML classification 
algorithms. The achieved accuracy for this model was reported 
at 89.77%. This accuracy significantly outperforms other ML-
based methodologies in the research, such as BOW with 
support vector machines (SVM) at 80.50% and pyramid 
histogram of oriented gradients (PHOG) with SVM at 53.0%. 
These findings underscore the promising potential of 
integrating hybrid DL approaches in the field of scalp hair 
imaging diagnosis over conventional ML methods. 

Chang et al. introduced ScalpEye [2], a comprehensive 
system for scalp analysis that represents a significant 
advancement in scalp imaging. ScalpEye integrates medical 
imaging with AI analysis, offering a user-friendly mobile app 
for image capture, a cloud server for model improvement, a 
centralized platform for system management, and a portable 
microscope for high-quality image acquisition. The study 
utilized nearly 2200 scalp images from the COCO dataset, 
categorized into four common scalp conditions. Three deep 
learning models were employed for analysis: Faster R-CNN 
Inception_v2, SSD Inception_v2, and a novel model called 

Faster R-CNN Inception_ResNet_v2_Atrous. This new model 
combines Faster R-CNN with Inception_ResNet_v2_Atrous, 
which utilizes Atrous convolution for a stable receptive field 
size. This stability allows for better fine-tuning and more 
accurate predictions. Consequently, the Faster R-CNN 
Inception_ResNet_v2_Atrous achieved an impressive mean 
Average Precision (mAP) of 91.75%. While ScalpEye 
prioritizes both data quality and DL models within a cloud-
based telehealth system, a key challenge remains. Annotating 
large datasets requires significant manpower and expertise. 
This raises the question of how the system will handle future 
large-scale datasets. 

In Chow et al.'s research [38], the application of the CNN 
in the last run achieved an impressive accuracy of 96.30%. To 
gain a more profound insight into the factors that influence the 
model's classification of hair health, the researchers employed 
the LIME technique. Upon the analyzing of LIME, several 
observations were made. For instance, in the case of alopecia 
areata, a patchy bald condition, the heatmap coincided with the 
bald patches, although there were some inexplicable 
identifications in the right corner. The study concluded that 
despite achieving a remarkable accuracy of 96.30%, the 
application of LIME highlighted potential biases in the model's 
decision-making process, suggesting the need for further 
investigation and refinement. Further studies are crucial to 
identify and eliminate potential biases that could affect the 
model's biases and generalizability, potentially through image 
binarization and randomization techniques. 

In the study conducted by Heng et al. [37], two experiments 
were conducted to assess the performance of dermatological 
image classification. The first experiment utilized the Dernet 
dataset, comprising 240 images with categories such as acne 
keloidalis, alopecia, and others. The second experiment 
involved a combination of Dermnet and Figaro-1k datasets[43], 
totaling 485 images, categorized as healthy and unhealthy. Two 
pre-trained models, Inception-v3[44] and SqueezeNet [45], 
using the RMSProp optimizer, were employed for these 
experiments. For the first experiment using Inception-v3, the 
model achieved an accuracy of 63.9%. In the second 
experiment, SqueezeNet was utilized, resulting in an 
impressive accuracy of 100%. However, despite this high 
accuracy, the integration of three XAI techniques, Grad-CAM, 
LIME, and occlusion sensitivity, revealed some noteworthy 
findings. In the second experiment, the classification was 
influenced by unrelated areas, casting doubt on the reliability of 
the 100% accuracy. On the other hand, the first experiment 
suggested that the model's predictions were primarily affected 
by the forehead area, highlighting the importance of specific 
regions in making final decisions. However, despite this 
emphasis, the accuracy achieved was only 63.9%. 
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TABLE I. SUMMARIZING AI STUDIES IN SCALP DISORDER DIAGNOSIS 

Article Dataset Model Results 

Shih et al.  

(2015)[26]  
40 scale images Hair-bundling algorithm 

98.0% of precision 

85.56% of recall 

Su et al 

(2018)[3] 
Not mentioned VGG-net 90.9% of accuracy 

Wang et al. 

(2018)[4] 

1000 images  

(880 training images/ 220 testing images) 
ImageNet-VGG-f model Bag of Words 89.77% of accuracy 

Chang et al. 
(2020)[2] 

2198 images Faster R-CNN based model 91.75% in mAP 

Chow et al. 

(2022)[38] 

1079 images  
(864 training image,  

215 validation image) 

LIME, CNN 
96.63% of accuracy 

 

Heng et al. 

(2023)[37] 

DermNet dataset:  
240 images 

Figaro-1k dataset: 

245 images 

Integrating Grad-CAM/LIME/Occlusion Sensitivity with  

multiple DL models 

Illustrated in Table II 

 
 

Jeong et al. 

(2023)[39] 
100,000 images (x60) EfficientNet-B6 Illustrated in Table IV 

Roy et al. 

(2023)[40] 
150 images CNN 91.1% of accuracy 

Ha et al. 

(2024)[41] 
100,000 images (x60) 

Attention rollout with  

ViT-B/16 
Illustrated in Table III 

TABLE II. HENG ET AL. RESULT [37] BASED ON TWO EXPERIMENTS 

Scalp Symptoms Number of images Accuracy (%) 

Dryness 17,434 91.3 

Oiliness 80,416 90.5 

Erythema 4,592 89.6 

Folliculitis 4,592 87.6 

Dandruff 40,482 87.3 

Hair loss 25,682 89.0 

In Roy et al.'s concurrent research [40], a dataset comprising 
scalp images from multiple sources was collected, consisting of 
150 images depicting three different diseases: alopecia, 
psoriasis, and folliculitis. The research employed CNN, and 
after experimenting with 25 different combinations, a neural 
network architecture with three hidden layers, one input layer, 
and one output layer was chosen as the final design. The 
training process used a batch size of 16 for each batch over 50 
epochs, and the preprocessed data was divided into a 70-30 
train-test split for training and validation purposes. The model 
was constructed with 256 inputs, a 3x3 square kernel, 3 output 

units, and a Softmax output layer. The model achieved a 
training accuracy of 96.2% and a validation accuracy of 91.1%. 
This approach demonstrates a careful exploration of model 
architecture variations, leading to the selection of an optimal 
configuration. The high training and validation accuracies 
indicate the effectiveness of the chosen model in learning and 
generalizing from. However, it is essential to consider the 
potential impact of overfitting and the model's performance on 
unseen data. 

TABLE III. RESULTS OF JEONG ET AL.'S RESEARCH UTILIZING EFFICIENT 

NET-B6 MODEL 

Dataset and Model 
DermNet and 

Inception-V3 

Figaro-1k and 

SqueezeNet 

Training  

accuracy (%) 
98.4 100.0 

Validation  

accuracy (%) 
63.9 100.0 

Validation  

sensitivity (%) 
88.9 100.0 

TABLE IV. RESULTS OF HA ET AL.'S RESEARCH UTILIZING THE VIT-B/16 MODEL 

Scalp Symptoms Number of images Accuracy (%) F1-Score (%) Precision (%) Recall (%) 

Dryness 17,434 77.7 76.7 77.0 76.9 

Oiliness 80,416 69.0 70.1 69.7 70.6 

Erythema 4,592 81.4 81.6 81.5 81.7 

Folliculitis 4,592 82.3 82.5 82.3 82.6 

Dandruff 40,482 77.1 79.3 79.3 79.3 

Hair loss 25,682 82.3 83.1 83.0 83.0 
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AI-ScalpGrader [39], a DL system designed for scalp 
diagnosis, offers promise with its detailed classification 
scheme. Analyzing ten scalp conditions based on seven 
dermatologist-defined indices, it provides a more 
comprehensive picture of scalp health compared to limited-
scope systems. Additionally, the cloud-based platform 
facilitates data storage, analysis, and potentially allows remote 
monitoring of scalp care. However, limitations exist. The 
system's accuracy, reported to be between 87.3% and 91.3% 
for various scalp conditions, depends heavily on training data 
quality and diversity. While a sizeable dataset of 100,000 
images is mentioned, details regarding its composition and 
potential biases such as: F1-score, recall and precision are 
lacking. Transparency surrounding the verification process is 
also needed to build trust in the system's reliability. Expanding 
the training dataset with a wider range of scalp conditions and 
ethnicities is crucial. Additionally, exploring integration with 
telehealth platforms could revolutionize access to scalp care 
services. 

One of the latest studies presented in Ha et al.’s research 
[41] proposes a DL-based intelligent healthcare platform to 
diagnose six common scalp hair disorders (dryness, oiliness, 
erythema, folliculitis, dandruff, and hair loss) with the same 
dataset as Jeon et al.’s study [39]. Distinguishing itself from 
prior research, this platform not only classifies the presence or 
absence of a condition but also predicts severity levels ranging 
from 0 to 3 for each disorder. The study advances the field by 
encompassing a broader spectrum of scalp conditions, 
incorporating predictive severity assessment, and integrating 
XAI techniques for lesion visualization. Moreover, its user-
friendly software facilitates convenient self-monitoring at 
home. However, the authors acknowledge the potential 
influence of lighting environments on data quality, 
particularly affecting the classification of oiliness severity. 
Overall, this study underscores the promising potential of DL 
and XAI, notably ViT models and attention rollout, in the 
analysis of scalp health, although further research is 
imperative to ensure widespread clinical adoption. 

In summarize, the pursuit of effective methodologies for 
scalp imaging and hair disorder diagnosis has led to the 
establishment of multiple research initiatives. DL techniques 
have outperformed traditional ML approaches in terms of 
accuracy, efficiency, and generalizability, showcasing their 
potential in advancing the field. Nevertheless, the inherent 
opacity of decision-making processes in DL poses challenges 
for clinical applications. The integration of XAI techniques, 
such as LIME, Grad-CAM, SHAP and attention rollout 
presents promising avenues to address this issue. However, a 
critical need for further research exists to comprehensively 
understand how these DL methods interact with wider range 
of datasets, ensuring their efficacy and reliability in real-world 
clinical scenarios. 

V. CONCLUSION 

In conclusion, our comprehensive review of studies 
underscores the transformative impact of DL in 
revolutionizing scalp imaging and advancing the diagnosis of 
hair disorders, especially with the help of XAI in 

understanding complex decision-making process. The 
demonstrated synergy between XAI and DL in handling 
complex imaging tasks marks a significant advancement. 
However, the imperative for ongoing research in this domain 
is encouraged, with the possibility to improve treatments for 
this global concern. The combination of XAI and DL holds 
promise not only for professionals but also for non-
professionals, offering potential applications in self-diagnosis. 
Looking forward, the pursuit of further research, particularly 
in real-time detection, stands to benefit both professionals and 
individuals, contributing to improved living conditions for 
those affected by hair scalp diseases. However, several 
limitations remain. Many studies rely on small, non-
representative datasets, limiting generalizability, and the lack 
of transparency regarding training data raises concerns about 
potential biases. Additionally, while XAI techniques like 
LIME, Grad-CAM, and SHAP provide valuable insights into 
model decision-making, they add computational complexity 
that may hinder clinical adoption. Some models demonstrate 
strong performance under controlled conditions but struggle 
in real-world settings due to variables like lighting and image 
quality. Moreover, the integration of these systems with 
telehealth platforms and their ability to predict severity levels 
across diverse patient populations still require further 
refinement. Despite these challenges, the combination of DL 
and XAI offers significant potential for improving the 
diagnosis and treatment of scalp and hair disorders, but further 
research is crucial to ensure their efficacy, transparency, and 
widespread applicability in clinical practice.  
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